
ICT-56-2020— Next Generation Internet of Things

D2.5
Final report on the methods for

requirement, specification, performance
metrics and verification of context
limited AI processing systems

Version 1.0

Document Information

Contract Number 957197

Project Website https://vedliot.eu/

Dissemination Level PU (Public)

Nature R (Report)

Contractual Deadline 30 April 2022

Author UGOT & VEONEER

Contributors Stefan Andersson (VEONEER), Oliver Bruneegard

(VEONEER), Olof Eriksson (VEONEER), Hans-Martin

Heyn (UGOT), Eric Knauss (UGOT)

Reviewers Gunnar Billung-Meyer (CHR), Mario Porrmann (UOS)

The VEDLIoT project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No 957197.

https://vedliot.eu/

D2.5 Version 1.0

Table of Contents

1 Introduction . 6

1.1 VEDLIoT Project Introduction . 6

1.2 VEDLIoT WP2 Introduction . 8

1.3 VEDLIoT T2.1 & T2.2 outlining . 9

1.3.1 Task 2.1: Requirementmethods & performancemetrics (M1-M18) 9

1.3.2 Task 2.2: Specification & verification methods (M1-M18) 10

1.4 The VEDLIoT Thing . 10

2 Background . 14

2.1 Current best practices . 14

2.1.1 System Architecture . 14

2.2 Identified problems with current best practices 21

2.2.1 PA 1: Contextual definitions and requirements 22

2.2.2 PA 2: Data requirements and quality attributes of data 23

2.2.3 PA 3: Performance definition and monitoring 24

2.2.4 PA 4: Human Factors . 25

2.2.5 Cross-Cutting research problem: Integration in modern system

development . 26

3 Architectural Framework . 28

3.1 Architecture descriptions for distributed systems 28

3.2 Clusters of concern . 28

3.2.1 Behaviour and Context . 30

3.2.2 Means and Resources . 31

3.2.3 Quality Concerns . 31

3.2.4 Architectural views for AI systems 32

3.2.5 Exampleof correspondencesbetweenaquality concern and the

remaining architecture concerns 32

3.2.6 Example of correspondences between context, learning, and AI

model . 34

3.3 Levels of abstraction . 36

3.3.1 Knowledge and analytical level 36

3.3.2 Conceptual level . 36

3.3.3 Design level . 36

3.3.4 Run time level . 36

3.4 Compositional architecture framework for VEDLIoT 37

3.4.1 How to apply a compositional architectural framework in practice 38

3.5 Monitoring and controlling concepts for the run-time behaviour of ad-

vanced AI systems . 40

4 Requirement Methods . 41

1

D2.5 Version 1.0

4.1 Define Scope, High-level Goals about Functionality and Quality, Priori-

tise Concerns . 41

4.1.1 Define Scope . 44

4.1.2 Functional goals . 45

4.1.3 Quality goals . 45

4.2 Define System and Context Description 47

4.2.1 Define System Context . 48

4.2.2 Define System Requirements . 49

4.2.3 Define Quality Requirements . 50

4.2.4 Derive Quality Requirements on Data and Learning 51

4.3 Quality aspects of data used for systems with deep learning 53

4.3.1 A data quality assessment and maintenance framework 54

4.3.2 Data Quality Workflow . 54

4.3.3 List of Challenges . 54

4.3.4 List of Data Quality Attributes . 55

5 The influenceofdistributedAIonmethods for specification, performance

criteria and verification . 57

5.1 Specification content . 57

5.2 Requirement and Specification processes 59

5.3 Technology neutral sub system definitions 60

5.4 Synchronisation requirements . 61

5.5 System specification method . 61

5.6 AI performance criteria . 62

5.6.1 Functional Performance . 62

5.6.2 Qualitative Performance . 62

5.6.3 Relation to intended use-case context 63

5.6.4 Training Data Quality . 63

5.6.5 Safeguarding automation . 63

5.7 Additional considerations for distributed AI 63

5.8 Verification Methods . 64

5.8.1 Simulations . 64

5.8.2 System Integration testing . 65

5.8.3 Quality verification . 65

5.8.4 Validation data selection . 65

5.8.5 Field tests . 65

5.9 Runtime Monitoring . 65

5.9.1 Real-Time Monitoring functionalities 66

5.9.2 RTM and functional Safety . 69

5.9.3 RTM and AI/ML . 69

5.9.4 RTM and continuous learning . 70

5.9.5 RTM and post-event data correlation 70

5.9.6 Summary . 70

6 Conclusion . 71

7 References . 73

2

D2.5 Version 1.0

List of Figures

1.1 Global picture of VEDLIoT. This deliverable will discuss WP2: Require-

ments. 7

1.2 A VEDLIoT Thing . 11

1.3 Characteristics of ”a Thing” in the context of Very Efficient Deep Learn-

ing in the IoT. 13

2.1 Concerns relevant for systems of the IoT with AI components 17

2.2 Taxonomy for AI based on [65] . 21

2.3 The development of complex, AI systems implies the need of certain

abilities (blue boxes) that depend on solutions for challenges in four

areas (red/yellow boxes). We argue that one has to find solutions for

the red challenge areas before approaching the yellow challenge area. 22

3.1 Conceptual model of an architecture description [39] 29

3.2 Conceptual systemarchitecture for anautomotive automatic emergency

brake system . 32

3.3 Conceptual systemarchitecture for anautomotive automatic emergency

brake system after safety decomposition 34

3.4 Co-Design of context and constraints, learning concept, and AI model. 35

3.5 Conceptual model of a compositional architecture framework 37

3.6 Steps taken for defining a compositional architectural framework for

VEDLIoT . 38

3.7 Compositional architecture framework forVEDLIoT, categorising views

in different clusters of concerns on different levels of abstraction. . . 39

4.1 Basic flow of building VEDLIoT-based systems 43

4.2 Context diagram, describing scope and high-level functionality of a po-

tential smart mirror based system . 44

4.3 High-level requirements informationmodel that connects use cases to

operational context (Operational Design Domain, ODD), Data Require-

ments, and Quality Requirements. 46

4.4 Data Quality Workflow Framework Component 55

5.1 Visualisation of Veoneer requirement process 59

5.2 An architectural framework merging clusters of concerns for an AI en-

abled system . 60

5.3 An architectural formal specification as part of requirements specifica-

tion [85] . 61

5.4 V-model with Functional Safety and SotiF 66

5.5 RTM system concept . 67

5.6 Trends and Performance monitoring . 68

5.7 Proposed real-time monitoring for a single core Arm processor 69

3

D2.5 Version 1.0

Executive Summary

VEDLIoT supports building complex systems based on components supporting very

efficient deep learning in IoT. From a system’s point of view, these components be-

have differently than other components, especially with respect to security, safety,

and robustness. This is due to the fact that deep learning algorithms solve com-

plex tasks by returning probabilities with statistical error margins. Given a set of as-

sumptions, this statistical error can be quantified and trade-offs between accuracy,

response-time, energy-consumption and other quality attributes can be optimised.

These assumptions include:

• The context of operation.

• The quality of input as well as training environment.

Based on Task 1.1, this deliverable first details the challenges that typically occur

whenapplying currentbestpractices in systemsengineering todistributeddeep learn-

ing systems. Then, an architectural framework is proposed that takes these chal-

lenges explicitly into account in order to solve them. This is achieved by introducing

the concept ofClusters of Concern, which allow to “divide and conquer” the challenges

of developing deep learning systems in IoT. Specifically, the architecture framework

for VEDLIoT contains Clusters of Concern dealing with the Context Description of the

system, Learning Environment of the deep learning components, Communication con-

cerns, and a set of Quality Concerns, such as Ethical Aspects, Safety, Power, Security,

and Privacy aspects. Each cluster contains a set of architectural views, which are

sorted into different Levels of Abstraction. The result is amatrix of architectural views

on the deep learning system in the IoT, which explicitly contains all relevant concerns

for the development of the system. This explicit treatment of concerns allows for

true “safety-by-design”, “security-by-design”, “ethical-by-design”, or any other recog-

nised “quality-by-design”.

Basedon thearchitectural framework forVEDLIoT, a requirementengineeringmethod

is developed which supports the architectural framework, and which

• guarantees systembehaviour, given that a suitable context of operation ismain-

tained;

• guarantees quality of decisions (=output data) of VEDLIoT components, given

that a defined level of input data quality is met;

• describes quality of input, training, and output data in relation to system pur-

pose and context of operation; and

• specifiesmonitoring concepts for VEDLIoT systems that continuously track per-

formance and the expected behaviour of the system.

The preliminary work of Deliverable 2.1 has been extended by providing more de-

tailed descriptions of the levels of abstractions and the identified clusters of concern,

4

D2.5 Version 1.0

by providing examples taken from the VEDLIoT use cases in WP7, and by detailing

how the proposed compositional architectural framework can be applied in practice.

Based on Task 2.2, the report details how system specifications, performance criteria

and verificationmethods arederived for distributeddeep learning system. As amajor

extension to the previous deliverable, this deliverable also includes runtimemonitor-

ing aspects of the IoT systems, because many quality guarantees, such as safety, can

only hold with the help of runtime monitors.

The output of the two tasks are used to define and specify the use cases, especially

through Work Package 7. The compositional architectural framework for VEDLIoT is

flexible enough to serve as away to specifymore clearer the needs and requirements

of all the different current and future use cases in VEDLIoT, such as automotive, in-

dustrial, and smart home use case. The explicit handling of quality aspects, such as

safety, security, ethics and privacy serve as input and tool to Work Package 5. It sup-

ports specifying and implementing quality requirements on theVEDLIoT systems. Es-

pecially the new aspects about runtimemonitoring discussed throughout this report

are relevant for safe, robust and secure deep learning systems in the IoT. Also, in ad-

dition to the previous deliverable, methods for defining and controlling data quality

requirements and context definitions are part of this deliverable. Being able to man-

age data quality aspects, and defining the desired context of the deep learning sys-

tem in the IoT is critical for being able to state guarantees on the robustness, safety,

or other quality aspects of the system.

5

D2.5 Version 1.0

1 Introduction

1.1 VEDLIoT Project Introduction

Computer systems have advanced at a very high rate for the last years and as a result

we are currently able to hold in our hands mobile devices that have orders of mag-

nitude larger computational power than what was available in the systems used to

place a man on the moon some decades ago1. The enormous functional expansion

of the individual devices goes hand in hand with the availability of cheap communi-

cation technology, which facilitates the ubiquitous and spontaneous networking of

objects of all kinds. The result is a heterogeneous infrastructure that enables an un-

foreseen variety of new applications, services, and products for a smart, prosperous

society. Key sectors of high relevance for improving our quality of life are transporta-

tion, industry, and our homes. For these and other sectors, applications that seemed

to belong to the “science-fiction” are now starting to become implementable.

Regarding transportation, the increasing population and in particular the increasing

population density in urban spaces urges formore efficient and effective transporta-

tion solutions that are at the same timeflexible tofit each one’s needs aswell as safer

than the existing ones. Self-driving cars would be a potential application towards ad-

dressing these goals. In terms of industry, (Industry 4.0), significant advances have

been observed in the manufacturing of goods so essential for the development of

our society. Automation has been introduced at a high degree in the industrial pro-

cess by means of robotisation, for example. There is a need to push even further the

efficiency, effectiveness, and productiveness. This will require to push automation

to a new level. Self-optimizing and self-maintaining production lines could be one ap-

plication that would target these goals. Finally, our homes are designed to provide

us with the necessary space for our needs of a safe and controlled environment. At

present, they are mostly a passive element in our life. User-centric automation could

significantly improve the situation by enabling better self-adaptation to our chang-

ing needs as well as variations of external conditions. In addition, it should evolve to

become more interactive as to further improve our quality of life. Smart-home with

smart-devices could provide a solution towards the above set goals.

The increasing functionality of future technical systems is accompanied by a higher

design andmanagement complexity. A purelymanual configuration of the upcoming

complex devices and networks will becomemore andmore difficult. In order to over-

come these emerging problems as well as the presumably continuing heterogene-

ity of existing technologies, future products and services must be easily scalable and

equippedwith features that facilitate the automatic adaptation toeachother and, es-

pecially, to the user. Furthermore, current system engineering approaches for build-

ing such systems start to fail and cannot be applied to find resource-efficient solu-

tions to these applications. The amounts of data collected to be processed are ex-

tremely large, the computational power required is extreme and thus requires large

amounts of energy and the algorithms are too complex and cannot deliver solutions

within the tight time constraints. Even describing requirements and constraints

1https://www.independent.co.uk/news/science/apollo-11-moon-landing-mobile-phones-
smartphone-iphone-a8988351.html

6

D2.5 Version 1.0

Figure 1.1. Global picture of VEDLIoT. This deliverable will discuss WP2: Requirements.

such as security, privacy, or robustness for such systems, and guaranteeing that

these are fulfilled, becomes a critical challenge and threatens the deployment of

such futuristic applications to society.

The solution is to introduceadisruption in traditional systemsanddesignapproaches.

On the one hand, instead of traditional algorithms to solve these complex problems,

algorithms based on artificial intelligence and deep learning can be effectively used

to handle the large complexity in a graceful way. On the other hand, computer sys-

tems need to be broken into different components in order to be placed where they

are most needed and can bemore efficient. At the same time all components should

work together as a large collaborative system. In such a system computation exists

in devices of different “shapes” and “formats” or configurations that are connected

with each other, often via a high-bandwidth connection. Such systems are known as

Internet of Things (IoT). IoT devices can spread all the way from the sensor nodes

collecting the physical data, which can then interact with a system at the edge that

can eventually interact with other systems up to the cloud, where larger common re-

sources are available, formingwhat we call the compute continuum from the edge to

the cloud.

An effective enabler that aims at delivering the framework to provide the solution for

advancement in the automation for different key sectors is VEDLIoT, a Very Efficient

Deep Learning IoT system. A representation of the different components of VEDLIoT

is shown in Figure 1.1.

In terms of hardware, VEDLIoT offers a platform, the Cognitive IoT Platform, which

is composed of different systems, each one adapted better to its level of operation

in the compute continuum. In addition, these systems include devices to support the

latest high-bandwidth and low-latency wireless interconnection technology (e.g. 5G

or LoRa). In order to deliver the necessary required computational power at the dif-

ferent levels, the platform may include dedicated Hardware Accelerators. Different

instances of these accelerators are available so that it is possible to cover the differ-

ent needs and requirements of the IoT devices.

The VEDLIoT toolchain will address the task of interfacing AI software to hardware

in a comprehensive fashion leveraging and building on existing open source com-

7

D2.5 Version 1.0

ponents. Uniquely, the toolchain development will be closely coordinated with the

Edge-to-Cloud IoTDistributed System and the emerging use cases from industrywith

their specific needs and with a human-centric focus aimed at delivering trusted solu-

tions to end users. The optimisation toolchain sits between well-known and widely

used DL frameworks (e.g. TensorFlow) and back-end technologies involving compil-

ers and hardware interfaces. The intermediate representation and optimisation will

be agnostic to underlying hardware platform offering support and interoperability

across a range of hardware platforms. Robustness, privacy and security measures

will be incorporated into the toolchain. It will enable processor vendors, device mak-

ers, and deep learning developers to rapidly bring new and independent innovations

in machine learning to a wide variety of hardware platforms and applications.

VEDLIoT is driven by the challenging use cases in the key sectors of automotive, in-

dustry, and smart home. In addition, within the context of the VEDLIoT project, there

will be an open call to explore new opportunities by extending the application of the

VEDLIoT infrastructure to a larger set of relevant and new use cases.

Finally, the whole framework is supported by cross-cutting aspects that guarantee

at all levels that the systems satisfy qualities of security, privacy and trust as well

as robustness and safety. In order to build systems that incorporate such qualities

by design, these aspects include specialised methods for defining requirements and

architectures for systemsbuilt basedonVEDLIoT, for specifying components. In addi-

tion, novelmechanisms to analyse such qualities during development and continuous

integration of VEDLIoT-based systems will be developed. Finally, the use of runtime

monitors will allow to assess the ability to guarantee such qualities at runtime and to

gracefully bring a VEDLIoT-enabled system into a safe state in case of problems.

Overall, VEDLIoT offers a framework for the Next Generation Internet (NGI) based

on IoT devices capable of solving the complex deep learning applications in a collab-

orative manner across a distributed system that is secure and satisfies robustness

guarantees. Altogether, the VEDLIoT infrastructure provides themeans for advance-

ment leading to solutions for the challenging problems in emerging use cases such

as autonomous driving.

1.2 VEDLIoT WP2 Introduction

Theability to applydisruptive systemsandmethods suchas thosedeveloped inVEDLIoT

in realworld applications reliesonadvances indevelopmentmethodology. Newmeth-

ods for effectivelydescribing requirements forAI-basedalgorithms that aredistributed

over IoT devices fromedge to the cloud and how they relate to end-user concerns and

needs are a crucial part of the solution. Thesemethods build the foundation for spec-

ifying components of such systems in a way that enables to reason about robustness

and safety as well as to enable security, privacy and trust by design.

In VEDLIoT, these cross-cutting aspects are prepared for inWP2. A high-levelmethod

to break down use cases into context description and requirements towards VEDLIoT

components directly relates to two of VEDLIoTs key objectives:

• Objective 6: Security, privacy, and trust by design

• Objective 7: Robustness and (functional) safety

8

D2.5 Version 1.0

WP2 aims to find methods to do verifiable requirements and specifications for all

levels of the system architecture for all individual use cases. This includes ways to

describe sensor behaviour and data space structure in a generic way. It also includes

the sensor output information format and validity as well as the variation of infor-

mation quality based on sensor usage and environment. Sensors can be any type of

information source both based on physical measurements and data mining.

VEDLIoT systems contain both traditional software and hardware components and

AI components running on specialised AI acceleration hardware. The challenge is not

only to specify and design the AI components, but also to integrate them together

with the traditional components into an overall AI enabled system. In WP2, a com-

positional architectural framework has been developed that solves the challenge of

co-design of traditional software, hardware, and AI components, while concurrently

ensuring safety, security, privacy, and ethical aspects of the overall system.

The architecture definition shall describe the flow of information and description of

the required refinement at the different nodes of the system. Furthermore, it shall

account for possible latency and loss of data over the entire data flow network, and

it shall include all data sources, the required data processing and the data output in-

terface. ThisWPwill also create the specifications and requirements for the selected

pilots and use cases. This includes both hardware and software as well as testing and

benchmarking requirements and specifications. The specific objectives for this WP

are methods for:

• extracting AI architecture specifications from the requirements;

• creating sub-block design specifications, software and hardware, from architec-

ture and requirements;

• developing performance metrics for the AI processing design;

• developing verification processes for the AI processing system;

• developing specifications, performance metrics and verification processes for

defined use cases.

1.3 VEDLIoT T2.1 & T2.2 outlining

In this report, we present final results with respect to Task T2.1 and T2.2.

1.3.1 Task 2.1: Requirement methods & performance metrics (M1-M18)

• Context definition based on use case, will enable different processing require-

ments. It is necessary to define a context in which the system is supposed to

operate and in which the system specifications will be valid;

• Functional requirements;

• Data quality requirements. The data to be processed at each node has to fulfil

a defined level of quality with respect to precision, dynamic range and noise, as

well as other higher-level qualities such as sensitivity, timeliness, and trustwor-

thiness; An architectural framework that supports co-design of systems consist-

ing of traditional software components and VEDLIoT components.

9

D2.5 Version 1.0

1.3.2 Task 2.2: Specification & verification methods (M1-M18)

• System and sub-block specification methods. Based on the proposed architec-

ture specifications for hardware and software, operational feature blocks shall

be identified and defined.

• Real-time performance, redundancy, security and safety levels. The maximum

allowed processing output latency with respect to actual event timing needs

to be defined. Also the processing robustness as defined by, among others,

ISO26262 and SOTIF documents needs to be considered in the analysis meth-

ods developed in this task. The security requirements both for sensor and pro-

cessing platforms as well as the transfer of data over different channels must

be defined.

• Operatingenvironmentdescription. Thefinal operational specification requires

an operating environment description, for example the definition of an opera-

tional design domain (ODD). All the expected use cases and the corresponding

environment shall be described in an ODD;

• Update andmaintenancemethods. This taskwill try to propose safe and secure

ways of updating the complete system. Itwill also evaluate theway ofmaintain-

ing the system in real time to evaluate if and when updates will be necessary;

• Verificationdata selection. Basedon the specifications andmethods developed

in this WP it is necessary to define a method to select the data set that can be

used as verification of the set requirements.

1.4 The VEDLIoT Thing

The IEEE 2413:2019 Standard provides an Architectural Framework for the IoT [34].

It defines a Thing as ”an IoT component or IoT system that has functions, proper-

ties, and ways of information exchange”. In addition, the standard emphasises the

need for appropriate security of the information that is stored on a Thing or being

exchanged between things.

The standard defines an IoT environment as ”the set of IoT components available to

be composed into IoT systems, the network connecting the components, and any as-

sociated services for discovery, composition, and orchestration”. Combining IoT com-

ponents that interact with each other through an IoT environment allows to form IoT

systems. An example of an IoT component in a connected, typically distributed IoT

system, is a cyber-physical device. A cyber-physical device is characterised by being

able to interact with the physical world through sensors and/or actuators [27]. Other

examplesof IoT components aredata storagedevices, networkingequipment, or pro-

cessing nodes.

Especially the availability of efficient hardware formassively parallel processing gave

a significant boost in using deep neural networks in many IoT applications, such as

SmartHealthcare (HealthMonitoring, DiseaseAnalysis), SmartHome (HomeRobotics,

Speech Recognition), Smart Transport (Traffic Prediction, Autonomous Driving), and

Smart Industry (FaultAssessment), see [60] for a comprehensive surveyonDeepLearn-

ing empowered IoT applications. Compared to manual feature specification, Deep

10

D2.5 Version 1.0

Deep Learning Inference

Data Management

Network interface capability

Supporting Services

Data Transfer

Power Management

Accelerator

Inference Connectivity

Time Sync
Remote

Component
Mgmt. Encryption

Authentication

Processing Capabilities
(CPU, GPU, FPGA)

A VEDLIoT Thing

Real-Time
Scheduling

Monitoring System

Figure 1.2. A VEDLIoT Thing

Learning allows for a significantly easier extraction of complex features from the raw

data provided by sensors or other sources of data in the IoT system.

To understand the peculiarity of a VEDLIoT component in comparison to a regular

IoT component, we asked the participants of a workshop meeting2 to give free text

answers (with multiple answers possible) on the question What is a VEDLIoT Thing?

After themeeting, the answers were categorised into themes. The themeswere cho-

sen to fit best the answers given from the participants, but also to represent typical

IoT characteristics. The final map is shown in Figure 1.3. While sensing and actuating

can still be typical characteristics, the main characteristics are in the field of AI/Deep

Learning and Data.

Answers such as ”An inference machine”, ”A device that efficiently uses ML (Machine

Learning)”, and ”Deep Learning light-weight inference engine” indicate that one char-

acteristic of a VEDLIoT Thing is the ability to perform efficient inference using deep

learning.

Efficient inference with deep neural networks can be supported with Accelerator, as

mentioned by another participant. A VEDLIoT component is also described by a par-

ticipant as ”Something that enables AI-based applications in IoT”, which indicates that

a VEDLIoT component is an extension providing AI capabilities to the IoT.

Another answer was A VEDLIoT Thing is ”[s]omething that trains a model”. In order

to be able to train a deep learning model, data must be made available. Some par-

ticipants described a VEDLIoT Thing as ”Something that curates data”, ”A Thing that

collects data”, and ”A data complexity reduction unit”. Being able to handle potentially

2Work Package 2 Architecture Workshop Meeting on 21st February 2021. 20 participants repre-
sented the industry partners and academic partners in equal parts.

11

D2.5 Version 1.0

Table 1.1. Survey on required capabilities for a ”VEDLIoT Thing”. 16 participants answered the

survey.

*: Score of 1 is a strong disagreement that a VEDLIoT component needs the capability, a score of

5 indicates strong agreement.

**: Supporting capabilities include, amongothers, time synchronisation, data encryption, authen-

tication, or remote component management)

***: Latent capabilities are capabilities that lie dormant for future use. An example is a USB port,

to which nothing is connected yet.

Capabilities Score*

Network Interface Capability 4.9

Data transferring 4.4

Data processing 4.4

Sensing 4.1

Supporting** 4.1

Data storing 2.7

Latent capabilities*** 2.7

Actuating 2.3

Application Interface capability 2.3

Human UI 2

large data amounts seems to be another relevant characteristic of a VEDLIoT compo-

nent.

The participants of the workshop were further asked to rank a set of typical IoT com-

ponent capabilities, taken from [33], where a score of 1 means strong disagreement

that a ”VEDLIoT Thing” requires that capability, and 5 indicates strong agreement

that a ”VEDLIoT Thing” needs that particular capability. The result of the survey is

given in Table 1.1. It shows that communication, data processing and data transfer-

ring capabilities are highly important to VEDLIoT, while controlling actuators and pro-

viding a human-machine-interface are less important capabilities.

Based on the results from the common workshop that took place on 21st February

2021, a common view on what a ”VEDLIoT Thing” could comprise is illustrated in Fig-

ure 1.2. The figure shows two major groups: Inference and Connectivity. Inference

is enabled through Deep Learning, which, based on the use case, needs certain pro-

cessing capabilities, accelerators and real-time scheduling. A monitoring system en-

sures continuous supervision of the AI, and other components, and, because data is

the core of AI, data management organises data collection, filtering, and, if required,

data storage. On the connectivity part of the ”VEDLIoT Thing”, network interfaces

ensure connectivity, data transfer controls the data flow between devices and sup-

porting services allow for security protocols, remotemanagement and additional ser-

vices such as time synchronisation. Finally, because many VEDLIoT components will

run as embedded devices, power management regulates the energy and power re-

quirements for the device.

12

D
2
.5

V
e
rsio

n
1
.0

What is a
VEDLIoT

thing?
In a system of

Systems

A car, for
instance, but it

depends on
the application

A thing is a small
programmable

device that provides a
specific functionality.

Its program is given by
the manufacturer, not

the user.

AI / Deep Learning

Something that
enables AI-based

applications in
IoT

A device
for deep learning Accelerator

Sensor / Actuator

Embedded Sensor System:
DL capable

Communication
Interaction to Cloud/Edge

A thing exists
on the physical
world (collecting
and actuating).

Ressource- efficient
electronic appliance

with learning

Data

A data complexity
 reduction unit

A thing collects
 data.

Something that
curates data

Something that
trains a model

A device that
efficiently uses

ML

Deep Learning light-
weigth

inference engine

An inference
 machine

Something that
 uses Deep Learning
/Machine Learning

Figure 1.3. Characteristics of ”a Thing” in the context of Very Efficient Deep Learning in the IoT.

1
3

D2.5 Version 1.0

2 Background

The VEDLIoT toolchain addresses the task of interfacing AI software to hardware in

a comprehensive fashion leveraging and building on existing open source compo-

nents. Robustness, privacy, safety, and security measures will be incorporated into

the toolchain. VEDLIoT has been driven by use cases taken from industry, automotive

and smart home. In addition, an open call has been initiated to apply the VEDLIoT

toolchain to a larger set of relevant and new use cases. In order to build AI systems

that incorporate the right robustness, privacy, safety, and security measures, spe-

cialised methods for defining requirements and architectures need to be developed

for VEDLIoT. In addition, novel mechanism to analyse these qualities during develop-

ment and continuous integration of VEDLIoT-based systemsmust bemade available.

This includes the use of runtimemonitorswhich allow to assess the ability tomeasure

and therewith guarantee such qualities at runtime. Overall requirements and the sys-

temarchitectureof aVEDLIoT-based systemmustbeput in relationwith specification

and design decisions of its IoT components and the distributed AI algorithms.

2.1 Current best practices

2.1.1 System Architecture

2.1.1.1 Challenges with architectural frameworks for AI systems in the IoT

We applied three steps in order to derive and understand the challenges with archi-

tectural frameworks for AI systems in the IoT: In a first step, we compiled a list of

relevant standards, and standard-like documents that provide a starting point for un-

derstanding architectural frameworks for the IoT andAI systems. While standards are

a good representation of the state of practice for a proven technology, a literature

survey helped us understand the current state of the art in research, especially in re-

gards to systems engineering for AI. As a third step, we conducted aworkshop and fo-

cus groupswith practitioners in order to truly understand and validate the challenges

we need to account for in an architectural framework for distributed AI systems.

2.1.1.2 Standardisation of architectural frameworks

A natural starting point when discussing system architecture is the ISO 42010 stan-

dard on architecture description [39] and ISO 15288 [41] for the life cycle manage-

ment of an architectural framework. Most terms and definitions in this paper will be

taken from these standards.

2.1.1.3 Standardisation of architectural frameworks for the IoT

Based on the architecture ontology and methodology of ISO 42010, the IEEE pub-

lished a standard for an architectural framework for the IoT [33]. The purpose of

this standard is to ”provide a framework for system designers to accelerate design,

implementation, and deployment processes”. It therefore is as a key reference for

the proposed architectural framework. Besides major standardisation institutions

such as ISO and IEEE, there aremany organisations and interest groupswhich provide

standardisation attempts for architectural frameworks for the IoT. Good overviews

of standardisation attempts for IoT architectures can be found in [92, 78], and in the

architecture section of [69].

14

D2.5 Version 1.0

The IoT is a network of cyber-physical devices and systems, and, although it does

not directly address IoT,NATOs architecture framework [14] provides an architectural

framework for large distributed systems of intelligent agents. Ideas from the NATO

Architecture Framework serve as input to the proposed architectural framework for

distributed AI systems.

2.1.1.4 Standardisation of architectural frameworks for AI

In 2021 international standardisation for architectural frameworks of AI systems is

still ongoing. The only published international standard relevant for AI systems is

currently ISO/IEC TR 20547 which describes a standardisation of big data reference

architectures [44]. Table 2.1 provides an overview of ongoing international standard-

isation efforts.

Table 2.1. List of ongoing international standardisation related to architecture frameworks for

AI system

Number Title Status

ISO/IEC WD 5338
AI system life

cycle processes
Preparatory

ISO/IEC WD 5392
Reference architecture

of knowledge engineering
Preparatory

ISO/IEC AWI TR 5469
Functional safety

and AI systems
Proposal

ISO/IEC DIS 23053

Framework for AI

systems using machine

learning

Under

Approval

ISO/IEC TR 24030
Artificial intelligence -

Use cases

Under

publication

ISO/IEC DTR 24372

Overview of

computational approaches

for AI systems

In draft

2.1.1.5 State of the art for AI systems architecture

In a research agenda for engineering AI systems, the authors provide a list of chal-

lenges when developing architectures for systemswith AI components [8]: Providing

the right (quality of) data used for training, establishing the right learning infrastruc-

ture, building a sufficient storage and computing infrastructure and creating a suit-

able deployment infrastructure. The latter includes monitoring of the behaviour of

the AI systems under operation, because it might only be possible to detect and cor-

rect flaws in an AI systems after deployment [5]. Furthermore, AI systems does not

only consist of AI components, but relies also on conventional software and hard-

ware components. The development of AI components and traditional system com-

ponents must therefore be aligned to avoid unwanted technical debt [83]. However,

as Woods emphasises, traditional architecture frameworks, such as the 4+1 architec-

tural viewmodel by Kruchten [55], does not account for data and algorithm concerns

connected to AI component development [98]. Generally, new stakeholders (e.g.

15

D2.5 Version 1.0

data engineers, or governmental agency overseeing the use of AI in society [19]) and

new concerns connected to AI like data quality aspects, ethical considerations such

as fairness or explainability and eventually many more, need to represented through

newarchitectural viewpoint. An example of such an additional viewpoint is a learning

viewpoint governing the view on the machine learning flow [70].

Developing AI components is a hierarchical, yet also iterative task: Prepare training

data / environment, create a suitable model, train and evaluate the model, tune and

repeat training, and eventually finally deploy and monitor the run-time behaviour of

the trainedmodel [8, 90]. To fulfil a stakeholder’s goal with a system, its design needs

to be decomposed into different levels of system design, and consistency needs to

be ensured in order to satisfy high-level requirements [22]. In addition, the system

design must also allow for ”middle-out development”, where existing components

need to be integrated in the overall system design (e.g. transfer-learning from ex-

isting AI models or integration of off-the-shelf components) [71]. Murugesan et al.

propose a hierarchical reference model which supports the appropriate decomposi-

tion of requirements to the composition of the system’s components. In their model

they define how components can be decomposed into sub-components. To ensure

consistency between the system architecture and the requirements, they define the

terms consistency, satisfaction, and acceptability. Onemajor advantageof theirmodel

is that, if decomposition of system components is done correctly, these components

can be independently specified and developed.

2.1.1.6 Focus on challenges of system design for AI systems in the IoT

When combiningAIwith the properties of the Internet of Things, new concernsmight

arise that are not yet foreseen by standards and literature. To understand these con-

cerns, we conducted in February 2021 a workshop with academic and industrial part-

ners in the VEDLIoT project.

The aim of the workshop was to identify concerns relevant for a reference architec-

ture concept for VEDLIoT. The workshop was conducted remotely using interactive

survey elements such as Mentimeter and Microsoft Forms.

After presenting the aim of the workshop, the participants were presented with fun-

damental concepts of Architectural Framework for the IoT as described in IEEE 2413-

2019 [33]. The participants were given Table 1 from the standard showing common

stakeholders of IoT systems. They were further asked, if, when considering IoT sys-

tems with AI components, they think additional stakeholders need to be considered.

The participants agreed that the list of common stakeholders from [33] contains all

relevant stakeholders, and that the only additional stakeholder in regards to the AI

components are legislator / policymakerswhomight impose additional rules, e.g. for

transparency or explainability of the AI’s decisions.

In a second step, the workshop participants were asked to list relevant concerns for

systems that are part of the IoT and contain AI components. The list of concerns for

IoT systems given in Table 2 of [33] was provided to the participants in advance of

the workshop. During the workshop, the participants were asked to list all relevant

concerns for IoT systems with AI components that are either on the standard’s list of

concerns, or are not mentioned by the standard.

The result was collected in amind-map and, together with the participants, clustered

16

D2.5 Version 1.0

Figure 2.1. Concerns relevant for systems of the IoT with AI components

into what we will call ”clusters of concerns”. The resulting mind-map is presented in

Figure 2.1.

To summarise the findings from literature and theworkshop, we identified thatwhen

combining architectural aspects for the IoT and for AI systems, many new concerns

arise beyond traditional software engineering, such as data quality aspects, heuris-

tic AI modelling, AI learning, or even ethical considerations. New stakeholder such

as data engineers enter the stage, and common languages or interfaces need to be

found between the different stakeholders. Architectural views, governed through

viewpoints, help to capture the different concerns from different stakeholders, but

typical architectural frameworks, such as the ISO 42010 [39] or the IEEE 2413 [33]

standard cannot copewith the large set of architectural views necessary to satisfy all

stakeholders’ concerns. Onemajor challengewe identified in theworkshop is the dif-

ficulty to keep track of dependencies, e.g. through correspondence rules, between

the different architectural views. Another problem of current architectural frame-

17

D2.5 Version 1.0

Table 2.2. Participating partners in workshop on an architectural framework for VEDLIoT

No Name
Industry

Partner

Academic

Partner

1 Industrial IoT X

2 Smart Home X

3 Automotive Systems X

4 DL Optimisation X

5 AI Hardware X

6 Requirement Engineering X

7 IoT and AI research X

8 AI systems development X

9
Security concepts

for IoT and AI
X

10 AI Hardware Research X

11
Systems Safety

Concepts
X

works is the lack of a clear system development hierarchy, which would support the

early identification and mapping of dependencies between different architectural

views [72].

2.1.1.7 Terms and definitions

For this report, wewill refer to a terminologywhich follows the ISO standard on archi-

tecture description for system and software engineering [46] and the IEEE standard

for an architectural framework for the internet of Things (IoT) [34]:

Architecture specific

architecture: ”Fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and

evolution” [39];

architecture description: ”Work product used to express an architecture” [39];

architecture framework: ”Conventions, principles and practices for the description

of architectures establishedwithin a specific domain of application and/or com-

munity of stakeholders” [39];

architecture view: ”Work product expressing the architecture of a system from the

perspective of specific system concerns” [39];

architecture viewpoint: ”Work product establishing the conventions for the con-

struction, interpretation and use of architecture views to frame specific system

concerns” [39];

concern: ”Interest in a system relevant to one or more of its stakeholders” [39];

18

D2.5 Version 1.0

interface: ”Shared boundary between two functional units, defined by functional

characteristics, signal characteristics, or other characteristics as appropriate”

[35];

model kind: ”Conventions for a type of modelling” [39];

performance: ”Quantitative or qualitative level of a property at any point in time

considered” [33];

privacy: ”Right of individuals to control or influence what information related to

themmay be collected and stored and by whom and to whom that information

may be disclosed” [33];

Reference model: ”A reference model is an abstract framework for understanding

significant relationships among the entities of some environment. It enables

the development of specific reference or concrete architectures using consis-

tent standardsor specifications supporting that environment. A referencemodel

consists of aminimal set of unifying concepts, axioms and relationshipswithin a

particular problem domain, and is independent of specific standards, technolo-

gies, implementations, or other concrete details. A reference model may be

used as a basis for education and explaining standards to non-specialists” [33];

reliability: ”The ability of an item to perform a required function under given condi-

tions for a given time interval” [37];

resilience: ”Ability of a system or component to maintain an acceptable level of ser-

vice in the face of disruption” [33];

safety: ”The condition of the system operatingwithout causing unacceptable risk of

physical injury or damage to the health of people, either directly, or indirectly

as a result of damage to property or to the environment” [43];

security: ”A condition that results from the establishment and maintenance of pro-

tective measures that enable an enterprise to perform its mission or critical

functions despite risks posed by threats to its use of information systems. Pro-

tective measures may involve a combination of deterrence, avoidance, preven-

tion, detection, recovery, and correction that should form part of the enter-

prise’s risk management approach” [40];

service: ”The means by which the needs of a consumer are brought together with

the capabilities of a provider” [33];

stakeholder: ”An individual, team, or organisation (or classes thereof) with interests

in, or concerns relative to, a system” [39];

technical artifact: ”Entity that is designed by humans and that has a composition.

The composition of the technical artifact enables functions that are accessible

to humans and other technical artifacts” [17].

19

D2.5 Version 1.0

IoT specific

application: ”Functional unit that is specific to the solution of a problem. Note that

an applicationmay be distributed among resources, andmay communicatewith

other applications” [38];

coexistence: ”Ability of two or more devices to operate independently of one an-

other in the same network respecting the common rules for sharing the same

medium” [38];

confidentiality: ”Property that information is notmadeavailableordisclosed tounau-

thorised individuals, entities, or processes.” [42]

data: ”Representation of facts, concepts, or instructions in a formalisedmanner suit-

able for communication, interpretation, or processing by human beings or by

automatic means” [33];

data type: ”A set of values together with a set of permitted operations” [33];

device: ”Independent physical entity capable of performing one or more specified

functions in a particular context and delimited by its interfaces” [36];

entity: ”A particular thing, such as a person, place, process, object, concept, associ-

ation, or event” [36];

physical entity: ”A physical entity is a discrete, identifiable part of the physical envi-

ronment that is of interest to the user for the completion of her goal. Physical

entities can be almost any physical object or environment; from humans or an-

imals to cars; from store or logistics chain items to computers; from electronic

appliances to closed or open environments” [33];

system: ”Set of interrelated elements considered in a defined context as a whole

and separated from its environment” [17]

thing: ”Any physical entity in combination with its digital representation” [33]

virtual entity: ”Computational or data element representing a physical entity” [33]

AI specific

AI-based system: Asystemconsistingof various softwareandpotentially other com-

ponents out of which at least one is an AI component [65];

AI component: ”A part of a system. The component uses primarily AI” [65];

AI library: ”A special AI component that provides a concrete implementation of AI

algorithms” [65].

2.1.1.8 AI taxonomy

This reports follows the taxonomy proposed in [65] for AI as shown in Figure 2.2

20

D2.5 Version 1.0

Artificial Intelligence
(AI)

Machine Learning
(ML) Rule-Based AI

Neural Networks Support Vector
Machines (SVM)

Deep Learning (DL)
Networks (DNN)

Figure 2.2. Taxonomy for AI based on [65]

2.2 Identified problems with current best practices

From the use cases, we derive four problem areas that demand for further research.

Figure 2.3 illustrates that all four problems are interconnected with each other.

PA 1: Contextual definition and requirements; The ability of ensuring a desired sys-

tem behaviour requires that the context, in which the machine learning model

is deployed, is clearly defined.

PA 2: Data attributes and requirements; The context, and especially the ability to

guarantee certain system quality attributes such as safety and robustness, on

the other hand will impose non-functional requirements which will lead to re-

quirements of the data in use.

PA 3: Performance metrics, reproducibility, comparability and real-time monitoring

of trainedmachine learningmodels; To achieve continuous improvement of the

system and to enable the system to react on situations where functionality and

quality attributes can no longer be satisfied, performance monitoring and re-

porting needs to be established in the given context.

PA 4: Human Factors; For the success of the system, human factors must be consid-

ered - will humans accept decisions of the automated system? Will they react

accordingly? Will this affect the performance of the system in use?

Figure 2.3 illustrates that all four problems are interconnected with each other. In

addition, a cross-cutting aspect relates to process support for modern system devel-

opment approaches and the success of solutions within each problem area depend

on good integration into engineering practice.

Given the dependencies between the problem areas, we focus on the first two prob-

lem areas, because good conceptual approaches for managing context and data re-

quirements will support identifying solutions in the other problem areas. The follow-

ing research question will guide us through our work on requirement methods for

the VEDLIoT project. It is an initial collection of relevant research questions, and not

necessarily all of them will be answered in this project.

21

D2.5 Version 1.0

Guarantee system behavior

Guarantee system quality attributes

(safety, robustness, quality in use)

Process support (AI DevOps, agile

system dev., etc.)

Figure 2.3. The development of complex, AI systems implies the need of certain abilities (blue

boxes) that depend on solutions for challenges in four areas (red/yellow boxes). We argue that

one has to find solutions for the red challenge areas before approaching the yellow challenge

area.

2.2.1 PA 1: Contextual definitions and requirements

In the automotive use case, the problem of contextual definitions is probably most

obvious: Today, an ADAS cannot operate in any given driving situation. The system is

designed and tested to perform safely only in a priori defined conditions. According

to SAE [81], these operating conditions define the operational design domain (ODD).

A significant problem for the development of more automated vehicles is a lack of

a common definition for the ODD of a vehicle [54, 28]. Still, the original equipment

manufacturer (OEM)must be able to guarantee a certain system behaviour and espe-

cially safety attributes.

If deep learning is used to enable complex object (people, obstacles) and pattern

(road markings) detection, the ODD, as a way to describe the context in which the

vehicle will operate, will govern the required performance of the trained machine

learningmodel. The problemof contextual definition can even be abstracted beyond

the automotive use case to other applications of machine learning:

A trainedmachine learningmodel cannot be placed into another context without ap-

propriate new training and testing. The context can also change slowly over time.

To preserve the ability of ensuring the system’s behaviour, significant more trans-

parency about the entire life-cycle of a machine learning model will be required. It

must be shown that the context, in which a machine learning model operates, is suit-

able. A starting point towards more transparency for machine learning models are

model cards [67].

The importance of proper context definition formachine learning becomes apparent

in the no-free-lunch-theorems [97]. In brief they state that over all data-generating

distributions, every machine learning algorithm will perform equally poor when con-

frontedwith previously unobserved data. It is necessary tomake assumptions on the

22

D2.5 Version 1.0

probability distributions that the trained model is expected to encounter in the ap-

plication. Those assumptions, or beliefs, can be explicit by directly stating assumed

probability distributions over parameters of the model. They can also be implicit by

choosing learning algorithm that are biased towards choosing some class of function

over another [25]. A link obviously exists between the context of an application and

the expected data attributes.

Research Questions: Contextual definitions

RQ 1-1: What challenges arise when deriving contextual definitions and requirements from
use cases?

RQ 1-2: Which practices would be appropriate for deriving contextual definitions and require-
ments?

RQ 1-3: How to express and document explicit or implicit beliefs based on the derived contex-
tual definitions?

Research roadmap: A first step to answering the research questions is a qualitative

exploratory study. A deeper understanding of the problem in a realistic environment

canbegainedwithdata collected in interviewsand focusgroups. Themaingoal of the

interviews is to get a better understanding of the challenges in defining the context

for applying machine learning. The interview partners will be function developers

and experts from the OEM domain, a Tier 1, or a Tier 2 automotive supplier.

A thematic analysis of the collected datawill be performed to create a suitablemodel

by interconnection [15]. In a focus group the findings of the study shall be validated

and evaluated by the interview participants and other relevant stakeholders.

2.2.2 PA 2: Data requirements and quality attributes of data

Data, and especially their representation in the form of probability distributions are

the core of machine learning. Different types of data (input data, training data, test

data, etc.) play a role when deploying and using machine learning or deep learning.

Each type can even further be categorised: For an autonomous driving system there

could be driver data, vehicle data, surround data, and global data for example. The

other use cases have similar data categories such as user data, sensor platform data,

or cloud data.

The contexts in whichmachine learning algorithms are used govern properties of the

data used in design time (e.g. during the training and testing) and during runtime.

Furthermore, data often originate from many different sources with varying degree

of quality, which can be a challenge for the ability of ensuring the system’s behaviour

in a given context. Especially if system quality attributes, such as safety or robust-

ness, must be ensured, it is crucial that the used data are trustworthy, timely, and of

the required quality. An AI will be trained with data representing a context in which

the system is expected to operate. However, if the context changes over time, prop-

erties of the input data to the AI change as well [93]. Based on the context, there

will be requirements on the input data in order to allow the AI to arrive at the right

decision. An example for a data requirement could be, that the data shall represent

a given probability distribution for which the AI has been trained. Only then can a

machine learning model arrive at the right decision. During operation, the system

might also record data that allows developers to continuously receive feedback and

to implement improvements in the overall system, e.g. through retraining to correct

23

D2.5 Version 1.0

for a (slowly) changing context.

Although data are probably the most important aspect of a machine learning appli-

cation, there is no proper system to determine and manage the required quality and

quantity of the data. Not only since the introduction of more rigid data privacy rules,

such as GDPR, there is a growing pushback to the idea to ”collect as much data as

possible” for a machine learning application in the hope that the right data might be

among them.

Research Questions: Data attributes and requirements

RQ 2-1: What are relevant challenges ofmanagingdata quality requirementswhendeveloping
large distributed systems based on deep learning?

RQ 2-2: What constitutes a data quality framework for developing large systems based on dis-
tributed deep learning?

RQ 2-3: To what extend can relevant challenges of managing data quality requirements be
mitigated by a data quality framework for developing systems based on deep learning?

Research roadmap: To find answers to the proposed research questions, we utilised

a design science research methodology. From the automotive use case, typical data

parameters such as precision, timeliness, dynamic range, and noise were collected

from sensor specifications and data examples. Combined with interviews and work-

shops with ADAS and deep learning experts, and following the methodology for de-

sign science studies [74, 53], theprincipal goal of the researchwas todevise a solution

for understanding data quality requirements and dependencies between data types

in distributed systems using machine learning models.

Literature references

Previous research on data quality in software engineering and data quality frameworks served
as a starting point:

• The significance of data quality in design, validation and implementation of software [6].

• A proposed data quality framework for distributed computing environment [20].

• The effects of data quality on machine learning algorithms [84].

• A data quality assessment and monitoring framework [3].

• Characteristics and challenges of big data environments [9].

• Reporting mechanisms of data quality in distributed networks [49].

• Requirements for data quality metrics [32].

2.2.3 PA 3: Performance definition and monitoring

The next step after having established a framework for defining the context of the

machine learning application, and required data attributes, was the definition of per-

formance metrics, or key performance indicators (KPI), and subsequently the setup

of monitoring regimes.

Performance definitions and monitoring of machine learning enabled systems allow

to check that the system stays within its guaranteed system behaviour. In addition, it

supports development processes by providing developers with feedback on how the

deployed machine learning model performs ”in the field”. Only a continuous mon-

24

D2.5 Version 1.0

itoring of the system allows for continuous integration and control of the machine

learning model.

While it is meanwhile common practise to use machine learning models for fault de-

tection, there are only very few efforts to use fault detection in machine learning

models. How can we ensure that a machine learningmodel is fault-free during its op-

eration? The questions on how faults e.g. in a deep neural network can be classified

and detected are not answered yet. Beyond fault detection, fault isolation and fault

handling can help ensuring safety goals for systems with AI.

A concrete research roadmap will be derived based on the finding of the research on

contextual definition anddata attributes, but somegeneral research questions about

performance monitoring of machine learning models are:

Research Questions: Performance definition and monitoring

RQ 3-1: What are suitable performance metrics / KPIs for trained machine learning models in
a given context?

RQ 3-2: What approaches are possible to compare / compete different trained machine learn-
ing models for a given context?

RQ 3-3: What faults can occur in a machine learning model? Can faults in machine learning
models be classified in different categories?

The performance requirements set during the requirement engineering definewhich

metrics need to be used. Machine Learning requires probabilistic thinking, such that

requirements such as ”The system shall always detect an obstacle ahead” cannot be

validated. The term ”always” suggests that the system shall detect an obstacle in

100% of all cases, which is unfeasible with a probabilistic system. Instead, proper

metrics, such as uncertainty measures suggested in [91] need to be introduced and

the requirements need tobe adopted accordingly. Section 4.2.3 provides anoverview

of how requirements can be adopted to probabilistic systems.

2.2.4 PA 4: Human Factors

Literature references

Previous research on human factors related to automatic vehicles and AI systems:

• Lee et al. highlight the danger if human factors are not sufficiently considered during AV
design, related to achieving sufficient safety, trust and acceptance as well to avoid the
miss-use and disuse of the automated technology [57].

• Hancock’s warning that human factors must be integrated in automation design [31].

• A list of socio-technical challenges [30].

• A methodology based on multidisciplinary cognitive engineering (CE+) [88].

• The User Centered Ecological Interface Design (UCEID) that enables including HF consid-
erations in the early stages of the overall system design processes [79].

When building complex AI systems and products, it is important to complement a fo-

cus on internal, technical aspects of the system (e.g. the conditions and capabilities

of the system in a given context) with a focus on how the intended users will interact

with it in a realistic context. For this focus, ergonomics and human factors must be

taken into account. Understanding human factors is particularly important for build-

25

D2.5 Version 1.0

ing a system that users accept and trust in. To achieve the desired results, it is critical

to consider human factors right when the concepts are developed, i.e. as part of re-

quirement engineering.

However, it is challenging to integrate human factors into the development process

of complex AI systems, such as automated vehicles. One reason for this is the need

to shorten the time-to-market when developing new features. Hence development

teams focusmoreon technical parts andmaynot possess enoughhuman factors com-

petence to design them according to the users’ needs.

Since many developing organisations are transitioning to agile or continuous system

development and reject the idea of comprehensive upfront requirements, develop-

ment teams cannot fall back to requirements specifications for the purpose of includ-

ing human factor constraints in their design decisions.

New advanced and AI-enabled safety features such as for example automated emer-

gency braking (AEB) have changed the interaction of human drivers with the their ve-

hicle significantly. This frees upmental resources and improves the quality of driving

but also affects other traffic participants and their behaviour. While AI-enabled sup-

port for driving tasks have dramatically changed in just a few years, humans have not

changed in the past millennium. So, while, designing such functionalities, we need

to keep in mind some key elements (limitations and capabilities) from the perspec-

tive of humans and specifically of users. For example, the fact that humans override

or deactivate AEB functionality has become a major limitation in its ability to make

traffic safer [62]. Such scenarios must be analysed from a human factor perspective.

Thus, we suggest to investigate the extent to which human factors must be consid-

ered when analysing required functionality and quality of the system and its compo-

nents, in particular in relation to modern system development approaches.

VEDLIoT is concerned with a technological platform for AI-intense systems and al-

lows us to investigate appropriate decomposition of requirements and architecture.

Human factors are not a key concern in VEDLIoT, but our ambition is to link VEDLIoT

to other EU research projects that complement the aspects of human factors, such as

SHAPE-IT1. SHAPE-IT focuses on the transportation domain, but specifically focuses

on the interaction of AI-intense automatic vehicles (AV) with users and other traffic

participants.

Research Questions: Human Factors

RQ 4-1: Inwhatwaymust human factors be considered for understanding andensuring system
behaviour of AI systems?

RQ 4-2: Inwhatwaymust human factors be considered for understanding andensuring system
quality attributes of AI systems?

RQ 4-3: How can Human Factors knowledge be effectively used in modern system develop-
ment approaches?

2.2.5 Cross-Cutting research problem: Integration in modern system develop-

ment

In systems development, there is a general trend towards agile, DevOps, and con-

tinuous deployment, since such approaches promise shorter time-to-market and in-

1https://www.shape-it.eu

26

https://www.shape-it.eu

D2.5 Version 1.0

creased responsiveness to change [26]. To achieve these goals, organisations rely on

empowered, self-organised teams that take responsibility for features from incep-

tion, over design, implementation, and test, to deployment [52]. Ideally, such em-

powered teams allow for fast responses to change, since teams can make decisions

directly. In order to facilitate such quick decisions for AI systems, and to prepare for

scalability, the responsibility for any activities related to our problem areas should lie

with the teams to the largest possible extent. In order to achieve this, the organisa-

tion must provide sufficient support:

• Requirements informationmodel for context, data requirements, performance

metrics, and human factors.

• Traceability information model that allows to identify and resolve inter-team

dependencies

• Methodological support to generate and manage knowledge about context,

data requirements, performance metrics, and human factors

Literature references

Previous research on integrating requirementsmanagement intomodern systemdevelopment
approaches as a starting point:

• The state of the art in these areas with respect to machine learning has recently found
unsatisfactory, especially in automotive use cases where ISO26262 does not well match
the nature of deep neural networks [7].

• An overview of RE-related challenges in scaled-agile system development [50].

• A discussion of requirements information models that support collaboration across or-
ganisational boundaries [94].

• Considerations of challenges related to defining traceability strategies [61] and trace-
ability information models for modern system development approaches [64, 95, 11, 13].

• Discussions of RE practices at scale [94] and boundary objects for requirements-based
coordination [51, 96].

Research Questions: Integration in modern system development

RQ X-1: What are characteristics of suitable requirements information models?

RQ X-2: What are characteristics of suitable traceability strategies?

RQ X-3: What are characteristics of suitable methodological support?

27

D2.5 Version 1.0

3 Architectural Framework

The main goal is to introduce an architecture framework based on compositional

thinking that is suitable for the development of distributed AI-based systems in the

VEDLIoT project.

A major challenge in AI system design is the lack of design patterns, standards, and

reference architectures that support the co-design of traditional software compo-

nents and AI components [65]. When designing a system, a range of quality aspects,

such as safety, security, and privacy needs to be taken into account. For AI systems,

ethical aspects such as explainability of decisions, fairness, and participation play an

important role during the systemdesign process. Therefore, the architectural frame-

work for VEDLIoT shall not only support the seamless design and integration of tra-

ditional software components and AI components, but also allow for all necessary

quality concerns to be taken into account as early as possible in the design process.

3.1 Architecture descriptions for distributed systems

ISO 42010 provides a conceptual model of an architecture description as depicted in

Figure3.1. The ideaof anarchitectural framework is toprovideaknowledge structure

that allows the division of an architectural description into different architectural

views [73]. An architectural view expresses ”the architecture of a system from the

perspective of specific system concern” [39]. The conventions of howan architectural

view is constructed and interpreted is given through an corresponding architectural

viewpoint. Thedesignof a system-of-interest needs to account for different concerns

of different stakeholders. Therefore, the architecture of the system-of-interestmust

be expressed throughmany different architectural views. Several views on the archi-

tecture of the system-of-interest allow for factoring the design task into smaller and

specialised tasks.

Designing a large, distributed system is a hierarchical process [71]. Therefore, for a

given concern, there exist several views at different levels of abstraction. The hier-

archical design process allows for the co-evolution of requirements and architecture,

known as the ”twin peaks of requirements and architecture” [72, 12].

Zardini et al. show how applied category theory supports the co-design of hardware

and software for an autonomous driving system [99], and Bakirtzis et al. apply com-

positional thinking to engineering of cyber-physical systems [2]. It seems natural to

apply compositional thinking to the evolution of system architectures by establish-

ing suitable descriptions of the abstractions levels for the architectural views, their

classification into clusters of concern, and the relation between the views.

3.2 Clusters of concern

In bi-weekly meetings throughout the first half of the year 2021, both industrial and

academic partners of the VEDLIoT project analysed the use cases and applied the

compositional architectural framework idea. Theentire versionhistoryof theVEDLIoT

architectural framework can be found in the supplement material1.

1Available on the VEDLIoT cloud server https://cloud.vedliot.eu/f/14483

28

https://cloud.vedliot.eu/f/14483

D2.5 Version 1.0

Architecture

Architecture
Description

Stakeholder

System-of-
interest

Concern

Architecture
Viewpoint

Model Kind
Architecture

Model

Architecture
View

Architecture
Rationale

Correspondence

Correspondence
Rule

▲ expresses

◄ identifies

▲ has interest in

1..*

exhibits ►

◄ identifies

▼ has

1..*

1..*

◄ identifies

frames ▲

1..*

1..*

1..*

1..*

governs ► 1..*

1..*

governs ►

◄ addresses

1..*

1..*

0..*

0..*

Figure 3.1. Conceptual model of an architecture description [39]

Clusters of concerns are determined through the identified use cases based on the

operational context and high-level goals (in Figure 4.1 referred to as functional goals

and quality goals) for the desired AI system. For example, privacy might not be of

concern for an AI based diagnostic system detecting faults of a welding robot, but

safety could be of paramount concern.

The results, illustrated in Figure 2.1, from a project workshop were used as a starting

point for discussions on the necessary clusters of concern during bi-weekly meetings

of the VEDLIoT partners.

In a first step, the group identified four major groups of concerns to emerge for the

architecture framework:

Behaviour and Context contains aspects that concern the static and dynamic be-

haviour of the system, as well as the context and constraints for the desired

behaviour.

Means and Resources contains aspects of the system that enable the desired be-

haviour. Obviously, this includes the required hardware that executes the de-

sired behaviour. For AI systems, two more concerns play a significant role as

”means to execute a desired behaviour”: Choosing the right machine learning

model, or deep learning model, is one of them. Classification of objects in vi-

sual images would require a different deep neural network setup than identify-

29

D2.5 Version 1.0

ing spokenwords for natural language processing. The second concernwhich is

characteristic to AI systems is the learning setting: Through a learning process,

the AI model is trained to imitate a desired behaviour. Planning and preparing

the learning of the AI model therefore becomes a ”mean to execute a desired

behaviour” within an AI system. Learning can be conducted through preparing

training datasets, or, in the case of reinforcement learning, could be done in a

simulated environment.

Communication dealswith aspectsofdata, connectivity and communicationbetween

nodes or components of the desired system, which is one major concern when

developing distributed systems, such as automotive systems, or systems in the

IoT.

Quality concerns basically encompasses all quality aspects described through qual-

ity attributes which can affect the architecture of the system. Examples are

safety, security, privacy, robustness and ethical concerns. The latter can include

aspects such as fairness and explainability. Recent legislation shows that the

ethical aspects become a central concern when developing AI systems [19].

Then, in a second step, for each of the groups of concerns, the participants of the

bi-weekly meetings analysed the use cases of VEDLIoT and determined the required

clusters of concerns.

3.2.1 Behaviour and Context

To describe an architecture reflecting the desired behaviour of the system, two clus-

ters of concern are introduced: Logical Behaviour covers views that are concerned

with the static behaviour of the system, and Process Behaviour covers views con-

cerned with the dynamic behaviour of the system. The Context and Constraints

cluster of concern covers views on the system that define the context and limits the

design domain. The latter cluster of concern is typically not explicitly mentioned in

architectural frameworks, instead implicitly included in e.g. views of the behaviour

of the system. However, for AI systems it is beneficial, sometimes even required, to

explicitly state the desired context and to define views on the constraints and the

design domain of the system. An example is the Operational Design Domain of auto-

mated vehicles as discussed in [28]. A challenge for the application of Deep Learning

are changing contexts. It is common to collect the necessary training and testing data

for deep learning networks through some formof big data pipeline. However, Jameel

et al. highlight that one cannot assume stationary of that data, and over time proper-

ties of the data assemble might change, which requires regular retraining of the ML

models based on that data [47]. A usual assumption for the training and testing ofML

models is that the data are drawn from stationary probability distributions [58]. This

assumption, however, might not hold in reality, i.e. the context might slowly change

over time, and the probability distribution of the input data changes therefore slowly

with time as well. Without retraining or adaptation, this change of context can ren-

der the ML model inadequate over time. There is initial efforts to detected drift in

deep learning performance due to context changes, for example [18], or run-time

uncertainty detection [91].

30

D2.5 Version 1.0

3.2.2 Means and Resources

The concerns in this group include views that allow to describe the resources and

means available for the system to execute the desired behaviour in a given context.

Typically, it includes views on the hardware architecture and component design of

the system under the cluster of concernHardware. Additionally, two AI related clus-

ters of concern have been identified: First, the concernAImodels contains views that

describe the setup and configuration of the required AI model. For example, classifi-

cation of objects in an optical videostream requires a different deep neural network

configuration then recognising commands in a voice recording or predicting trajecto-

ries of other vehicles in the vicinity. Choosing the right AI model setup is a system

design decision which requires suitable views on the AI model in relation to the over-

all system. Furthermore, the learning strategy of the AImodel has paramount impact

on the final behaviour of the AI system. Trained with the flawed datasets (e.g. bias

present in the data), the behaviour of the AI systemwill exhibit the flaws learned dur-

ing the learning process (e.g. it will show a bias in the decisions). The learning process

for theAImodel is part of the systemdesignprocess, and therefore the cluster of con-

cern titled Learning covers views on the system that allow to define and setup the

learning environment for the AI model. The concerns of AI model and Learning have

many dependencies between each other, whichwill be expressed through correspon-

dences.

3.2.2.1 Communication

Communication is what drives the IoT. Two clusters of concerns have been identified:

First, Information accumulates views on the system that model the information and

data exchanged in and through the system-of-interest. Second, the cluster of concern

Connectivity contains views on themeans of communication available to the system

and its resources.

3.2.3 Quality Concerns

This group contains concerns that influence the desired quality of the system. The

cluster of concern Safety provides an example here: Assume one is to follow the

workflow of ISO 26262 [43]. The starting point to designing a safe system is to iden-

tify, safety goals that the architecture, as part of the functionality providing item,

needs to fulfil. This is often done through a Hazard Identification and Risk Assess-

ment (HARA), which provides abstract information applicable on the entire system.

On the next lower level of abstraction, the functional safety concept provides a view

on a more detailed system architecture that introduces functional safety require-

ments and redundancies (through safety decomposition in hardware and software

components) with the aim to assure the fulfilment of the earlier specified safety

goals. On the next more detailed level, the technical safety concept provides infor-

mation on the technical realisation of the functional safety concept. In addition, and

not explicitly mentioned in ISO 26262, we propose that the run-time behaviour and

monitoring is part in the system design process. For safety concerns, this couldmean

the introduction of safety degradation concepts and safety monitoring.

Further identified relevant clusters of concerns for quality aspects of an AI system in

the IoT are security, privacy and ethical aspects such as Fairness and Transparency.

For embedded system, energy efficiency can be taken up as explicit quality aspect

covered by an own cluster of concern. Unlike previous architectural frameworks for

31

D2.5 Version 1.0

the IoT, such as [33], the compositional thinking in the architectural framework al-

lows for co-designing the system to fulfil the explicitly identified quality concerns. It

means that already early in the system development, correspondences between the

views regarding the quality concerns and other views in the architecture description

are established. The final system can then be said to be ”Safe by design”, ”Secure by

design”, ”Efficient by design”, or ”Fair by design”.

3.2.4 Architectural views for AI systems

Many of the concerns that form clusters of concern in the architectural framework

of VEDLIoT are concerns commonly found in systems engineering. They have been

mentioned in other architectural standards before, such as the IEEE Standard for an

Architectural Framework for the Internet of Things [33]. Therefore, the architectural

viewpoints corresponding to these concerns will not be detailed in this article. The

argument behind that is, that systems using the VEDLIoT toolchain will contain a sig-

nificant amount of “traditional” system components around the AI components in or-

der to facilitate the desired behaviour. The architectural viewpoints used to describe

traditional system views are well covered in literature and regarded state of the art.

However, several architectural viewpoints are novel and aim to facilitate the design

ofAI components for the system. Table 3.1 provides a list of viewpoints, which govern

architectural views in the architecture framework for VEDLIoT, that we assume to be

novel and relevant specifically towards the AI components of the system.

3.2.5 Exampleof correspondences betweenaquality concern and the remaining

architecture concerns

Assume a system that shall trigger the brakes when an object is detected in front

of the vehicle. Assume further, that, through the HARA, the following safety goal

has been identified: ”The system shall not trigger the emergency brake unintentionally

(ASIL2 B)”.

Sensor Unit
(Camera)
[ASIL B]

Decision Unit
(Visual Object

Detection)
[ASIL B]

Actuator Unit

(Brake System)

[ASIL D]

Brake
Request

Datastream
(e.g. video)

Figure 3.2. Conceptual system architecture for an automotive automatic emergency brake sys-

tem

A preliminary high-level system architecture, as illustrated in Figure 3.2 consists of a

sensing element (camera), a decision unit (object detection algorithm on an embed-

ded platform), and an actuator (brakes). While the brakes are typically designed to

a high safety integrity level (typically up to ASIL D), the camera and object detection

algorithmmight not be able to achieve even ASIL B. Therefore, we introduce a safety

decomposition in the functional safety concept through redundancy in the sensing

system: With an additional lidar sensor, together with a second object detection al-

gorithm specifically designed for detecting objects in lidar point clouds and indepen-

dent from the first object detection algorithm allows to reduce the required safety

integrity level of all redundant components to ASIL A(B), which might be easier feasi-

ble to implement. Thefinal high-level systemarchitecture after safetydecomposition

is illustrated in Figure 3.3. By introducing the safety decomposition in the functional

2Automotive Safety Integrity Level

32

D2.5 Version 1.0

Table 3.1. Description of AI specific architectural views.

Cluster of

Concern

Viewpoint

Name
Description Example

Learning

Learning

objectives

High-level architecture

that outlines which functions / models

shall be trained through learning.

One function is depicted

that shall be able to recognise

obstacles on the road from

camera images.

Learning

concept

Describes how the learning objective

shall be achieved. This can include a

description on how a simulation

environment is set up, which datasets

are required, if transfer learning

should be used, properties of the

datasets, etc.

A dataset containing a variety

of obstacles typically found on

Swedish roads (note that limiting

the dataset to Swedish roads will

introduce a morphism / correspondence

to context definition), specifying the

data attributes (e.g. resolution, input

format, etc.), and desired quality attributes.

Learning

settings

Detailed description of the learning

regime’s configuration and setup.

Settings for learning, e.g. metric to use,

stop condition, loss function, optimiser,

batch size, data split for training and

testing.

Runtime data

collection &

continuous

learning

Concept for collection new training data

at run time. Concept for continuous

re-training of AI.

Unknown obstacles shall be stored

and transmitted to manufacturer

to be included in re-training of AI.

AI

Model

High-level

AI model

High-level architecture showing

which software components contain

an AI model. Also outlines, which kind

of AI is intended to be used.

A deep neural network is assigned

to the function ”Object detection”.

AI model

concept

Setup of the AI model

outlining the architecture of the AI.

For object detection using a sequential

deep neural network with a number of

2D-convolution layers, a 2D-pooling layer,

dropout, flatten, and a dense layer.

Input, and output definition.

AI model

configuration

Detailed description of the

AI model configuration.

For a deep neural network this can be

kernel size of convolution layers, dropout

rate, activation function, etc.

AI model

performance

monitoring

Concept for monitoring the

performance of the AI.

For example recording of inference time

and uncertainty monitoring.

Context

and

Constraints

Context

assumptions

Assumption on the context (this can be

the environment, involved users, etc.).

Object detection shall operate at all times

on Swedish roads.

Context

definition

Detailed description of the context in

which the desired behaviour will be

executed.

Swedish highways and motorways.

All possible weather conditions in Sweden.

Behaviour should be stable at all times

of the day and night.

Constraints /

Design

Domain

Lists constraints, and design domain,

in which the desired behaviour will

be expected.

Speed is above 30 km/h, but less than

130 km/h. Object to detect is not more

than 1 metre above the road.

At night, headlights illuminate

road at least 20 metres ahead.

Context

monitoring

Concept for monitoring that the AI operates

in the desired context of operation.

Systemmonitors the geographical location

of the vehicle (e.g. through GPS) and prevents

activation of system if outside of desired context

(e.g. Swedish highways and motorways).

33

D2.5 Version 1.0

Sensor Unit
(Camera)

[ASIL A(B)]

Decision Unit
(Visual Object

Detection)
[ASIL A(B)] Actuator Unit

(Brake System)
[ASIL B]

Brake
Request

Datastream
(e.g. video)

Sensor Unit
(Lidar)

[ASIL A(B)]

Decision Unit
(Lidar Object

Detection)
[ASIL A(B)]

Datastream
(e.g. point

cloud)

&

Independence Requirement between components
[ASIL B]

[ASIL B]

Figure 3.3. Conceptual system architecture for an automotive automatic emergency brake sys-

tem after safety decomposition

safety concept, correspondences to the system hardware architecture view and the

logical components view were established in order to fulfil the required safety con-

cerns. On the next level of abstraction, the technical safety concept establishes a

view on the overall system’s architecture that allows the fulfilment of the functional

safety concept. For example, the technical safety concept provides a view on the sys-

tem architecture that requires the logical component ”Visual object detection” to be

deployed on safety certified hardware components, which creates a correspondence

to the computing resource allocation view; or that the object detection algorithm

only works at daylight, which creates a correspondence to the constraints / design

domain view.

3.2.6 Example of correspondences between context, learning, and AI model

The second example provided in Figure 3.4 illustrates the parallel evolution of the

context and constraints of the system, the learning concept, and the AI model. This

example is especially interesting in that it demonstrates how the development of an

AI component can be seen as a hierarchical process which needs to stay in synchroni-

sation with the remaining concerns of the system development.

On the highest level of abstraction the context assumptions take direct influence on

the required learning objectives (i.e. there exists a morphism from the assumption

(”Pedestrians can either be in lane, or on the road but not in the lane, or the road

is empty” to the learning object of classification of objects into three classes). One

should only proceed to the next level of abstraction in the architectural framework,

if the context assumption, the learning objective, the high-level AI model, and the

remaining system views on the analytical level are consistent, i.e. no morphisms are

broken between the views.

On the conceptual level, the context definition clarifies the earlier context assump-

tions, which provides input into the required data for training and testing of the AI

model. By establishing morphisms from the system hardware architecture view, the

context definition can take limitation of the hardware into account, e.g. mounting

position of the camera requires a human to be at least 1.00 metre tall. Furthermore,

the AI model can be conceptualised, because input data, required output data and

objective of the AI model are known.

On the design level, the design domain provides clear constraints for the system’s

34

D2.5 Version 1.0

Object recognition
network

Model for Obstacle Detection.

Deep Learning Network.

Input: Sensor data.

Output: 3 classes

Timing: real-time

Feature extraction
(Convolution & Max-pooling)

FlatteningClassification
(Fully-

Connected
Layers)

Input: Visual
Data

(1920 x

1080

x 3)

Output

(3 x 1 x 1)

Pedestrian
in the lane

Pedestrian
on the road,

but not

in the lane

Empty
Road

Classification Categories
Obstacle Detection

Pedestrian
in the lane

Pedestrian
on the road,

but not

in the lane

Empty
Road

Training and

Testing Data

2500*
objects

2500* objects 2500*
roads

- Obstacles consist of
Pedestrians.

- Pedestrians can either
be in the lane, or on the
road but not in the lane,
or the road is empty.

- [...]

Context Assumption

- Pedestrians are
between 1.00 metre and
2.10 metre.

- Pedestrians do not
move faster than 20
km/h.

- Pedestrians can also
be in a wheel chair.

- [...]

Context Definition

- System can only be
used on motorways or
highways.

- Speed of vehicle must
be below 130 km/h.

- Headlights are used at
night time.

- [...]

Design Domain

Context and
Constraints Learning AI Model

A
na

ly
tic

al
 L

ev
el

C
on

ce
pt

ua
l L

ev
el

D
es

ig
n

Le
ve

l
R

un
 T

im
e

Le
ve

l

- System is out of
context if vehicle speed
exceeds 130 km/h.

- [...]

Context Monitoring

Uncertainty
Monitoring

Feature
extraction

Classification
Output

Feature map
activity

monitoring

- Resolution at 1920x1080

- Object is in focus

- Pedestrians standing, walking,
running, and in wheel chair.

Data, and data quality attributes

256 Filters,
Kernel Size

(3x3),
Activation
Function
"ReLU"

Pool
Size
2x2,

Strides
3x3

384 Filters,
Kernel Size

(3x3),
Activation
Function
"ReLU"

Pool
Size
2x2,

Strides
3x3

384 Filters,
Kernel Size

(3x3),
Activation
Function
"ReLU"

4096 Neurons,
Activation Function

"tanh"

3 Neurons,
Activation
Function
"softmax"

4096 Neurons,
Activation Function

"tanh".

- Loss function: Categorical-
Crossentropy

- Optimiser: RMSprop

- Decay Rate: 6exp(-8)

- Clipvalue: 1.0

Optimiser Settings

- Epochs: 2000

- Batch Size: 256

- Dropout after Dense Layers: 40%

- [...]

Learning Settings

Random
Generator

Data Server

at OEM

Capture Image
and

Classification
Result

Figure 3.4. Co-Design of context and constraints, learning concept, and AI model.

35

D2.5 Version 1.0

operability, and the learningprocedure’s andAImodel’s configurationare set. Finally,

the run time level provides views that explain which monitoring concepts and run

time reconfigurationmight be requiredduringoperationof the system. Oneexample

is the AI model run time view: Twomonitors can check the featuremap activity in the

feature extraction section of the deep neural network, and uncertainty monitoring

can be applied to the classification output of the network.

3.3 Levels of abstraction

The architectural views are not only sorted by clusters of concerns as discussed previ-

ously, but also by their represented level of abstraction. For VEDLIoT it was decided

to follow four levels of abstraction, specifically Knowledge and Analytical level, Con-

ceptual level,Design level, and Run time level :

3.3.1 Knowledge and analytical level

The first level of abstraction includes architectural views that provide an abstract and

high-level view on the system-of-interest. On that level, all views provide a way to

describe the system and context on a knowledge level, which provides information

for further,more concrete systemdevelopment. For example, thehigh-levelAImodel

view could elaborate on which functions should be fulfilled through an AI.

3.3.2 Conceptual level

On the next level of abstraction, the views provide amore concrete description of the

overall system-of-interest. Components are not detailed yet, but the overall system

composition becomes clear and the context of operation is clearly defined. For ex-

ample, the AI model could be concretely shaped as a Deep Learning Network with a

required amount of layers. All views on this level combined provide a system specifi-

cation that sets the system-of-interest in context and elaborates on how the desired

functionality is fulfilled.

3.3.3 Design level

The most concrete level at design time of the system is the design level, which in-

cludes views that concretely shape the final system-of-interest. Resources are allo-

cated to components, the AImodel is configured toworkmost efficiently in the given

environment, and the concrete component hardware architecture is defined. The so-

lution specification describes the final embodiment of the system-of-interest.

3.3.4 Run time level

Complex systems, bothAI driven and conventional, often require formsofmonitoring

and operations control. The purpose of the run timemonitoring can bemanifold: On

one hand, monitoring of a deployed system at run time provides valuable feedback

about its performance and reliability to developers and product owners. DevOps is

an essential component of an agile development framework, and early detection of

issues in a deployed system allows for a swift response from the developers. Further-

more, some requirements of the system might not be exhaustively testable before

deployment of the final system. This is especially the case for AI systems: Russel

describes in his book Human Compatible: AI and the Problem of Control the example

of an AI algorithm commonly found in social media that maximises click-through, i.e.

“the probability that the user clicks on the presented items” [80]. Russel highlights

36

D2.5 Version 1.0

that the problem with such an algorithm is, that it not necessarily “presents items

that the user likes to click on”, but instead could (inadvertently) change the user’s be-

haviour in a manner to make him or her more predictable in his preferences e.g. by

favouring extreme political views [80]. It was probably not the intended behaviour

to change the user’s preferences. Most probably, we will not be able to design the

perfect ”beneficial” AI in the near future, and therefore we have to anticipate unde-

sired behaviours of deployed AI algorithms. By constantly monitoring the decisions

of the AI algorithm, such deviations from the intended behaviour can be detected

and mitigated, e.g. through retraining or by “pulling the plug”. Most AI systems are

not “adaptive”. They are trained and tested with a dataset representing the desired

context in which the AI system is intended to operate in under the assumption of

stationarity in the probability distribution of the data. In reality, the assumption of

stationarity of the probability distributions does not hold in most case, for example

when the context, in which the AI operates in, can change over time. Concepts like

continual learning allow the AI to handle drifts in data distributions [58]. However,

continual learning requires run time monitoring concepts to detect deviations from

the currently learned context, and automatic data collection (and labelling) for au-

tonomous retraining of the AImodel. These aspects of changes in run time behaviour

are described on the run time level of abstraction in the compositional architectural

framework.

3.4 Compositional architecture framework for VEDLIoT

The final conceptual model of a compositional architecture framework based on the

stated propositions is illustrated in Figure 3.5. Figure 3.7 presents a compositional

architectural framework that includes all earlier identified concerns for distributed

AI systems and all levels of abstractions for VEDLIoT. The architectural framework is

a compositionof a number of clusters of concern, highlighting that it is ”the combining

of distinct parts or elements to form a whole” and ”the manner in which such parts are

combined or related” 3. Therefore, we referred to it as ”compositional architectural

framework for VEDLIoT”.

Group of
concerns

Cluster of
concern

Architecture
view

Architecture
viewpoint

Business Goal
or Use Case

Stakeholder

Relation /
Correspon-

dence

Level of
Abstraction

System-
of-interest

1..*

1..*

1..*

1..*

has

1..*

exists on

describes /
specifies

determine

addresses

governs

1..*

Figure 3.5. Conceptual model of a compositional architecture framework

3https://www.thefreedictionary.com/compositional

37

D2.5 Version 1.0

3.4.1 How to apply a compositional architectural framework in practice

Basedon theexperienceof applyinga compositional architectural framework toVEDLIoT,
the following guideline can be provided:

Step 1: Identify clusters of concern.

Clusters of concerns are identified. Initially, larger groups of concerns (such as functionality, hardware,
communication, quality) can be defined, which are then refined into atomic clusters of concerns.

Step 2: Identify levels of abstraction.

Levels of abstractions are identified. The number of required levels dependon the size and complexity
of system-of-interest and the development settings of the company. Three to four different levels of
abstraction seem a good default.

Step 3: Add existing architectural decisions.

Known architectural decisions are entered into the matrix. Most development projects do not start
from scratch, but instead have to reuse or integrate into existing architectures. Prior knowledge, such
as an existing component architecture, can be entered into the appropriate clusters of concerns and
level of abstraction in the architecture matrix.

Step 4: Add missing architectural views.

Architectural views are added. Relations (morphisms) are created between the architectural views at
each level of abstractions such that no inconsistencies occur when looking at the system-of-interest
from different architectural views.

Step 5: Add missing relations.

All relations between architectural viewsmust bemapped onto corresponding views of the next lower
level of abstraction. If a relation between two architectural views on a higher level of abstraction does
not have a correspondence on the next lower level of abstraction, the relation might be unnecessary
and can be removed, or a corresponding relation needs to be created.

Step 6: Iterate if needed.

During the system development, additional clusters of concern might be discovered that iteratively
are added.

Steps 1-5 are illustrated in Figure 3.6.

Step 1: Identify clusters

of concern

Step 2: Identify levels

of abstraction

Step 3: Add existing

architectural decisions

Step 4: Add missing

architectural views

Step 5: Add missing

relations

...

...

Figure 3.6. Steps taken for defining a compositional architectural framework for VEDLIoT

38

D
2
.5

V
e
rsio

n
1
.0

InformationContext &
Constraints

Learning AI ModelLogical
Behaviour

Process
Behaviour

Function
com-

ponentsA
na

ly
tic

al
Le

ve
l

Interaction

Logical
com-

ponents

C
on

ce
pt

ua
l

Le
ve

l Logical

se-

quences

Com-
puting

ressource
allocation

D
es

ig
n

Le
ve

l

Resource

se-

quences

Be-
haviour

monitoringR
un

 T
im

e
Le

ve
l

Adaptive

behaviour

Context

assum-
ptions

Context

definition

Con-
straints /

Design
Domain

Context

monitoring

Learning

objectives

Learning
concept /

data

selection

Learning

settings

Runtime
data

collection &

continous

learning

High level

AI model

AI model

concept

AI model

con-

figuration

AI models

per-

formance

monitoring

Hardware

High level

hardware

archi-
tecture

System
hardware

archi-
tecture

Com-
ponent

hardware

archi-

tecture

Hardware

per-

formance

monitoring

Con-
nectivity

Interfaces

Node

con-

nectivity

Resource

con-

nectivity

Con-
nectivity

monitoring

Ethics

Ethic

principles

Ethic

concept

Ethic

technical

realisation

Assess-
ment /

auditing of

AI

decisions

Security

Threat
analysis

(TARA)

Cyber-
security

concept

Technical

cyber-

security

concept

Security

monitoring

/

threat

response

Safety

Hazard
analysis

(HARA)

Functional

safety

concept

Technical

safety

concept

Safety

monitoring

/

safety de-
gradition

Energy

Efficiency

High level

energy &

power

concept

System
level

energy &
power

concept

Solutions

for energy

and

power

Energy
and power

monitoring

Privacy

Privacy

impact

analysis

Privacy

concept

Technical
solutions

for privacy

Assess-
ment of

privacy

com-

pliance

Behaviour and Context Means and Resources Communication Quality Concerns
Business Goals and Use Cases

Data
model

Infor-
mation

model

Com-
pilation

Data

monitoring

Figure 3.7. Compositional architecture framework for VEDLIoT, categorising views in different clusters of concerns on different levels of abstraction.

3
9

D2.5 Version 1.0

3.5 Monitoringandcontrolling concepts for the run-timebehaviour

of advanced AI systems

ThemainpurposeofVEDLIoT is toallow for advancedAI systemsempowered through

deep neural networks and deep learning. Unlike rule-based AI, deep learning net-

works cannot be programmed using fixed objectives and rules. Instead, the neural

network finds the rules based on presented training data and returns probabilities

and error bounds when performing inference with previously unseen data.

For traditional software systems, the desired objectives of the system can a priori

be well-defined in requirements and specifications and excessively tested and vali-

dated against the earlier specified stakeholders’ preferences. The system then be-

haves static (except if dynamic aspects are explicitly included and specified in the

system) and monitoring of these systems serves primarily to report on misbehaviour

of the system caused by bugs or othermistakes during the design process. For proba-

bilistic AI systems the assumption that all desired objectives can be defined a priori of

system design does not hold. A probabilistic system, such as a system based on deep

learning, does not follow a-priori defined rules. Instead, it tries to find rules (prob-

ability distributions) based on the data it is presented with. The challenge is, that

during the design process it cannot exhaustively be ensured that the deep neural

network indeed found the rule that matches the stakeholders’ preferences with the

training data it was presented with. The challenge becomes even more critical when

the probabilistic system is not static in its behaviour (meaning it is trained once, and

the trained behaviour is not changed at run-time), but instead can adapt and learn

at run time autonomously based on the data the system encounters while operating.

To ensure the desired behaviour of the overall AI system, the VEDLIoT architectural

framework explicitly contains the previous mentioned run time level that contains

views on how the system can be monitored and controlled at run time. Two crucial

views are behaviour and context monitoring. The behaviour monitoring ensures that

human stakeholders see and understand how the AI system behaves at run time. Fur-

thermore, VEDLIoT systems will be designed and trained for a specific operational

context. If the AI system leaves the specified operational context, the behaviour will

most likely not follow the desired behaviour anymore. The system could react on

a context change by adapting its behaviour (e.g. safe stop in an autonomous vehi-

cle), or by employing continuous learning to adapt the behaviour to the new context.

Allowing the AI system to autonomously adapt its behaviour based on continuous

(reinforcement) learning is not without problems, because it could lead to violation

of desired quality concerns. Therefore, all quality concerns (ethics, security, safety,

energy, privacy, and more if needed) have their own monitoring and control concept

that need to be fulfilled at run time.

40

D2.5 Version 1.0

4 Requirement Methods

This chapter discusses requirements methods for VEDLIoT based systems. The re-

quirements method complements the architectural framework and focuses on activ-

ities and tools (templates, workshop guides) to elicit the required information.

• The architectural framework provides a refinement structure

– The columns of the framework correspond to concerns that a VEDLIoT-

based system either has or has not

– The rows of the framework correspond to abstraction levels, from high-

level on top to more concrete and specific on the bottom

• The requirements engineering method complements this:

– Business goals and Use Cases: On a high-level, the scope and high-level

goals about functionality and quality are described. This allows to reason

about which concerns (columns in the architectural framework) are nec-

essary and it also provides input towards the architectural views on the

knowledge and analytical layer

– System and Context Description: Based on the views on the knowledge and

analytical layer, the system and its context can be described. This allows to

externalise assumptions, and consider alternatives in which way the sys-

tem can address business goals and use cases best. This provides input to

the conceptual layer of views in the architectural framework.

– System Specification: Based on the views on the conceptual layer, concrete

requirements for the components of the system can be derived. In this re-

port, we focus on functional requirements and quality attributes relevant

for VEDLIoT components.

Note that while this report organises the content in a logical top-down fashion, the

architectural framework and requirements engineering method in VEDLIoT assumes

that knowledge can become available on all levels at any time. Thus, the focus is on

describing how thedescription can bemade complete and how themissing views on a

conceptual or analytical level can be provided based on an existing design level view.

The following sections reason aboutBusiness goals andUse Cases and SystemandCon-

text Description, while we discuss System Specification in Chapter 5 separately. Table

4.1 provides an overview of notations and practices that support each level and how

it relates to the architectural framework.

4.1 Define Scope, High-level Goals about Functionality and Qual-

ity, Prioritise Concerns

Weperceive thedevelopmentof aVEDLIoTbased systemasa complex,multi-organisational,

and multi-disciplinary endeavour. At its core is a simple design cycle:

41

D2.5 Version 1.0

Table 4.1. Overview of notations and practices that support each level of requirements and how

it relates to the architectural framework.

Functional
requirements

Quality
attributes

Operational
context

Relation to
architectural
framework

High-level
requirements
(corresponds
to highest
level, business
goals and use
cases)

Business
cases, scope,
user stories,
use cases

Quality grid No best
practice
known

Inform
selection of
concerns and
content of
views on
analytical layer

Stakeholder
requirements

User stories,
use cases, task
descriptions

Quality
scenarios

No best
practice
known

Provide detail
about success
criteria from
stakeholder’s
point of view

system
requirements

Feature
requirements,
(structural)
data
requirements

Planguage,
testable
quality
requirements,
open metric,
open target,
quality
requirements
on data

ODD and
context
description

High-level
description on
how system
will address
requirements
based on views
on analytical
layer; informs
conceptual
layer views

Design
requirements

Allocation of
functionality
to individual
components

Quality
contracts and
constraints

Specification
on how
context can be
assessed by
system

Specification
for VEDLIoT
components
based on
design time
views

Runtime
requirements

Requirements
monitors

Requirements
monitors

Context
monitors

1. Understand the problem to be solved

2. Design and implement a solution

3. Verify design and implementation

4. Validate ability to solve problem

We recommend to anticipate these phases early on and to plan for them.

Figure 4.1 shows a high-level overview of this multi-organisational process of build-

ing VEDLIoT components for use in a VEDLIoT based system. At the beginning, goals

with respect to functionality and quality must be defined for a certain operational

context (often described as operational design Domain (ODD) in the automotive con-

text). This must be done in sufficient detail so that high-level architectural decisions

42

D2.5 Version 1.0

Figure 4.1. Basic flow of building VEDLIoT-based systems

can be made, including the selection of hardware and specifically the sensors. Since

the interplay of hardware components and the placement of sensors in the overall

system can affect data quality, it is important to collect data with the selected hard-

ware. This data then needs to be annotated (at least in parts) and will then be used

to develop and train the model. Only at this point, it can be evaluated whether the

functional and quality goals can be reached in the operational context.

If the goals can be met with the current setup, the VEDLIoT components can be de-

ployed into the VEDLIoT-based system.

If not, an iteration can be necessary, in which all or a subset of previous decisions

can be adjusted. Often, it will be unfeasible to adjust functional or quality goals. The

operational context can however often be constrained further, to reduce the amount

of annotated data needed for model development.

A change in hardware and sensors may be necessary, but will result in high additional

cost. To mitigate this, in VEDLIoT we utilise reconfigurable hardware, which can be

adapted to changing requirements or environmental conditions at design time or

even at run time. This however creates new challenges to practices of documenting

architecture and requirements.

Annotation of data can be done incrementally and strategic approaches exist to opti-

43

D2.5 Version 1.0

Figure 4.2. Context diagram, describing scope and high-level functionality of a potential smart

mirror based system

mise the information gain per effort. However, if quality goals or operational context

change, existing annotationsmay becomeobsolete, which is a cost factor to consider.

It can be useful to have a strategy for partial annotation in an attempt to prove fea-

sibility of the current setup.

4.1.1 Define Scope

Laueson suggests the use of context diagrams to clearly indicate the scope of a sys-

tem [56]. In such a diagram, key stakeholders and their interaction within a given

domain is shown. Laueson in particular emphasises the need to distinguish between

domain events (e.g. a person attempting to achieve something within a smart home)

and system events (e.g. a person interacting with the smart mirror to trigger a cer-

tain action). The outcome of this activity is a list of domain and system events (or:

goals/tasks to achieve) and an initial characterisation of the operational context and

scope.

The example in Figure 4.2 illustrates this. The overall goal for the nurse is to ensure

the well-being of a patient living in a smart home. The domain level requirements

for the smart mirror are therefore to send a notification to the nurse if the patient

misses a regular check-in. The ability to support regular check-ins by the patient as

well as specific setups by the nurse are then product-level requirements. This (fictive)

example shows the importance to align on the basic goals, events, and requirements

in a defined domain, when reasoning about a VEDLIoT component. In case of the

smart mirror, a discussion can now take place that relates to the ability to recognise

a particular patient and his/her well being, to the trade-off between ensuring the

patient’s privacy and the patient’s well-being, and so on.

Clearly, this is not a sufficient description of operational context. It is a starting point

for further refinement. In VEDLIoT, we argue that this refinement requires to iterate

between problem and solution space. The analytical layer in the architectural frame-

work allows to refine the knowledge about context and scope from a solution space

perspective.

44

D2.5 Version 1.0

4.1.2 Functional goals

Functional requirements describe the behavioural aspects of a system, including the

inputs to the system, the outputs of the system, and behavioural relationships. The

domain and product events in the context diagram translate to high-level functional

goals. It can be a real enabler for efficient development work, if these can also be

traced to business goals, so that business value can be taken into account in prioriti-

sation and design decisions. The focus in this report is however on the further refine-

ment. User stories can be a good lightweight way to capture and discuss functional

goals from a stakeholder’s perspective. The typical template of a user story is as fol-

lows:

As a <role> I want <feature> so that <value>

This is a great way to capture stakeholder requirements, especially, if the value for

each stakeholder can be captured in a goodway. Complex goals can also be captured

as use cases. A common critique with use cases is that they often mix problem and

solution descriptions. A good alternative can be task descriptions, that focusmore on

the tasks thatmust be supported and less on how to support them. Regardless of the

concrete format (use case or task description), it is a best practice to make any ideas

for technical solutions explicit. For use cases in the VEDLIoT context, we suggest the

template in Table 4.2 and to embed the use caseswith references to context and data

definitions as suggested in Figure 4.3, which are based on works currently in review

at a journal [77].

The template in particular emphasises the importance to capture the relation to any

concern, including context and constrains of the use case as well as needs with re-

spect to data and system quality.

In terms of input and output, it is common to describe data requirements as part

of the functional requirements. On a high-level, we recommend to describe basic

data structures andprotocols. For the success of aVEDLIoT-based system, the quality

of data must also be described, for which there is a lack of support in requirements

engineering methods.

4.1.3 Quality goals

Since functional requirements cover only behavioural concerns of the system, other

concerns must be handled separately. While often described as non-functional re-

quirements, this term has been found inaccurate. Glinz suggests to instead distin-

guish quality attributes (such as performance requirements and specific quality re-

quirements) and constraints [24]. The usual approach towards defining quality at-

tributes is to start from a taxonomy of quality attributes.

Our investigation towards the architectural framework and its concerns offers amore

targeted starting point for potentially relevant quality attributes.

Quality attributes are notoriously difficult to handle. Key challenges include the ef-

fort involved in making them testable. Thus, on a high-level of abstraction, it is most

important to gain an overview of the relevant quality attributes, to prioritise them,

and to identify a way to refine them into a testable state that allows to clearly state

whether they are or are not fulfilled.

45

D2.5 Version 1.0

Figure 4.3. High-level requirements information model that connects use cases to operational

context (Operational Design Domain, ODD), Data Requirements, and Quality Requirements.

Lauesen suggests the use of a quality grid [56]. The quality grid is essentially a table

with relevant quality attributes in the first column and then an indication onwhether

this attribute ismoreor less important than in comparable products. Usually, a simple

check mark or footnote would show the criticality, followed by a short explanation

on why a concern is more or less important than usual. In Table 4.3, we provide an

assessment for the three main use cases in the VEDLIoT project.

Reasons for prioritising one concern over the other can include:

• Market position: With maturing products, functionality starts to disappear as

a distinction factor. Quality, in relation to competing products, becomes a key

business driver.

• Domain needs: Regulation or standardisation, as well as the criticality towards

safety or security of a product are drivers for the importance of certain quality

attributes.

For a VEDLIoT-based system and its VEDLIoT components, we believe that the pri-

oritisation is critical. It allows to select the minimal set of concerns to capture in the

architecture (when following the architectural framework proposed in Chapter 3).

The architectural framework provides guidance in how to explore each quality. We

will describe in Section 4.2.3, how quality requirements can be described in a useful

and testable way.

46

D2.5 Version 1.0

Table 4.2. Proposed use case template. Use underlined text to relate to other elements in the

requirements information model (see Figure 4.3).

Use case ID <ID> <the name should be the goal as a short active verb
phrase>

Description <a one or two line description of the goal>

Expected benefit <list of all the possible benefits and areas the use case can
be helpful>

Human factor aspect <if applicable: describe human capabilities, limitations,
objectives, and support to be provided; default: not
applicable>

Valid in context <A description of the context and constraints in which this
use case is valid, e.g. as post-condition, precondition, or
invariant. It is recommended to rely on ODD elements from
the ODD ontology in [16].>

Trigger <the action that starts the use case>

Steps

1. <steps of the scenario from trigger to goal delivery
and any cleanup after>

2. <...>

Existing or proposed solution <list of systems that already implement the use case; list
proposed solutions to keep rest of use case technology
neutral>

Concerns/constraints <list of important quality attributes or other VEDLIoT
concerns that apply to this use case>

Data requirement <list of data required, data qualities (e.g. volume in bytes
per hour), source and direction of data transfer>

4.2 Define System and Context Description

Based on the analytical layer in the architectural framework, a description of the sys-

tem and its context can be specified. The goal is to derive and organise requirements

that relate to the individual views in the architectural framework and to create a solid

foundation for the architectural views on the conceptual layer. In this context, it is im-

portant to provide the following information:

1. Define a system context

2. Define system requirements

3. Define quality requirements

4. Derive quality requirements for data and learning

The following sections give details on each of these topics.

47

D2.5 Version 1.0

Table 4.3. Adopting the quality grid to VEDLIoT based systems.

Quality factors
for VEDLIoT-
based system

Critical Important As usual Unimportant Ignore

Ethics UC1.a, UC1.b, UC2, UC31

Security UC1.a, UC1.b UC3 UC2

Safety UC22, UC1.b UC1.a UC3

Privacy UC33 UC2 UC1.a, UC1.b

Efficiency UC1.a1 UC2, UC3 UC1.b

…

Legend UC1.a: Industrial Use Case Motor Monitoring

UC1.b: Industrial Use Case Switchboard Monitoring

UC2: Automotive Use Case

UC3: Smart Home Use Case

Comments 1 Potential ethical concerns are taken seriously in all use cases

2 The automotive use case and one of the

industrial use cases concern safety-critical products

3 Depending of context of using the smart mirror,

different privacy concerns occur

4 Low power consumption is essential in one

of the industrial use cases which is battery based

4.2.1 Define System Context

There is a lack of consistent requirements engineering method to support specifying

requirements efficiently in context. Within VEDLIoT, we have investigated the state

of practice with consortium partners and uncovered the following challenges [59]:

Standards and Regulations At themoment, it is unclear how requirements with va-

lidity in a specific context relate toethics or toother standards/regulations. This

makes it challenging to build arguments, e.g. for safety or fairness in a given

context. Further, laws and regulations differ between countries, causing addi-

tional complexity to international companies.

Deriving Context In many cases, the environment of operation can be hard to pre-

dict, especially, if it is dynamic. It is challenging to anticipate which aspects are

important, e.g. for the effective use of a particular sensor. Some environmental

or contextual aspects are hard to describe, and practitioners find it challenging

to argue for the completeness of a context definition.

Specifying Context Theenvironment and context of operation is hard tomodelwith

today’s methods. The lack of a clear industry standard for specifying/defining

context hinders efficient communication between organisations.

48

D2.5 Version 1.0

Validation Due to the difficulties in deriving and specifying context and the lack of

standards, it is difficult to validate whether the system fulfils its desired func-

tional and quality goals in the intended context.

Process and responsibility Since the context definition is not a requirements arti-

fact, it will evolve independently. There might be a lack of synchronisation and

often, it is even unclear who is responsible for a change. The lack of an estab-

lished common process hinders effective collaboration. Communication of re-

quirements in context is in particular difficult, since the lack of standardised

representation causes misinterpretations among stakeholders.

With these challenges, companies are forced to err on the safe side and to consider

margins for achievingquality goals. Consequently, the costofbuildingVEDLIoTbased

systems will significantly be increased by the lack of requirements methods.

The goal is to identify distinct properties of context, relying on established ontologies

and taxonomies. However, it is clear that an iterative process with a strong feedback

loop must be strived for. Starting from simple tests and building knowledge in a

strategic and prioritised way is a promising approach. Use cases can be an effective

tool for communication, if they are sufficiently traced to context. The ultimate goal,

however, is a standardised and structured process to engineer requirements and con-

text definitions consistently.

4.2.2 Define System Requirements

Various notations have been suggested to specify functional system requirements.

Most commonly used is a one-sentence style as follows:

The system/component shall <requirements>

In terms of notation, wewould however recommend a look into EARS (Easy Approach

to Requirements Syntax) by Mavin. The basic structure of an EARS requirement is

While <optional precondition>,when<optional trigger>, the<systemname>

shall <system response>

Based on this, it becomes easy to specify requirements that are ubiquitous, state

driven, event driven, relate to optional features, or are unwanted.

Beyond the immediate syntax for specifying requirements, though, it is critical to en-

sure that requirements are up to date and consistent with system implementation

and testing. In the case of VEDLIoT, this is especially true, since we anticipate that

overall quality of the VEDLIoT based systems will depend on runtime monitors. If

these are inconsistent with the specified requirements, the system will be hard to

manage or to continuously develop.

The core reasons for changes in requirements include:

• Knowledge about the problems to solve has changed; this includes changes to

the high-level domain- and product-events to consider, as well as to the opera-

tional context that must be supported.

49

D2.5 Version 1.0

• Cross-cutting design decisions affect requirements for depending components.

We therefore recommend tomanage system requirements close to code (particularly

runtime monitors) and tests. A recent trend to achieve this are systems to manage

textual requirements in version control systems, as for example the open source tool

TReqs1.

A key concern for VEDLIoT based systems relates to the probabilistic behaviour of

deep learning components, which render specification of a deterministic system dif-

ficult. While this remains a challenge open for further investigation, also in the re-

mainder of the VEDLIoT project, we sketch a potential solution approach. Describe

functional requirements towards the VEDLIoT component: Classify objects in video

stream, identify patient in front of smart mirror. Add additional requirements on re-

porting the confidence or likelihood that an object indeed is in the reported class.

Theseare functional requirements that canbe specified towards adeep learning com-

ponent. Add additional quality requirementswith respect to classification accuracy in

a given context. Based on these requirements, develop a strategy to reach functional

and quality goals on system level.

4.2.3 Define Quality Requirements

The key difficulties of defining quality requirements are

• Challenging to select a metric for measuring quality

• Challenging to select a target value

A common bad practice is to specifymetrics and target values early on, thus, creating

a false sense of accuracy. Instead, it should be clearly mentioned if there is room for

negotiation, since often just small deviations from an established quality goal can

allow for much simpler solutions.

A good practice is to defer the selection of a metric or its target value, or even leave

it to the supplier to specify these. Lauesen refers to these approaches as openmetric

and open target respectively [56].

QR1: The smart mirror shall identify a patient with accuracy (cus-

tomer expects higher than 0.9)

QR2: The model supplier shall specify the identification accuracy for sim-

ilar use cases as ours.

However, onceknowledgeabout appropriatemetrics and target valuesbecomesavail-

able, Gilb’s PLanguagenotation canbeagoodway todocumentquality requirements.

Inspired by Lauesen [56], we provide the following example which includes hooks for

working with open metrics and open targets.

1available at https://gitlab.com/treqs-on-git/treqs-ng

50

D2.5 Version 1.0

Tag: Accuracy How often the system correctly identifies a patient

Scale: (Supplier, please specify exact way of measuring accuracy)

Meter: Use n-fold cross validation with training data

Must: 90%

Plan: (Supplier, please specify)

Wish: 99%

Past: Manual authentication, error prone

4.2.4 Derive Quality Requirements on Data and Learning

For the construction of a VEDLIoT based system, a given set of functional and qual-

ity requirements from a system’s perspective in a given context has implications on

the quality of input and output data as well as the learning strategies that must be

guaranteed.

As with context, we identify this as a key weakness in the state of the practice in

requirements engineering, where data requirements are usually described in a func-

tional and static fashion. An empirical study within the VEDLIoT consortium reveals

a number of data related challenges [76].

Accordingly, challenges around data quality relate to the availability, the manage-

ment, the sources, the structure, and the trustability of data. The quality of software-

based systems is commonly distinguished as internal quality (structural properties

such as maintainability of the software) or external quality (the fulfilment of user re-

quirements—i.e., providing the desired functionality and quality) [21]. In contrast,

agile methods have introduced the idea to judge the quality of a system while in use

in a realistic or real target environment, as for example visible in agile practices such

as the on-site customer [4] and sprint demos [82]. Inspired by this, we cluster impor-

tant quality attributes of data into internal quality (can be checked when looking at

thedata directly), external quality (can be checkedwhenexecuting the system in a lab

environment), and quality in use (can be checked with real users in realistic context).

• Internal quality

– Compliance (The degree to which data has attributes that adhere to stan-

dards, conventions or regulations in force and similar rules relating to data

quality in a specific context of use)

– Correctness (Every set of data stored represents a real world situation)

– Consistency (Measures whether or not data is equivalent across systems

or location of storage.)

– Portability (The degree to which data has attributes that enable it to be in-

stalled, replaced or moved from one system to another (while) preserving

the existing quality in a specific context of use)

– Structure (It refers to the level ofdifficulty in transforming semi-structured

or unstructured data to structured data through technology)

– Traceability (The extent towhich data arewell documented, verifiable, and

easily attributed to a source)

51

D2.5 Version 1.0

• External quality

– Completeness (Refers to whether all required data is present)

– Confidentiality (A property of data indicating the extent to which their

unauthorised disclosure could be prejudicial or harmful to the interest of

the source or other relevant parties)

– Cost effectiveness (The extent to which the cost of collecting appropriate

data is reasonable)

– Efficiency (The degree to which data has attributes that can be processed

and provide the expected levels of performance by using the appropriate

amounts and types of resources in a specific context of use)

– Latency (The time between when the data was created and when it was

made available for use)

– Relevance (The extent towhich data are applicable and helpful for the task

at hand)

– Representational consistency (The extent to which data are always pre-

sented in the same format and are compatible with previous data)

– Usefulness (Extent to which information is applicable and helpful for the

task at hand)

– Validity (Refers to whether data values are consistent with a defined do-

main of values)

• Quality in use

– Accessibility (The extent to which data are available or easily and quickly

retrievable)

– Availability (Thedegree towhichdata canbe consultedor retrievedbydata

consumers or processes)

– Credibility (Theextent towhichdata are trustedorhighly regarded in terms

of their source or content)

– Currency (The measure of whether data values are the most up-to-date

version of the information)

– Ease of operation (The extent to which data are easily managed and ma-

nipulated (i.e., updated, moved, aggregated, reproduced, customised))

– Fitness (It has two-level requirements: 1) the amount of accessed data

usedbyusers and2) thedegree towhich thedataproducedmatches users?

needs in the aspects of indicator definition, elements, classification, etc)

– Interpretability (The extent to which data are in an appropriate language

and units and the data definitions are clear)

– Lineage (Lineage measures whether factual documentation exists about

where data came from, how it was transformed, where it went and end-to-

end graphical illustration)

– Timeliness (Length of time between data availability and the event or phe-

nomenon the data describe)

– Usability (Is it understandable, simple, relevant, accessible, maintainable

and at the right level of precision?)

52

D2.5 Version 1.0

4.3 Quality aspects of data used for systems with deep learning

Although data is of key importance to achieve a desired behaviour from a deep learn-

ing system, there is no proper procedure to determine and manage the quality of

the data. There exists a need of a framework for identifying data quality challenges

and defining relevant data quality attributes. As of now, most of the information

regarding data quality assessment for the deep learning system is based on expert

knowledge.

Effects of data quality on machine learning algorithms are studied in [84]. The au-

thors assume that dataquality has impact on theeffectivenessofmachine learning al-

gorithms. Theydeviseprocedures of developing ”more robust anduseful” algorithms

byusingdata quality assessments. They evaluate theneedof gooddata quality by de-

veloping and testing with three Bayesian networks. Their experiment concludes that

data quality has an ”enormous effect” on results of machine learning algorithms.

Challenges pertaining to data quality andmethod of assessing them are presented in

[9]. A hierarchical data quality framework is developed. The challenges of data qual-

ity the paper identifies include difficulty in data integration, large volume of data,

fast-changing data, and lack of data quality standards. Furthermore, their framework

is composed of big data quality dimensions, quality characteristics, and quality in-

dices. They list and explain 14 attributes of data quality. Finally, a sophisticated data

quality assessment process is presented in the paper.

A data quality assessment andmonitoring framework is developed in [3]. The authors

improve upon the Basel II operational risk evaluation methods. They devise a data

quality assessment methodology called ORME-DQ. The methodology contains four

phases for data quality risk prioritisation, identification, measurement, and monitor-

ing. The authors develop an architectural framework that is composed of five mod-

ules which support the phases of the assessment methodology. For evaluation, the

prototype framework is tested on the Pentaho software.

A study develops a data quality framework for distributed computing environment

[20]. The author presents two models for data quality and distributed environment

and combines the models to propose a measure called Data Quality Risk Exposure

Level (DQREL). DQREL is an attribute-dimensions matrix and it includes eight dimen-

sions and three attributes. As stated by the author, DQREL matrix can be used to

understand ”data quality pitfalls” in a system.

A set of guidelines for quality assurance of AI applications is proposed in [29]. The

guideline includes three parts - a list of quality evaluation aspects, a catalogue of ex-

isting techniques, and domain-specific discussions. The evaluation aspects include

data integrity, model robustness, system quality, process agility, and customer ex-

pectation. The authors also include five ”state-of-the-art trends” in the initial version

of the guideline. They evaluate the guideline through a survey with over 77% of the

participants agreeing on its usefulness.

Requirements engineering for machine learning-based application is studied in [89].

Among the five challenges and requirements identified by the authors, data require-

ments is one. Data requirement is divided into data quantity and data quality. The

authors present a requirements engineering process as well. The process includes

steps such as elicitation, analysis, specification, and verification & validation. These

53

D2.5 Version 1.0

steps can also be utilised to study requirements to identify and manage challenges

of data quality.

TheOpenMeasuredDataManagementWorkingGroup (2021) hasdevelopedavendor-

neutral platform called OpenMDM2 to manage measured data. This platform is pri-

marily used by automotive companies to build in-house applications. It can, how-

ever, also be used to develop other solutions. It includes components and concepts

that can be used to ”compose applications formeasured datamanagement systems.”

OpenMDM can manage measurement data, evaluation results, and the descriptions.

4.3.1 A data quality assessment and maintenance framework

An artifact titledDataQuality Assessment andMaintenance Framework (DQA-MF)was

developed in cooperation with the use case owners. It includes four components,

namely, Data Quality Workflow, List of Challenges, List of Data Quality Attributes, and

Potential Solutions. Formoredetails about the concrete implementationof the frame-

work components, see [75].

Table 4.4. Framework Components and Their Purpose (Refer Fig. 4.4 for the steps in the work-

flow)

Component Purpose Associated
Workflow
Step

Data Quality Workflow Provides a step-by-step workflow to assess and manage data quality

List of Challenges Provides a template for challenges S1, S6

List of Data Quality At-
tributes

Provides a template for data quality attributes. Also, includes informa-
tion regarding which challenges affect a particular attribute, metrics
& their formula, and Planguage-inspired fields

S2, S3, S4, S6

Potential Solutions Provides a template for potential solutions to reduce or mitigate the
identified challenges. Also, includes requirements specifications and
implementation details (flowcharts) of the solutions

S5, S6

4.3.2 Data Quality Workflow

This component presents a step-by-step workflow for assessing and managing data

quality and its pertaining requirements. It includes six steps as shown in Fig. 4.4.

Most of the steps can be performed in parallel, as depicted by dotted line in Fig. 4.4.

Loops indicate that the steps can be done in an iterative fashion.

4.3.3 List of Challenges

Table 4.5 presents the template of List of Challenges component. It includes eight

fields. In its concrete implementation, 27 challenges are presented (see [76]). The

challenges are divided into five broad categories pertaining to data availability, data

management, data source, data structure, and trust in data.

2https://openmdm.org

54

https://openmdm.org

D2.5 Version 1.0

Identify data quality
challenges

Collect and organize data
quality attributes

Determine data quality
challenges that affect
data quality attributes

Define data quality
attribute metrics

Identify solutions for data
quality challengesPresent to stakeholders

S1 S2 S3

S6 S5 S4

Figure 4.4. Data Quality Workflow Framework Component

Table 4.5. Template for List of Challenges Framework Component

Field Description Example

Name Name of the data quality challenge Low Labelled Data Volume

Reference
Reference that denotes the identification of
the challenge

Interviews

Description Description of the data quality challenge

In the training dataset, the volume of the data that is la-
belled is significantly lesser than the volume of the data
that is unlabelled. Since a large volume of data is unla-
belled, the unlabelled data is useless and the deep learn-
ing models cannot be properly trained. For e.g., if only
30% of the traffic signs in a scene are labelled, it would
be “more difficult for the neural network to learn traffic
signs, since there are quite a lot of traffic signs among the
negative samples.”

Type
Type of challenge. Could be AVAILABIL-
ITY, MANAGEMENT, SOURCE, STRUCTURE,
or TRUST.

AVAILABILITY

Directly
affects AI
Functions

Boolean value to denote whether the data
quality challenge directly affects AI func-
tions or not

Yes (1.0), No (0) (Note: All participants in focus group af-
firmed that this challenge affects AI functions)

Challenge Score
A calculated value that denotes the rank-
ing of the data quality challenge in terms of
severity

Survey 1 - 4.333 (Rank 1/31), Survey 2 - 3.750 (Rank 1/25)

Responsible Stake-
holder

People and/or department in an organisa-
tion responsible to handle the challenge.

Data Collection Department, Data Manager, Data Collec-
tor

Impact Level
Degree to which the challenge affects the
AI models. Could have values such as HIGH,
MEDIUM, LOW.

HIGH

4.3.4 List of Data Quality Attributes

Table 4.6 presents the template of List of Data Quality Attributes component. It in-

cludes 11 fields. Eighty-two data quality attributes are presented in the concrete im-

plementation of this component. Some examples of data quality attributes include

availability, fitness, timeliness, etc. Additionally, 30 data quality attribute metrics are

presented in the concrete implementation of this component. For example, degree

of timeliness is ametric tomeasure timeliness of data. Furthermore, fields fromPlan-

guage, a quality factors notation [23], can also be adapted for this component.

55

D2.5 Version 1.0

Table 4.6. Template for List of Data Quality Attributes Artifact Component (italics: Fields from

Planguage)

Field Description Example

Name Name of the data quality attribute Timeliness

Reference
Reference that denotes the identification of
the attribute

Cai & Zhu (2015), Bobrowski et al. (1970), Sidi et al.
(2012),Wang&Strong (1996), Earley &Henderson (2017),
CDDQ (2017)

Definition Description of the data quality attribute

Length of time between data availability and the event or
phenomenon the data describe. (Eur 2020) The extent to
which the age of the data is appropriate for the task at
hand. (Wang & Strong 1996)

Challenges af-
fecting the DQ
Attribute

List of challenges that affect the data quality
attribute

Data Delay (1, 0.75), Data Drop (0.6, 0.25), Manual Data
Collection (0.2, 0.66), Manual Data Labelling (, 0.8)

Metric Name of the data quality attribute metric Degree of timeliness

Formula Formula used to calculate a given metric
Number of data records that is received within an accept-
able time / Total number of received data records

Scale The scale of measurement of the metric
The average time (in milliseconds) it takes for data to be
received by AI models

Meter
The process or method of measuring the
metric

Measured every time a data packet arrives by computer
clock

Must
The lowest/highest acceptable threshold
value that the metric must have

300 ms

Plan
The value of the metric, if surpassed, is re-
garded as accepted

100 ms

Wish The optimum value for the metric 50 ms

4.3.4.1 Potential Solutions

Table 4.7 presents the template of the Potential Solutions Artifact component. It in-

cludes fourfields. In the concrete implementationof this component, 13potential so-

lutions are provided. Some examples of potential solutions are Automated Labelling

to solve Low Labelled Data Volume and Manual Data Labelling challenges, Corrob-

oration of Data with Central Data Repository to solve Data Dependent on External

Conditions challenge, etc. It should be noted, however, that a single solution can be

suitable to solve more than one challenge.

Table 4.7. Template for Potential Solutions Artifact Component

Field Description Example

Name Name of the potential solution Corroboration of Data with Central Data Repository

Challenge it Tries
to Solve

Denotes the challenge(s) a particular solu-
tion tries to solve

Data Dependent on External Conditions

Requirement Spec-
ifications

These are the requirements that should be
specified before implementing the solution

1. Define the central data repository, its structure, and
address,
2. Define the procedure if central data repository cannot
be contacted,
3. Define the way AI disengagement notification is sent
to the user

Implementation
Details

This presents the step-wise implementation
of the solution

Refer to [76] for implementation details

56

D2.5 Version 1.0

5 The influence of distributed AI on methods for spec-

ification, performance criteria and verification

The VEDLIoT project is focused on systems with distributed AI. In this chapter we

will describe the change in current methods for setting the specification with perfor-

mance criteria aswell as how the verification of these due to the distributedAI design

approach. We have identified additional inputs or outputs needed for all levels of the

system.

5.1 Specification content

The definition of what constitutes a specification varies depending on at what level

of requirements or even which design engineering it is written for. The specification

shall fulfil some basic purposes. It shall

• tell the developers what to build

• let the testers know what testing is needed

• inform the stakeholders what they are getting

In most cases, requirements and specifications are interchangeable. But it can be

said that requirements refer to a stakeholder need while the specification refers to a

detailed, usually technical description of how that need will be met.

The following three paragraphs are an excerpt fromWikipedia which summarises the

relationship between requirements and specifications quite well [1].

A functional specification in systems engineering and software development is a doc-

ument that specifies the functions that a system or component must perform (ISO /

IEC / IEEE 24765) [45].

The requirements typically describe what is needed by the system user as well as re-

quested properties of inputs and outputs (e.g. of the software system). A functional

specification is the more technical response to a matching requirements document.

Thus, it picks up the results of the requirements analysis stage. On more complex

systems multiple levels of functional specifications will typically nest to each other,

e.g. on the system level, on the module level and on the level of technical details.

A functional specificationdoes not define the innerworkingsof theproposed system;

it does not include the specification of how the system functionwill be implemented.

Instead, it focuses on what various outside agents (people using the program, com-

puter peripherals, or other computers, for example) might ”observe” when interact-

ing with the system.’

A good specification document is always reflected by the quality of requirements,

because themain elements in a specification are the requirements. Through the task

clarification process, the stakeholders’ needs, which are in the form of customer lan-

guage, are transformed into engineering terms for the designing tasks [10]. The re-

quired content of a specification has been investigated by numerous groups. Some

findings are listed below.

57

D2.5 Version 1.0

Sudin et al. [68] found the customer or client’s specification can be classified into

three different areas

• verbal

• semi-developed

• full specification

Ulrich and Eppinger [87] found that a specification consists of a metric and a value.

Ullman [86] had 7 areas of classification which are

• functional performance requirement

• human factor requirement

• physical requirement

• reliability requirement

• life cycle concern requirement

• resource concern requirement

• manufacturing requirement.

Salonen et al. [66] also had seven classes but with slightly different focus: require-

ment related to feasibility

• technical requirement

• requirement related to size and appearance

• requirement for manufacturing and assembly

• requirement related to installation and use

• requirement for service

• requirement related to life cycle

Salonen also stated that requirements also could be classified based on their impor-

tance to the design process.

Roozenburg and Eekels [48] have identified a method for making a design specifica-

tion. The method consists of three phases that are:

• listing objectives

• analysing of objectives

• editing objectives

58

D2.5 Version 1.0

In order to achieve a complete collection of objectives and to minimise the chances

of missing relevant objectives, they referred to a checklist comprised of three major

elements that were: the stakeholder, the aspects and the product life cycle.

Therefore, to imagine the solution, while deriving requirements, could be a good

technique for specifying requirements, but ideally it should be stated as a solution-

neutral statement in a specification to avoid bias. Even though the solution is re-

quested by the customer, design engineers need to investigate the reasons behind

this solution preference before the decision to include it in the specification is made.

There is also a trade-off between the level of detail in the specification and the speed

of the development as shown in [100]. Although focusing on software development

this may also apply to the full system specification.

5.2 Requirement and Specification processes

Most industries have processes and policy documents for the requirement process.

Figure 5.1 is from a Veoneer standard showing the requirement steps as well as the

corresponding verification in the typical V process.

Stakeholder

Requirements
Validates

Verifies
System

Requirements

Implementation

SW / HW

Requirements
SW / HW Tests

Subsystem

Tests

System Tests

Acceptance Tests

Verifies

Stakeholder

System

Design Domain

S
atisfies

S
atisfies

S
atisfies

Subsystem

Requirements

S
atisfies

Verifies

System
Architecture - Design

Subsystem
Architecture - Design

SW / HW
Architecture

Figure 5.1. Visualisation of Veoneer requirement process

Analysing the detailed process documents, used by Veoneer, shows a conformance

with the previously discussed areas of specification and the description of these ar-

eas. Also the different phases, as described by Roozenburg and Eekels [48] are cov-

ered by the requirement steps called “Elicit and analyse” and ”Structure and cate-

gorise in System level and below”.

59

D2.5 Version 1.0

As can be seen in Figure 5.1 there is a parallel track, to the requirements path, that

describes the architecture at different levels of detail. In the VEDLIoT project, we

propose a requirements managing method (see Chapter 3) that combines this into

one strict and visual process that will enable us to generate thewanted specification.

It is obvious fromFigure 5.1 that there is a feedback path fromeachof the verification

boxes to the corresponding requirement level. But there is also a feedback fromeach

lower level, in the requirement and architecture paths to the previous higher level.

At some point these feedback loops have to stop and this is referred to as “Freeze

requirements” in the Veoneer process.

In the VEDLIoT project we are developing an architectural framework (chapter 3) and

requirement method for (dynamically) distributed AI systems. This is illustrated in

chapter 3 but repeated here (Figure 5.2) for convenience.

InformationContext &
Constraints

Learning AI ModelLogical
Behaviour

Process
Behaviour

Function
com-

ponentsA
na

ly
tic

al
Le

ve
l

Interaction

Logical
com-

ponents

C
on

ce
pt

ua
l

Le
ve

l Logical

se-

quences

Com-
puting

ressource
allocation

D
es

ig
n

Le
ve

l

Resource

se-

quences

Be-
haviour

monitoringR
un

 T
im

e
Le

ve
l

Adaptive

behaviour

Context

assum-
ptions

Context

definition

Con-
straints /

Design
Domain

Context

monitoring

Learning

objectives

Learning
concept /

data

selection

Learning

settings

Runtime
data

collection &

continous

learning

High level

AI model

AI model

concept

AI model

con-

figuration

AI models

per-

formance

monitoring

Hardware

High level

hardware

archi-
tecture

System
hardware

archi-
tecture

Com-
ponent

hardware

archi-

tecture

Hardware

per-

formance

monitoring

Con-
nectivity

Interfaces

Node

con-

nectivity

Resource

con-

nectivity

Con-
nectivity

monitoring

Ethics

Ethic

principles

Ethic

concept

Ethic

technical

realisation

Assess-
ment /

auditing of

AI

decisions

Security

Threat
analysis

(TARA)

Cyber-
security

concept

Technical

cyber-

security

concept

Security

monitoring

/

threat

response

Safety

Hazard
analysis

(HARA)

Functional

safety

concept

Technical

safety

concept

Safety

monitoring

/

safety de-
gradition

Energy

Efficiency

High level

energy &

power

concept

System
level

energy &
power

concept

Solutions

for energy

and

power

Energy
and power

monitoring

Privacy

Privacy

impact

analysis

Privacy

concept

Technical
solutions

for privacy

Assess-
ment of

privacy

com-

pliance

Behaviour and Context Means and Resources Communication Quality Concerns
Business Goals and Use Cases

Data
model

Infor-
mation

model

Com-
pilation

Data

monitoring

Figure 5.2. An architectural framework merging clusters of concerns for an AI enabled system

5.3 Technology neutral sub system definitions

As indicated by the proposed architectural framework in chapter 3 (Figure 5.2) and

in the V-model in Figure 5.1 the actual selection between hardware and software im-

plementation is done at the final requirement level. The sub-system requirements

should to some extent be technology neutral. Although some function sub-systems

are initially envisioned to be for example software, the influence of other stakehold-

ers, or clusters of concern, like for example functional safety, may force the selected

technology to be shifted. This may not have been obvious in the higher levels of ab-

straction. Also, not selecting the solution technology early may reduce the need for

multiple iterations between the different levels of abstraction.

For a dynamically distributed AI system this adds another level of complexity as the

full system is not under full control of the implementation engineers. If some func-

tion processing are to be done in the cloud or edge or in an IoT device, depending

on the actual context, the implementation may have to shift between hardware and

60

D2.5 Version 1.0

software. The requirements, for example what kind of AI processing is needed, shall

be fully covered by the proposed architectural framework but the final design or im-

plementation is not set until the final level of abstraction (“design level” in Figure 5.2)

5.4 Synchronisation requirements

In the proposed architectural framework shown in Figure 5.2, there are functional

descriptions and operational flow charts describing the application. These are then

converted into sub components or modules. These components/modules must op-

erate in a defined time sequence to fulfil the functional and operational flow charts.

These timing requirements are not necessarily described in the architectural frame-

work and they will also be different depending on the choice of implementation.

Although some timing requirements are obvious, like data have tobe available before

the processing of data starts, the actual margin needed is probably very implemen-

tation dependent. This is especially important in a distributed AI system where the

amount of data and the time to transport data to the processing node is very depen-

dent on the system design and the final implementation.

5.5 System specification method

Manymethods already exist for creating a specification of a system. Themethod that

fits the proposed architectural framework is a model oriented formal specification

(see Figure 5.3 below).

Figure 5.3. An architectural formal specification as part of requirements specification [85]

In the abovemethod all activities, except the formal specification, are covered by the

proposed architectural framework method.

Referencing back to the architectural framework illustrated in Figure 5.2, themethod

for deriving the formal specification is based on the output of the design level.

The output is called a solution prototype and this includes all the components/mod-

ules needed to fulfil the solution requirements and it is also based on a preferred ar-

61

D2.5 Version 1.0

chitecture. At this level, all the identified individual components/modules have their

own requirements.

At this point, all the clusters of concern by all stakeholders shall havebeen considered

and included. The necessary iterations between the different levels of abstraction as

well as the different clusters of concerns have to be halted (“freezed” in the Veoneer

nomenclature). All abstraction levels of the system architecture shall now have suf-

ficient information to create a specification that can be used for verification. That is,

it shall enable creation of parameters and KPI’s for which it shall be possible to setup

tests and measurements with thresholds and rules indicating the fulfilment of the

requirements at all abstraction levels.

What are the parameters and KPI’s that are suitable for distributed AI. The following

chapters describe possible types.

5.6 AI performance criteria

Deliverable 3.1 of this project provides a detailed discussion on suitable performance

metrics for very efficient deep learning in the Internet of Things1. Here we provide

an extract of the most relevant metrics:

5.6.1 Functional Performance

Suitable metrics for functional performance are execution time of a software com-

ponent, time until successful inference, and latency.

Table 5.1. Performance Metrics

Performance Metrics (Application), Full table will be part of Deliverable 3.11

Execution time [s] Total execution time for inference

Latency [s] Time from recorded event

inference including preprocessing

Peak performance [ops/s] Peak performance when executed

Achieved performance [Inferences/s] Performance achieved for a specific DL-model

5.6.2 Qualitative Performance

In contrast to the functional performance, the qualitative performancemeasures the

fulfilment of the qualitative aspects of the system, such as accuracy and efficiency.

The desired quality of the inference in most cases depends on the functional perfor-

mance goals.

Table 5.2. Quality Metrics

Quality Metrics, Full table will be part of Deliverable 3.11

I/O Bandwidth Bandwidth for data transfers

I/O Latency Latency for data transfers

Reconfigu- Dead time from starting the update

ration time [s] process till system is running again

Power [W] Total system power, averaged over one cycle

Energy [J] Total energy consumed in one cycle

Accuracy Accuracy, Precision, Recall, F1-score, F2-score, ...

1The Deliverable 3.1 can be downloaded at http://www.vedliot.eu

62

http://www.vedliot.eu

D2.5 Version 1.0

5.6.3 Relation to intended use-case context

A key concern of performancemetrics related to the intended use-case context is the

quality of training data. In addition, a measurement plan must be provided.

5.6.4 Training Data Quality

Training data quality can be described based on the quality attributes in Section 4.2.4.

In a thesis, we currently investigate possible data quality attributes for datasets used

to train deep learning models. Potential metrics include:

Table 5.3. Quality Metrics of data

Quality Metrics of Data, full table in [76]

Accuracy Percentage of errors

Age of data Resiliency

Availability Scalability

Completeness Signal strength

Correctness of Data Signal-to-noise ratio

Data Loss Rate Standard deviation

Elasticity Update Rate

Error Margin System Size

Error rate Useability

Estimated bias Variance

Frequency Velocity of Data

Mean of Data Volume

5.6.5 Safeguarding automation

It will be critical to automatically identify scenarios, where the desired quality and

functional goals cannot be reached. This can be due to the fact that the system is not

operated in the context it was designed for or due to other reasons that cause the

input data to the inference mechanism to deviate from the established data quality

goals. In such cases, the systemmust react appropriately, e.g. by deactivating certain

functionality, by shutting down, or by transferring into a mode that aims to bring the

system back to a safe state.

5.7 Additional considerations for distributed AI

The implementation of the system shall now be based on the specification. Some re-

quirements may not have a clear path to the specification parameters. This may be

especially true for AI systems. A requirement could be the function reliability which

indicates certain accuracy in the AI processing network based on the initial learning

set. This set may not have been sufficiently broad and during development and im-

plementation with a wider learning set, as defined by the requirement process, it

is discovered that a higher accuracy is needed. This will then impact the processing

hardware and/or the processing time. The solution would be to have larger specifi-

cation margins in case of AI systems but this would then not be cost optimised.

AImodelsmay be optimised after training, and there are always trade-offs. For exam-

ple the size (depth) and arithmetic precision can bemodified to reduce the hardware

demands but at the cost of lower performance with respect to inference accuracy

and precision.

63

D2.5 Version 1.0

Another issue is distributed processing that relies on connectivity and third party pro-

cessing resources. Both of these resources will have very dynamic performance, with

respect to availability and latency, and need to be included in the solution. An exam-

ple iswhen an edgeprocessing resource in a cellular base station is used for inference

and data need to be transferred from and back to the user over a cellular communi-

cation link. Both the communication and the processing capacity is dependent on

other concurrent users which will vary over time. It will put hard demands on the

selection of use-cases but also the reconfigurability of the real time system. It will

absolutely require a system monitoring process to detect situations that cannot be

handled. Some of these will be covered by the specification but it may be hard to

manage all combinations of environment conditions.

In parallel with the system specification the product/application operational design

domain (ODD) specification will be generated. The ODD is based on the selection of

system and sub-system functionality as produced through the requirements process.

The ODD may be limited for example due to conscious selection of sub-components

based on availability and/or cost. The product/application will still fulfil the require-

ments in most cases but in special cases like for example in hard to detect weather

conditions (low sun and very light rain) and similar the system will not work fully and

it will not be able to detect this condition. This has to be stated in the ODD.

5.8 Verification Methods

Based on the specification and derived performance metrics, a methodology which

acknowledges the impact of distributed AI needs to be established. In the proposed

VEDLIoT architectural framework, demonstrated in Figure 5.2, it is clear that verifi-

cation methods should be applied on each individual ”cluster-of-concern”. It’s also

important to highlight the need of verificationmethods on the horizontal dimension,

providing amethodology to ensure the integrationof the clusters of concerns, aswell

as the vertical dimension, providing amethodology to verify themaintained function-

ality as requested.

The developed functions should be tested by different tools and methods through-

out the development process, including conceptual, as well as functional validation.

The verification process should be initiated already early on in the levels of abstrac-

tions of the architectural viewpoints and intensified throughout the process.

5.8.1 Simulations

Computer simulations should be considered during the early stages of the develop-

ment process as a cost effective measure to generate preliminary results. This is no

different for deep learning than traditional software development.

Simulations are mainly targeted towards the clusters of concerns Behaviour and Con-

text, Means and Resources and Communication. The Quality Concerns doesn’t neces-

sarily benefit from simulations because they are governed by existing standards such

as ISO 26262.

Simulations canbeused to target individual boxes in theVEDLIoTarchitectural frame-

work or target multiple boxes along the horizontal and vertical dimension of the

framework by increasing the scope through additional mathematical models.

64

D2.5 Version 1.0

5.8.2 System Integration testing

Verification efforts needs to go into integration testing in an iterative manner to en-

sure compatibility between subsystems. This is valid for subsystems with and with-

out components based on deep learning. This should be done through a number of

steps, including for example Software-in-the-loop testing, hardware-in-the-loop test-

ing and system-in-the-loop testing. Referring back to the architecture framework

for VEDLIoT in Figure 5.2, system integration testing should involve the horizontal

of clusters of concern, focusing on the Behaviour and Context, Means and Resources

and Communication while complying with Quality Concerns.

5.8.3 Quality verification

Quality verification is today governed by the major standardisation bodies, e.g. IEEE

and ISO, which provides a thorough guide through the necessary documentation that

should be created and provided. This is the current practice to follow regardless of

involvement of deep learning or in the traditional software.

However, it is important to notice that the functional safety standard ISO 26262 in

today’s form does not cover deep learning. This has been identified by ISO and the

workgroups are currentlyworkingonamendments to the standard toalso coverdeep

learning. VEDLIoT will follow the progress of the work groups.

5.8.4 Validation data selection

For any system using DL, the selection of validation data is crucial to properly es-

timate the correctness of DL performance. Hence, the validation data needs to be

carefully compiled to represent the likely variations in the observations where the

system will operate. An example might be a vision system trained to recognise the

location of an eye. If said system was solely trained and validated towards a data set

containing a population of blue eyes only, other variations of eye colours will have

undefined result where the variations could be improperly ignored.

5.8.5 Field tests

At different stages throughout the development process, field tests should be per-

formed in settings defined for the targeted function design and the intended ODD.

This includes field tests in closed and controlled environments (such as test tracks)

and real life test (such as on public roads).

5.9 Runtime Monitoring

The Vedliot project aims at finding requirement, hardware and software solutions

for Very Efficient Deep Learning in IoT. As part of this, efficient methods for speci-

fication and verification are being investigated. In this document we have identified

a method based on an Architectural Framework, see also Chapter 3. A part of this

framework defines a system Real-Time Monitor (RTM) which should be operational

during the life-time of the product. The requirements for this RTM are derived from

all viewpoints of the Architectural Framework.

The RTM may be implemented as multiple components of both hardware and soft-

ware. It may be connected to the functional system at multiple interfaces and at

different levels of functionality. It may e.g. be simple monitoring of power supply

voltage levels as well as checking the statistical distribution of some processing out-

65

D2.5 Version 1.0

put parameters. The aim of the RTM is to verify that the system is operating within

the ODD as described in the product specification and against which the system has

been verified. To satisfy the functional safety requirements, the RTM has to consider

both FuSa (ISO 26262) and SotIF (ISO 21488) standards. This functional safety aspect

is discussed further inWP5 of the Vedliot project. The V-model as shown in Figure5.4

indicates that the RTMmust handle all functional safety cases.

Figure 5.4. V-model with Functional Safety and SotiF

An additional benefit of the RTM is that if the system fails the RTM data may be used

for forensic analysis of the system to identify the root cause of the failure. The RTM

may also be used to identify correlated changes in the behaviour of the system that

would indicate that a ML/DL design has not had sufficient training data from some

scenarios within the ODD.

5.9.1 Real-Time Monitoring functionalities

The basic system concept is illustrated in Figure 5.5.

Function Level

This is where the actual real-time application or function runs. This could be based

on a model or rule based algorithm or a DL/ML algorithm. It is using input data from

sensors and output control data for actuators. This level does not include FuSa func-

tionality.

Function Monitoring Level

This layer executes safety functions that monitor the functionality of layer 1. Here

is the implementation of the safety functions on the real-time application, such as

plausibility checks of the input signals.

Module Monitoring Level

This layer monitors hardware and software modules that executes the algorithms of

Layer 1: Function Level and the monitoring modules of Layer 2: Function Monitoring

Level. The safety functions of layer 3 are less application-specific and more general

and can be extracted by using the FuSa process.

66

D2.5 Version 1.0

Figure 5.5. RTM system concept

The RTM should be designed to cover some basic areas. These are described in the

following sub-chapters. They may be defined as reactive versus pro-active monitor-

ing.

5.9.1.1 Anomalies and fault detection

The monitoring is aimed at finding parameters that are outside of the operational

limits. This is normally achieved by setting thresholds with sufficient margin with re-

spect to the operational limits of individual components. Typical examples are again

power supply voltage and current levels. It could also be a software watchdog which

checks the maximum processing time of software components or functions. These

anomalies and fault detections are mainly included to fulfil the ISO 26262 standard.

Typical monitoring areas include

• Hardware power supplies

• Hardware temperature

• System clocks stability

• CPU and memory utilization

• Memory integrity check

• Application response time

• Network latency

• Access to system resources

67

D2.5 Version 1.0

5.9.1.2 Trends and Performance

Although this solution may look at the same parameters as described in “Anomalies

and fault detection”, in this case we are more looking at the derivative of the param-

eters trying to estimate if they at some point in the future will exceed the opera-

tional thresholds. This method also examines the system performance by looking at

the statistical distribution of the function module outputs. One important part of

this method is to look at the quality of system input data, e.g. sensor data, trying

to determine if the system is operating within the specified ODD. Below is some im-

portant parameters for both deterministic or probabilistic methods (also including

ML/DL models)

• Model Drift (distribution variability, input-output data relationship)

• Model Performance (output parameter distribution)

• Model Outliers (detection and statistics)

• (ML) Data Quality (input and output data)

The monitoring analysis is fully based on input and output data and the actual signal

processing model, which could be an ML/DL model, may be considered as a black

box as indicated by Figure 5.6. The figure illustrates an automotive use-case but is

obviously valid for any application and processing model.

Figure 5.6. Trends and Performance monitoring

5.9.1.3 Challenge-Response Monitoring

This is a way of injecting fault or near-boundary signals on the inptus of the system

and checking the response at the output. This includes verifying the output response

timing and quality.

68

D2.5 Version 1.0

5.9.2 RTM and functional Safety

The RTM shall be designed to verify in real-time that the system is operating under

the specified conditions. The RTM shall warn if the system is close or beyond any

operational limits to fulfil the Functional Safety requirements. The two different ar-

eas for RTM described in the previous chapter matches the two areas of functional

standards FuSa (ISO 26262) and SotIF (ISO 21488).

5.9.2.1 Existing solutions

Many processing devices, e.g. ARM processors [63] already incorporate real-time

monitoring functions. These could be

• Spatial isolation which is set by MPU Protected Zones that use a processing

device’s Memory Protection Unit (MPU) to shield access tomemory and periph-

erals. Access to RTOS objects and Kernel operations could be controlled with

assigned Safety Classes.

• Temporal isolation is set with Thread Watchdogs which monitors the system

timing constraints.

• Controlled system recovery is a way of putting the system in a safety state

and/or prevent the execution of non-safety components.

An example of this is shown below in Figure 5.7 where safety critical functionalities

and uncritical functionalities are running together on a single core Arm processor.

Figure 5.7. Proposed real-time monitoring for a single core Arm processor

5.9.3 RTM and AI/ML

The real time monitoring of signal processing modules based on ML/DL is in general

the same as described in the previous chapters. The main difference is that there

may not be an easily understandable connection between input and output data. The

monitoring has to be based on results created during the learning phase.

It may be hard to set a deterministic model of the correlation between input and

output data for an ML system. One way would be to use another ML module for

69

D2.5 Version 1.0

monitoring this correlation. Due to entanglement this will force re-learning of the

monitor when updating the application ML/DL model.

Modelling assumptions remain fairly constant and are obviously based on historical

data. The real world is dynamic, so the input data will change over time due to nat-

ural reasons and not sensor performance. This could lead to a degraded model per-

formance. TheMLmodels must adapt to this changing environment. Themonitoring

conditions may therefore also have to change over time.

Also changes to the system components over the life-time of the system may have

a large impact on the ML system outputs. The robustness of the model predictions

may be influenced both on learning settings (e.g. hyper-parameters, sampling meth-

ods, convergence thresholds, and data selection) as well as input data quality change

(both improved or degraded) can cause unpredictable changes to model output.

All of the abovemay be referred to as CACE: Changing Anything Changes Everything.

5.9.4 RTM and continuous learning

This means that we need to continuously monitor whether the assumptions baked

into the model at training time continue to hold at inference time. This form of mon-

itoring is extremely difficult because it requires advanced statistical capabilities and

careful tuning in order to prevent “alert fatigue” i.e. too many false positives. But

failing to catch violations of model assumptions negatively impacts both the user ex-

perience and business KPIs.

5.9.5 RTM and post-event data correlation

A straightforward way to monitor your ML model is to constantly evaluate your per-

formance on real-world data. Any significant changes in metrics such as accuracy,

precision, or F1 should be detected and create notifications to the system.

The system RTM may use external data to evaluate the limits and boundaries of the

metrics. For example another sensor system could provide stored ground truth data

for a specific event and this data could be used by the RTM to compare the opera-

tional result of the ML model. By doing this we can have a confirmation of the RTM

specification.

Since any external data either have to be moved to the RTM system for local evalu-

ation or the RTM data has to be moved to an external processing node for the RTM

performance evaluation it will involve data transfer which may be costly and time

consuming.

5.9.6 Summary

The real-time monitor is a critical component in any safety related application. Most

of the requirements on the RTM stems from functional safety requirements and anal-

ysis as defined in the FuSa and SotIF standards (ISO26262 and ISO21488). The RTM

is the guarantee that the complete system operates within the defined limits as de-

scribed in the ODD and the system specification.

Further investigation in the design of the RTM is needed. Since there is a close con-

nection to the functional safety requirements we will proceed with this work in WP5

of the Vedliot project.

70

D2.5 Version 1.0

6 Conclusion

The conceptual distance between the VEDLIoT use cases, and the necessary inte-

gration of additional use cases from the open call, made it difficult to define a sin-

gle reference architecture valid for all use cases. For example, the smart home use

cases must put significantly more emphasis on data privacy than the industrial IoT

use cases. On the other hand, functional safety is paramount to the automotive use

case, but of less importance to the smart home use case.

Therefore, instead of a single architectural framework, a compositional architectural

framework was derived during focus groups within the project consortium. Com-

positional thinking allows for an effective co-design of all relevant concerns of the

system-of-interest. Especially for AI components, the architectural framework allows

for effective data selection, AI model developing, and hardware design. Qualitative

aspects, such as safety, security, privacy, but also ethical aspects are explicitly consid-

ered throughout the design process. Furthermore, to ensure functionality and qual-

ity aspects of the system, the architectural framework considersmonitoring concepts

for run-time operations of the system.

Based on the architectural framework and its architectural decomposition mecha-

nisms across the key concerns ofVEDLIoTbased systems, a requirements engineering

method was defined. The requirements method provides initial input to the highest

abstraction level of the architectural framework, preparing the selection and priori-

tisation of concerns, and providing the key input for architectural analysis. It then

continues to describe the VEDLIoT system under construction based on the highest

architectural framework layer and provides the foundation for further architectural

analysis. In thisway, the requirementsmethod aims to support the twin peaksmodel,

where work on architecture and requirements evolve in parallel. It also allows to mix

top-down and bottom-up work, providing the conceptual glue to connect existing

hardware concepts to high-level system concerns.

Verification methods have been described for the four main clusters of concerns.

There remain however a number of severe challenges that are not easily solved. It

was found that there is a lack of standardised processes to define context and qual-

ity of data in relation to requirements. We list potentially relevant data quality at-

tributes as well as key difficulties in negotiating operative context across the value

chain involved in building VEDLIoT based systems.

The work in this task of defining specifications, which include AI/DL processing, has

identified some challenges which may be solved by more stringent evaluation of the

higher levels of abstraction or using a limited specification, with respect to AI and DL,

and with an adapted monitoring function. It may also require a more limited ODD.

The framework and concepts described in this work package serve as direct input to

other work packages. The architectural framework and the requirement framework

are already implemented for describing the use cases and the open call in VEDLIoT as

part of Work Package 7. Concepts, such as themonitoring concept, will, for example,

enable safety and security aspects discussed in Work Package 5.

71

D2.5 Version 1.0

Acronyms

Acronym Meaning

ADAS Advanced driver assistance system

AEB Automatic emergency braking

AI Artificial intelligence

DL Deep Learning

E/E Electric and electronic

GDPR General data protection regulation

IoT Internet of Things

KPI Key performance indicator

ML Machine learning

NLP Natural language processing

OEM Original equipment manufacturer

ODD Operational design domain

RE Requirement engineering

SAE Society of Automotive Engineers

Supporting the Interaction of Humans

and Automated Vehicles: Preparing forSHAPE-IT

the Environment of Tomorrow

Very efficient deep learning
VEDLIoT

in Internet of things

72

D2.5 Version 1.0

7 References

[1] Wikimedia Foundation Authors. Wikipedia: Functional specification.

[2] Georgios Bakirtzis, Eswaran Subrahmanian, and Cody H. Fleming. Composi-

tional Thinking in Cyber-Physical Systems Theory. arXiv, pages 1–9, may 2021.

[3] Carlo Batini, Daniele Barone, Michele Mastrella, Andrea Maurino, and Claudio

Ruffini. A framework and amethodology for data quality assessment andmon-

itoring. In ICIQ, pages 333–346. Citeseer, 2007.

[4] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

1999.

[5] Lucas Bernardi, Themis Mavridis, and Pablo Estevez. 150 successful machine

learning models: 6 lessons learned at Booking.com. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 1743–1751, 2019.

[6] Mónica Bobrowski, Martina Marré, and Daniel Yankelevich. A software engi-

neering view of data quality. Proc. of Second Int. Conf. Software Quality in Eu-

rope, 1998.

[7] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer

Levandowski, ShenjianGao, YanwenTan, Henrik Kaijser, Henrik Lönn, and Jonas

Törnqvist. Safely entering the deep: A review of verification and validation for

machine learning and a challenge elicitation in the automotive industry. Auto-

motive Software Engineering, 1(1):1–19, 2019.

[8] Jan Bosch, Ivica Crnkovic, and Helena Holmström Olsson. Engineering AI Sys-

tems: A Research Agenda. arXiv, pages 1–19, jan 2020.

[9] Li Cai and Yangyong Zhu. The challenges of data quality and data quality as-

sessment in the big data era. Data science journal, 14, 2015.

[10] Amaresh Chakrabarti. Research Into Design: Supporting Sustainable Product De-

velopment. Research Publishing Service, 2011.

[11] Jane Cleland-Huang. Safety stories in agile development. IEEE Software, 34(4),

2017.

[12] Jane Cleland-Huang, Robert S. Hanmer, Sam Supakkul, and Mehdi Mirakhorli.

The twin peaks of requirements and architecture. IEEE Software, 30(2):24–29,

2013.

[13] Jane Cleland-Huang, Mats Heimdahl, Jane Huffman Hayes, Robyn Lutz, and

Patrick Mäder. Trace queries for safety requirements in high assurance sys-

tems. In Proc. of Int. Working Conf. on Requirements Eng.: Foundation for Soft-

ware Quality (REFSQ), pages 179–193, Essen, Germany, 2012.

[14] Command and Control Board. NATO Architecture Framework. NATO Science

and Technology Organization, 2020.

73

D2.5 Version 1.0

[15] John W Creswell and J David Creswell. Research design: Qualitative, quantita-

tive, and mixed methods approaches. Sage publications, 2017.

[16] Krzysztof Czarnecki. Operational design domain for automated driving sys-

tems - taxonomyof basic terms. Technical report,Waterloo Intelligent Systems

Engineering (WISE) Lab, University of Waterloo, 07 2018.

[17] M. J. de Vries. Philosophy of Technology. Technology Education for Teachers,

Rotterdam, 2012.

[18] Parijat Dube and Eitan Farchi. Automated Detection of Drift in Deep Learn-

ing Based Classifiers Performance Using Network Embeddings, volume 1272.

Springer International Publishing, 2020.

[19] European Commission. REGULATION OF THE EUROPEAN PARLIAMENT AND

OF THE COUNCILLAYINGDOWNHARMONISED RULESONARTIFICIAL INTELLI-

GENCE (ARTIFICIAL INTELLIGENCEACT)ANDAMENDINGCERTAINUNIONLEG-

ISLATIVE ACTS, 2020.

[20] Finbar Fletcher. A framework for addressing data quality in distributed com-

puting systems. In IQ, pages 265–282, 1998.

[21] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley Professional, 1st edition, 2009.

[22] Greg Giaimo, Rebekah Anderson, Laurie Wargelin, and Peter Stopher. Will it

Work? Transportation Research Record: Journal of the Transportation Research

Board, 2176(1):26–34, jan 2010.

[23] T Gilb. A handbook for systems-engineering, requirements-engineering and

software-engineering using planguage, 2005.

[24] Martin Glinz. On non-functional requirements. In Proc. of 15th IEEE Int. RE Conf.

(RE), pages 21–26, New Delhi, India, 2007.

[25] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. The No

No Free Lunch Theorem, chapter 5.2.1, pages 114–116. MIT press Cambridge,

2016.

[26] Lucas Gren and Per Lenberg. Agility is responsiveness to change: An essential

definition. In Proc. of the Evaluation and Assessment in Software Engineering,

pages 348–353, 2020.

[27] Edward R. Griffor, Christopher Greer, David A. Wollman, and Martin J. Burns.

Framework for Cyber-Physical Systems: VOlume 1, Overview. Technical Report

1500-201, National Institute of Standards and Technology (NIST), June 2017.

[28] Magnus Gyllenhammar, Rolf Johansson, Fredrik Warg, DeJiu Chen, Hans-

Martin Heyn, Martin Sanfridson, Jan Söderberg, Anders Thorsén, and Stig Urs-

ing. Towards an operational design domain that supports the safety argumen-

tation of an automateddriving system. In 10th EuropeanCongress on Embedded

Real Time Systems (ERTS 2020), 2020.

74

D2.5 Version 1.0

[29] Koichi Hamada, Fuyuki Ishikawa, Satoshi Masuda, Tomoyuki Myojin, Yasuharu

Nishi, Hideto Ogawa, Takahiro Toku, Susumu Tokumoto, Kazunori Tsuchiya, Ya-

suhiro Ujita, et al. Guidelines for quality assurance of machine learning-based

artificial intelligence. In SEKE, pages 335–341, 2020.

[30] P. Hancock. Some pitfalls in the promises of automated and autonomous vehi-

cles. Ergonomics :1, 2019.

[31] P. A. Hancock. Imposing limits on autonomous systems. Ergonomics 60 (2), page

284–291, 2017.

[32] Bernd Heinrich, Diana Hristova, Mathias Klier, Alexander Schiller, and Michael

Szubartowicz. Requirements for data quality metrics. Journal of Data and In-

formation Quality (JDIQ), 9(2):1–32, 2018.

[33] IEEE SA Board of Governors/Corporate Advisory Group (BoG/CAG). IEEE Std

2413: Architectural Framework for the Internet of Things (IOT). IEEE Computer

Society, 2019.

[34] IEEE Std 2413-2019. IEEE Standard for an Architectural Framework for the In-

ternet of Things (IoT), 2019.

[35] International Electrotechnical Commission. IEC 60050-351:2013: Interna-

tional Electrotechnical Vocabulary. International Electrotechnical Commission,

Geneva, 2013.

[36] International Electrotechnical Commission. Function blocks - Part 1: Architec-

ture. International Electrotechnical Commission, Geneva, 2014.

[37] International Electrotechnical Commission. Guidelines for the design of inter-

connected power systems. International Electrotechnical Commission, Geneva,

2014.

[38] International Electrotechnical Commission. Function blocks (FB) for process con-

trol and electronic device description language (EDDL) - Part 2: Specification of

FB concept. International Electrotechnical Commission, Geneva, 2018.

[39] International Organization for Standardization. ISO / IEC / IEEE 42010:2012:

Systems and software engineering — Architecture description. Swedish Stan-

dards Institute, Stockholm, swedish standard edition, 2012.

[40] International Organization for Standardization. ISO / IEC 27032:2012: Informa-

tion technology — Security techniques — Guidelines for cybersecurity. Interna-

tional Organization for Standardization, Geneva, 2012.

[41] International Organization for Standardization. ISO / IEC / IEEE 15288:2015:

Systems and software engineering — System life cycle processes. International

Organization for Standardization, Geneva, 2015.

[42] International Organization for Standardization. Information technology — Se-

curity techniques — Information security management systems — Overview and

vocabulary. International Organization for Standardization, Geneva, 2018.

75

D2.5 Version 1.0

[43] International Organization for Standardization. ISO 26262:2018: Road vehicles

— Functional safety. International Organization for Standardization, Geneva,

2018.

[44] International Organization for Standardization. ISO/IEC TR 20547:2020: Infor-

mation technology — Big data reference architecture. International Organiza-

tion for Standardization, Geneva, 2020.

[45] ISO/IEC/IEEE 24765:2017. Systems and software engineering — Vocabulary,

2017.

[46] ISO/IEC/IEEE 4201:2011. Systems and software engineering — Architecture

description, 2011.

[47] Syed Muslim Jameel, Manzoor Ahmed Hashmani, Hitham Alhussain, Mobashar

Rehman, andArif Budiman. A critical reviewon adverse effects of concept drift

over machine learning classification models. International Journal of Advanced

Computer Science and Applications, 11(1):206–211, 2020.

[48] J.Eekels and N.F.M.Roozenburg. A methodological comparison of the struc-

tures of scientific research and engineering design: their similarities and dif-

ferences. Design Studies, 12:197–203, 2005.

[49] Michael G Kahn, Jeffrey S Brown, Alein T Chun, Bruce N Davidson, Daniella

Meeker, Patrick B Ryan, Lisa M Schilling, Nicole GWeiskopf, Andrew EWilliams,

andMeredith NahmZozus. Transparent reporting of data quality in distributed

data networks. Egems, 3(1), 2015.

[50] Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel, and Fran-

ciscoGomesdeOliveiraNetoa. Requirements engineering challenges andprac-

tices in large-scale agile system development. Systems and Software, 2020.

[51] Rashidah Kasauli, Rebekka Wohlrab, Eric Knauss, Jan-Philipp Steghofer, Jen-

nifer Horkoff, and Salome Maro. Charting coordination needs in large-scale

agile organizations with boundary objects andmethodological islands. In Proc.

of the Int. Conf. on Software and System Processes (ICSSP), Seoul, South Korea,

2020.

[52] Eric Knauss. The missing requirements perspective in large-scale agile system

development. IEEE Software, 36(3):9–13, 2019.

[53] Eric Knauss. Constructive master’s thesis work in industry: Guidelines for ap-

plying design science research. arXiv preprint arXiv:2012.04966, 2020.

[54] Philip Koopman, Uma Ferrell, Frank Fratrik, andMichael Wagner. A safety stan-

dard approach for fully autonomous vehicles. In Int. Conf. on Computer Safety,

Reliability, and Security, pages 326–332. Springer, 2019.

[55] Phillippe Kruchten. Architecture blueprints—the “4+1” view model of software

architecture, volume 12. ACM Press, New York, New York, USA, 1995.

[56] Søren Lauesen. Software Requirements. Pearson / Addison-Wesley, 2002.

76

D2.5 Version 1.0

[57] John D. Lee. Humans and automation: Use, misuse, disuse, abuse. HUMAN

FACTORS, Vol. 50, No. 3,, page 404–410, 2008.

[58] Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding Continual

Learning Settings with Data Distribution Drift Analysis. arXiv, pages 1–9, 2021.

[59] Jennifer Lindern andPadmini Subbiah. Under preparation: Deriving contextual

definition and requirements from use cases of autonomous drive. Master’s

thesis, The University of Gothenburg, Sweden, 2021.

[60] Xiaoqiang Ma, Tai Yao, Menglan Hu, Yan Dong, Wei Liu, Fangxin Wang, and

Jiangchuan Liu. A survey on deep learning empowered iot applications. IEEE

Access, 7:181721–181732, 2019.

[61] PatrickMäder, Paul L. Jones, Yi Zhang, andJaneCleland-Huang. Strategic trace-

ability for safety-critical projects. IEEE Software, 30, 2013.

[62] JB Manchon, Mercedes Bueno, and Jordan Navarro. From manual to auto-

mated driving: how does trust evolve? Theoretical Issues in Ergonomics Science,

pages 1–27, 2020.

[63] Vladimir Marchenko. Process isolation with arm fusa runtime system.

[64] Salome Honest Maro, Jan-Philipp Steghöfer, Eric Knauss, Jennifer Horkoff,

Rashidah Kasauli, Jesper Lysemose Korsgaard, Florian Wartenberg, Niels Jør-

gen Strøm, andRubenAlexandersson. Managing traceability informationmod-

els: Not such a simple task after all. IEEE Software, 2020.

[65] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien

Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. Software

Engineering for AI-Based Systems: A Survey. Preprint, 1(1), 2021.

[66] Matti Perttula Mikko Salonen, Claus Thorp Hansen. Evolution of property pre-

dictability during conceptual design. ICED 05, Melbourne, August 15–18, 2005,

2005.

[67] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasser-

man, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru.

Model cards for model reporting. In Proc. of the Conf. on Fairness, Accountabil-

ity, and Transparency, page 220–229, New York, NY, USA, 2019. Association for

Computing Machinery.

[68] S. Ahmed-Kristensen M.N. Sudin and M.M. Andreasen. The role of a specifica-

tion during the design process: A case study. INTERNATIONALDESIGNCONFER-

ENCE - DESIGN 2010, 2010.

[69] AzanaHafizahMohdAman, ElahehYadegaridehkordi, ZainabSenanAttarbashi,

Rosilah Hassan, and Yong-Jin Park. A Survey on Trend and Classification of In-

ternet of Things Reviews. IEEE Access, 8:111763–111782, 2020.

[70] HenryMuccini andKarthik Vaidhyanathan. SoftwareArchitecture forML-based

Systems: What Exists and What Lies Ahead. Proceedings of the 43rd Interna-

tional Conference on Software Engineering,, mar 2021.

77

D2.5 Version 1.0

[71] AnithaMurugesan, Sanjai Rayadurgam, andMats Heimdahl. Requirements ref-

erencemodels revisited: Accommodating hierarchy in system design. Proceed-

ings of the IEEE International Conference on Requirements Engineering, 2019-

September:177–186, 2019.

[72] Bashar Nuseibeh. Weaving Together Requirements and Architectures. Com-

puter, 34(3):115–119, 2001.

[73] Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, S. Magnus Ågren,

Piergiuseppe Mallozzi, Anders Alminger, and Daniel Borgentun. Automo-

tive Architecture Framework: The experience of Volvo Cars. Journal of Systems

Architecture, 77:83–100, 2017.

[74] K Pfeffers, Tuure Tuunanen, Charles E Gengler, Matti Rossi, Wendy Hui, Ville

Virtanen, and Johanna Bragge. The design science research process: A model

for producing and presenting information systems research. In Proc. of the

First Int. Conf. onDesign Science Research in Information Systems and Technology

(DESRIST 2006), Claremont, CA, USA, pages 83–106, 2006.

[75] SHAMEER KUMAR PRADHAN and SAGAR TUNGAL. Quality attributes of data

in distributed deep learning architectures. 2021.

[76] Shameer Kumar Pradhansagar and Sagar Tungal. Under preparation: Quality

attributes of data in distributed deep learning architectures. Master’s thesis,

The University of Gothenburg, Sweden, 2021.

[77] Supriya Rao, Eric Knauss, Md Abdullah Al Mamun, and Amna Pir Muhammad.

Managing requirements-knowledge for developing cloud-based support of au-

tonomous vehicles and transportation as a service: A design science research.

Systems and Software, 2021. In review.

[78] P. P. Ray. A survey on Internet of Things architectures. Journal of King Saud

University - Computer and Information Sciences, 30(3):291–319, 2018.

[79] Kirsten Revell, Pat Langdon, Mike Bradley, Ioannis Politis, James Brown, and

Neville Stanton. User centered ecological interface design (uceid):a novel

method applied to the problem of safe and user-friendly interaction between

drivers and autonomous vehicles. Intelligent Human Systems Integration,Ad-

vances in Intelligent Systems and Computing, 2018.

[80] Stuart Russel. Human Compatible: AI and the Problem of Control. Penguin

Books, 2020.

[81] SAE. SAE J3016:201806 - SURFACE VEHICLE RECOMMENDED PRACTICE - Tax-

onomy and Definitions for Terms Related to Driving Automation Systems for

On-Road Motor Vehicles, 2018.

[82] Ken Schwaber andMike Beedle. Agile Software Development with Scrum. Pren-

tice Hall, 2002.

[83] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar

Ebner, Vinay Chaudhary, Michael Young, Jean François Crespo, and Dan Den-

nison. Hidden technical debt in machine learning systems. Advances in Neural

Information Processing Systems, 2015-January:2503–2511, 2015.

78

D2.5 Version 1.0

[84] Valerie Sessions and Marco Valtorta. The effects of data quality on machine

learning algorithms. ICIQ, 6:485–498, 2006.

[85] Ian Sommerville. Software engineering 9, 2009.

[86] David G. Ullman. The mechanical design process. McGraw Hill, 2003.

[87] Karl T. Ulrich and Steven D. Eppinger. Product design and development. McGraw

Hill, 2007.

[88] Peter-Paul van Maanen, Jasper Lindenberg, and Mark A. Neerincx. Integrating

human factors and artificial intelligence in thedevelopment of human-machine

cooperation. IC-AI 2005, 2005.

[89] Andreas Vogelsang and Markus Borg. Requirements engineering for machine

learning: Perspectives from data scientists. In 2019 IEEE 27th International

Requirements Engineering Conference Workshops (REW), pages 245–251. IEEE,

2019.

[90] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. How does Machine Learn-

ing Change Software Development Practices? IEEE Transactions on Software

Engineering, 2020.

[91] Michael Weiss and Paolo Tonella. Fail-Safe Execution of Deep Learning based

Systems through Uncertainty Monitoring. ICST, 2021.

[92] Michael Weyrich and Christof Ebert. Reference architectures for the internet

of things. IEEE Software, 33(1):112–116, 2016.

[93] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie Abrecht.

Safety concerns and mitigation approaches regarding the use of deep learn-

ing in safety-critical perception tasks. In International Conference on Computer

Safety, Reliability, and Security, pages 336–350. Springer, 2020.

[94] Rebekka Wohlrab, Eric Knauss, and Patrizio Pelliccione. Why and how to bal-

ance alignment and diversity of requirements engineering practices in auto-

motive. Systems and Software, 162, 2019.

[95] Rebekka Wohlrab, Eric Knauss, Jan-Philipp Steghöfer, Salome Maro, Anthony

Anjorin, and Patrizio Pelliccione. Collaborative traceability management: A

multiple case study from the perspectives of organization, process, and cul-

ture. Requirements Engineering (REEN), 25:21–45, 2020.

[96] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Mats Larsson. Bound-

ary objects and their use in agile systems engineering organizations. Journal

of Software: Evolution and Process, 31:1–24, 2019.

[97] David HWolpert. The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7):1341–1390, 1996.

[98] Eoin Woods. Software Architecture in a Changing World. IEEE Software,

33(6):94–97, 2016.

[99] Gioele Zardini, Dejan Milojevic, Andrea Censi, and Emilio Frazzoli. A Formal

approach to the co-design of embodied intelligence. arXiv, 2020.

79

D2.5 Version 1.0

[100] S. Magnus Ågren, Eric Knauss, Rogardt Heldal, Patrizio Pelliccione, Gösta

Malmqvist, and Jonas Bodén. The impact of requirements on systems devel-

opment speed: amultiple-case study in automotive. Requirements Engineering,

24(3):315–340, 2019.

80

	Introduction
	VEDLIoT Project Introduction
	VEDLIoT WP2 Introduction
	VEDLIoT T2.1 & T2.2 outlining
	Task 2.1: Requirement methods & performance metrics (M1-M18)
	Task 2.2: Specification & verification methods (M1-M18)

	The VEDLIoT Thing

	Background
	Current best practices
	System Architecture

	Identified problems with current best practices
	PA 1: Contextual definitions and requirements
	PA 2: Data requirements and quality attributes of data
	PA 3: Performance definition and monitoring
	PA 4: Human Factors
	Cross-Cutting research problem: Integration in modern system development

	Architectural Framework
	Architecture descriptions for distributed systems
	Clusters of concern
	Behaviour and Context
	Means and Resources
	Quality Concerns
	Architectural views for AI systems
	Example of correspondences between a quality concern and the remaining architecture concerns
	Example of correspondences between context, learning, and AI model

	Levels of abstraction
	Knowledge and analytical level
	Conceptual level
	Design level
	Run time level

	Compositional architecture framework for VEDLIoT
	How to apply a compositional architectural framework in practice

	Monitoring and controlling concepts for the run-time behaviour of advanced AI systems

	Requirement Methods
	Define Scope, High-level Goals about Functionality and Quality, Prioritise Concerns
	Define Scope
	Functional goals
	Quality goals

	Define System and Context Description
	Define System Context
	Define System Requirements
	Define Quality Requirements
	Derive Quality Requirements on Data and Learning

	Quality aspects of data used for systems with deep learning
	A data quality assessment and maintenance framework
	Data Quality Workflow
	List of Challenges
	List of Data Quality Attributes

	The influence of distributed AI on methods for specification, performance criteria and verification
	Specification content
	 Requirement and Specification processes
	Technology neutral sub system definitions
	Synchronisation requirements
	System specification method
	AI performance criteria
	Functional Performance
	Qualitative Performance
	Relation to intended use-case context
	Training Data Quality
	Safeguarding automation

	Additional considerations for distributed AI
	Verification Methods
	Simulations
	System Integration testing
	Quality verification
	Validation data selection
	Field tests

	Runtime Monitoring
	Real-Time Monitoring functionalities
	RTM and functional Safety
	RTM and AI/ML
	RTM and continuous learning
	RTM and post-event data correlation
	Summary

	Conclusion
	References

