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Executive Summary 

This deliverable summarizes the results of Task 3.2 (Design of a heterogeneous DL 

accelerator) of the VEDLIoT project and provides an initial report on the design of the 

reconfigurable accelerators (Task 3.3). Based on the first benchmarking results, summarized 

in D3.1, the most important accelerators to be integrated into the VEDLIoT hardware 

platforms have been selected, ranging from FPGAs via GPUs to TPUs. While the cloud 

platform RECS|Box and the near-edge platform t.RECS are already available in the VEDLIoT 

testbed, the far-edge platform u.RECS is not yet deployed. For early evaluation and 

development of the hardware-software solutions, a dedicated testbed has been set up for 

the u.RECS. It integrates the same compute and accelerator modules as the upcoming 

platform and is, e.g., used for the design of the basic FPGA infrastructure in Task 4.4. 

Additionally, it has been an important reference for the u.RECS hardware development and 

is used for the evaluation of new computing and acceleration modules.  

For a first evaluation of the u.RECS setup, various accelerator implementations based on the 

Xilinx Deep Learning Processor Unit (DPU) have been realized on the embedded FPGA SoC. 

The results are compared in terms of performance and efficiency, extending the previous 

benchmarking activities and illustrating the large design space of the accelerators. These 

results are used as a basis for later comparison of the targeted reconfigurable accelerator 

designs in VEDLIoT. In Task 3.3, we started the development of a template-based approach 

that allows flexible realization of accelerators. A modular architecture is realized for 

efficient FPGA integration based on high-level synthesis. Enabling partial dynamic 

reconfiguration for enhanced efficiency is an inherent part of the design. The accelerator 

developments serve as a basis of the envisioned co-design approach in the upcoming Task 

3.4 and are integrated into the hardware platforms developed in WP4. 
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1 Introduction 

Being the second deliverable from WP3, this deliverable provides an overview of the results 

of Task 3.2, “Design of a heterogeneous DL accelerator”, running from M6 to M15 of the 

project, and gives first insights into the developments of Task 3.3, “Design of a 

reconfigurable DL accelerator”, which started in M12.  

 

Figure 1: VEDLIoT project overview – this report covers Task 3.2 and Task 3.3 within WP3 

Figure 1 illustrates the global picture of VEDLIoT. This report concentrates on the work on 

deep learning accelerators, carried out in WP3. Naturally, the work has a close link to the 

hardware platform design in WP4. The developed accelerators are utilizing the available 

hardware platforms and provide important input to the new developments. Via the 

middleware developed in WP6, the applications, as well as the use cases, will make use of 

the new accelerator designs.  

Chapter 2 summarizes the work of Task 3.2. Based on the analysis of available accelerators, 

which is detailed in D3.1 [1], a subset of accelerators has been selected for integration into 

the RECS platforms used in VEDLIoT. Since the new u.RECS is not yet deployed, an emulation 

system has been set up, enabling FPGA and software development in parallel to the 

finalization of platform design. First experiments have been performed, utilizing the 

integrated reconfigurable SoCs for deep learning acceleration. 

In Chapter 3, the ongoing accelerator design in Task 3.3 is summarized. As described in the 

Statement of Work, reconfigurable platforms are one of the main target platforms in 

VEDLIoT. The accelerator designs use a template-based approach, targeting high flexibility 

as well as high energy efficiency. Further improvements are envisioned by partially 

reconfiguring the FPGA designs at runtime, enabling to switch between different 

power/performance footprints depending on the current application requirements. 
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2 Heterogeneous DL Accelerator 

Within VEDLIoT, three main hardware platforms are developed, used and extended, 

representing the complete compute continuum from far-edge via near-edge to the cloud. 

All platforms are based on the RECS architecture, following a highly modular and scalable 

approach, as detailed in D4.1 (First report on cognitive IoT hardware platform and 

microserver development) [2]. Based on the detailed analysis of hardware accelerators for 

machine learning, provided in D3.1 (Evaluation of existing architectures and compilers for 

DL) [1], the accelerators that match best the requirements within VEDLIoT have been 

selected for integration into the different platforms.  

This chapter describes the results of Task 3.2 (Design of a heterogeneous DL accelerator). 

Based on existing components, reference implementations have been set up and are 

integrated into the VEDLIoT testbed. Our main goal was to provide a testbed setup that is 

scalable from small hardware platforms targeting minimum energy in the far-edge to high 

performance/cloud solutions. For the latter, we use the RECS|Box platform; near-edge 

solutions are realized based on t.RECS. For far-edge solutions, the new u.RECS is developed 

within VEDLIoT. In the following, the different variants of heterogeneous accelerators, used 

in VEDLIoT, are briefly sketched, focusing on the targeted ML accelerators. Details about 

the architecture of the different RECS platforms are provided in D4.1. A complete list of 

available accelerators and compute modules is provided in D7.1 (First report on testbed 

deployment and maintenance) [3]. 

RECS|Box Platform 

RECS|Box is the high-end platform of the RECS family, enabling the integration of a wide 

variety of heterogeneous microservers, ranging from server-grade CPUs to GPUs and FPGAs. 

RECS|Box is available in the VEDLIoT testbed. Focusing on a high number of embedded 

modules, large FPGAs and GPUs with high-speed interconnects between the different 

microservers, RECS|Box features a wide variety of accelerators. With respect to DL 

acceleration in VEDLIoT, among others, the following accelerators are available or will be 

made available in the testbed: 

• Intel Stratix10  

The available COM-Express module comprises an Intel Stratix 10 SX 2800 SoC FPGA, 

integrating an FPGA fabric with 2.8M logic elements and a Quad-core 64-bit ARM 

Cortex-A53 processor system. Combined with 56 GByte DDR4 memory and 

2x10 Gbps network links, the module is especially suited for large FPGA designs that 

can be scaled to multi-FPGA systems. 

• NVIDIA Xavier NX board  

The Jetson Xavier NX combines a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU with a 

Volta GPU (384 cores and 48 tensor cores), two NVIDIA Deep Learning Accelerators 

(NVDLA) and 8 GByte unified CPU-GPU memory. The board has shown a high energy 

efficiency in the early benchmarks and is integrated into the RECS|Box with a 

dedicated carrier board. 

• NVIDIA A100  

For training, PCIe-based GPUs are indispensable. Hence, NVIDIA A100 data center 

cards are integrated into the RECS|Box, providing high compute power for the entire 

consortium. 
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• Xilinx Versal  

Xilinx Versal ACAPs (Adaptive Compute Acceleration Platforms) combine the 

traditional reconfigurable FPGA fabrics with embedded processors and vector 

processing engines, interconnected by a programmable network on-chip. The new 

devices are very promising platforms for the reconfigurable accelerator designs 

targeted in VEDLIoT. Therefore, Xilinx Versal ACAPs will be integrated into the 

RECS|Box vie PCIe. 

t.RECS Platform 

Like the RECS|Box, also the t.RECS (tiny RECS) is integrated into the RECS testbed. The 

platform targets near-edge applications with low latency requirements, based on the new 

COM-HPC standard. A wide variety of additional compute and accelerator modules can be 

integrated. For boards that are not based on the COM-HPC standard, adaptor boards have 

been developed, enabling easy integration into the compact edge server. The following 

accelerators have been chosen for integration into t.RECS in the VEDLIoT testbed: 

• Xilinx UltraScale+ ZU19  

For integration of the reconfigurable accelerators, developed in VEDLIoT, a module 

based on the new COM-HPC standard is used. It integrates a Xilinx UltraScale 

ZU11EG, ZU17EG or ZU19EG FPGA SoC, up to 8 GByte 72-bit DDR4 connected to PS 

and up to 16 GByte 72-bit DDR4 connected to PL. 

• Intel Stratix10  

Like for the RECS|Box, the SoC FPGA is integrated as a COM-Express board in the 

t.RECS. 

• NVIDIA Xavier AGX  

The NVIDIA Jetson Xavier AGX combines an 8-core NVIDIA Carmel ARM v8.2 64-bit 

CPU with a Volta GPU (512 cores and 64 tensor cores), two NVIDIA Deep Learning 

Accelerators (NVDLA) and 32 GByte unified CPU-GPU memory. Since the board has 

shown a high energy efficiency in the early benchmarks, it is integrated into the 

t.RECS via a COM-HPC to Xavier AGX adapter. 

• NVIDIA A100   

Like for the RECS|Box, GPU accelerators for training will be integrated into the t.RECS 

via PCIe. 

• Xilinx Versal (via PCIe)  

Like for the RECS|Box, Xilinx Versal ACAPs will be integrated into the t.RECS via PCIe. 

u.RECS Platform 

u.RECS is the new modular far-edge platform, developed in VEDLIoT (cf. D4.1). Since the 

deployment is ongoing, no complete system is available at the moment. Hence, an 

evaluation system has been set up based on discrete components that enable early access 

to the compute nodes and accelerators that are integrated into the u.RECS. A detailed 

description of the u.RECS testbed is provided in Chapter 2.1. For u.RECS, we identified the 

following accelerators based on the requirements deliverables and D3.1 [1]. Compared to 

the larger RECS systems, here the focus is on low power, high energy efficiency and direct 

connection to sensors. 

• NVIDIA Xavier NX  

As discussed above, the Jetson Xavier NX has shown a high energy efficiency in the 

early benchmarks. It serves as one of the main compute/accelerator modules in the 

u.RECS.  
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• Xilinx UltraScale via SMARC modules  

The SMARC standard has been selected for the u.RECS since it enables easy 

integration of a wide variety of modules. In addition to compute modules, e.g., FPGA-

based SMARC modules are available. For integration of the reconfigurable 

accelerators, developed within VEDLIoT, into the u.RECS, Xilinx UltraScale+ FPGAs 

are used.  

• u.RECS enables the integration of additional accelerators via M.2. Based on the 

benchmarks and analyses performed for D3.1 [1], the following accelerators have 

been selected: 

o Hailo Hailo-8  

The Hailo-8 edge AI processor features up to 26 tera-operations per second 

with a typical power consumption of 2.5 W. It can be used as a standalone 

processor or as co-processor, making it an interesting platform for 

integration into the u.RECS. 

o Google Coral  

Google coral provides a variety of products based on the Edge TPU (Tensor 

Processing Unit), ranging from development boards via USB accelerators to 

system-on-modules. Combining high energy efficiency and good tool support, 

the Google Edge TPU is a good candidate for integration into the u.RECS. 

o Intel Myriad  

Intel Movidius Myriad X is a vector processing unit, featuring a Neural 

Compute Engine for deep-learning inference. It is selected because of its high 

energy efficiency and good tool support. 

Like all RECS platforms, u.RECS can be easily extended with new modules as soon as they 

become available. Due to their high efficiency and good tool flow integration, NVIDIA 

modules are important components for all platforms. In the hardware designs, special care 

is taken to not only support the currently available modules, but to enable also easy 

integration of the next generation Jetson Orin NX modules [4]. Furthermore, new modules 

with upcoming reconfigurable devices like the Xilinx Versal AI Edge series will be of high 

interest. Additional details about additional accelerator modules are provided in D4.1 [2]. 

2.1 u.RECS Testbed Integration 

Since the u.RECS is not yet available, an emulation system has been set up, which is 

embedded into the VEDLIoT testbed, enabling early access for all partners. In the following, 

the main setup is discussed.  

2.1.1 Requirements for the u.RECS Testbed 

Main purpose of the u.RECS emulation system is to provide a platform for easy access to the 

critical hardware components while the final system is in development. This is especially 

critical for the software and FPGA developments that are foreseen in VEDLIoT. While in 

general various compute and accelerator platforms are available at the partners and in the 

VEDLIoT testbed, development of the basic software infrastructure as well as the basic 

FPGA implementations in WP4 require a development system that is as similar as possible 

to the final implementation. Hence, especially support for the same compute and 

accelerator modules that are targeted in the final u.RECS is required.  

Densely integrated power and performance monitoring is an important feature of the RECS 

platforms and is also be available in the u.RECS. The u.RECS testbed targets not only the 

development of the basic software and FPGA infrastructure components but also the early 
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evaluation of new compute modules and accelerators. Hence, means for power and 

performance evaluation are integrated into the platform.  

Since PCIe communication between the SMARC modules and the Jetson NX is not targeted 

in the first place, communication between these devices is established mainly via Gigabit 

Ethernet in the u.RECS testbed. Nevertheless, accelerators can be directly connected to the 

compute modules via M.2.  

Since several of the targeted compute modules required the design of module-specific 

adaptors, these module-adaptor-combinations can also be efficiently tested first on the 

emulation system. This makes the u.RECS testbed an important setup, especially for 

debugging, even after the real hardware is available.  

2.1.2 System Architecture 

Figure 2 shows the high-level architecture of the u.RECS, highlighting the parts that are 

covered by the u.RECS testbed. As mentioned above, the main focus is on the early 

integration of the main compute and accelerator modules. Since Raspberry Pi compute 

modules are available locally at all partners, we mainly concentrated on the integration of 

SMARC modules and Jetson NX. Integration of additional modules is easily possible and will 

be pushed forward whenever necessary.  

 

Figure 2: High-level block diagram of the u.RECS platform 

The Jetson Xavier NX is directly integrated into the testbed using the developer kit provided 

by NVIDIA. The important interfaces required in this setup include: 

• Gigabit Ethernet 

• M.2 Key E and M 

• 2x MIPI CSI-2 D-PHY lanes camera interface  

• GPIOs, I2C, I2S, SPI, UART 

Integration of modules based on the SMARC 2 standard is especially important since this is 

the main basis for FPGA integration into u.RECS. Hence, the design of the basic FPGA 

infrastructure in Task 4.4 as well as the accelerator development in Task 3.3 and Task 3.4 

heavily depend on the availability of FPGA-based SMARC modules in the testbed. Focusing 
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on recent FPGA architectures suitable for integration into u.RECS, the following module has 

been selected as an ideal initial candidate for integration into µ.RESC. A discussion about 

available modules is provided in D4.1 [2].  

SECO RUSSELL Module 

Based on its feature set and current availability, the SECO RUSSELL (formerly codenamed 

SM-B71) module has been selected (cf. Figure 3). It integrates a Xilinx Zynq UltraScale+ 

MPSoC. Based on the requirements, the user can select between various devices, ranging 

from ZU2CG to ZU5CG, ZU2EG to ZU5EG, and ZU4EV or ZU5EV. In addition to different sized 

FPGA fabrics, all devices include a dual-core Arm Cortex-A53 application processing unit and 

a dual-core Arm Cortex-R5 real-time processing unit. Up to 8 GByte DDR4-2400 on-board 

memory is connected to the processing system. Additionally, up to 2 GByte is directly 

attached to the programmable logic.  

 

Figure 3: High-level block diagram of the SECO RUSSELL SMARC module  

Additional on-board logic and external interfaces of the module include: 

• Up to 2 x Gigabit Ethernet interfaces 

• USB: 1x USB 2.0 OTG; 2x USB 2.0 Host; 2x USB 3.0 Host 

• PCIe x4 interface 

• External SATA Gen3 Channel 

• SD interface 

• On-board QSPI 

• 18- / 24-bit Dual Channel LVDS interface 

• DisplayPort interface 

• 2 CSI interfaces 

• Various serial ports, I2C, SPI and GPIOs 
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SMARC Baseboards  

Among the available SMARC baseboards, two have been selected for integration of the 

u.RECS testbed. The boards provide all interfaces that are available on the u.RECS so that 

both remote evaluations, as well as filed operation of the platforms, are feasible. Having 

different baseboards available in the testbed enables early testing of compatibility between 

boards, relevant especially for design and device selection during the u.RECS development. 

Kontron SMARC Evaluation Carrier 2.0 

Figure 4 shows a block diagram of the SMARC evaluation carrier 2.0 from Kontron. The board 

is compliant with the SMARC 2.0 specification and provides a wide variety of interfaces. A 

detailed specification of the board can be found in [5]. 

   

Figure 4: Functional block diagram of the Kontron SMARC evaluation carrier 2.0 

Main interfaces provided by the Kontron SMARC evaluation carrier 2.0 

• 2x MIPI CSI camera interface 

• switchable audio interface 

• 4x UARTS 

• 2x miniPCIe with SIM card support 

• 2x PCIe x1 

• 2x CAN Bus interface 

• 12x GPIO 

• 2x Gbit LAN 

• Dual channel 24-bit LVDS shared with eDP, HDMI interface, DP++ interface 

• 1x USB 2.0 dual role, 1x USB 2.0, 2x USB 3.0, (2x USB connected to mPCIe) 

• SD Card, mSATA 
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Advantech SOM-DB2500 

Figure 5 shows the functional block diagram of the development carrier board SOM-DB2500 

from Advantech. The board supports SMARC 2.0 modules as well as SMARC 2.1 modules. 

Like the carrier from Kontron, it supports a wide variety of interfaces. The SOM-DB2500 has 

been integrated into the testbed especially, because it supports M.2 connectors, enabling 

easy integration of additional ML accelerators. A detailed specification of the board can be 

found in [6]. 

 

Figure 5: Functional block diagram of the ADVANTECH SOM-DB2500 

Main interfaces provided by the ADVANTECH SOM-DB2500 

• 2x MIPI CSI camera interface 

• Realtek ALC888 HD Audio 

• 4x COM Port 

• 1x miniPCIe with SIM card support 

• 1x PCIe x1, 1x PCIe x4 

• 1x CAN Bus interface, 2x I2C Bus 

• 12x GPIO 

• 2x Gbit LAN 

• Dual channel 24-bit LVDS 

• 1x HDMI, 1x Display Port, 1x Display Port via USB Type-C 

• 1x USB3.0 (Type A), 1x USB3.0 (Type C) 

• SD Card, M.2 (Key E), SATA3.0 

2.1.3 Testbed Access and Power Monitoring 

The u.RECS emulation system is integrated into the testbed at Bielefeld University, enabling 

easy access for all project partners. The u.RECS setup uses the same infrastructure and 

access mechanisms as the RECS|Box and t.RECS servers. A detailed description of the 

testbed is provided in D7.1 [3]. 

Detailed power monitoring is facilitated with an oscilloscope, enabling detailed analysis of 

the power over time. Remote access to the oscilloscope is possible if the system is not used 
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locally. High-speed power measurements provide interesting insights into the running 

application, which is of high interest, especially for the development of the reconfigurable 

accelerators in VEDLIoT (cf. D3.1 [1]).   

2.2 First Experiments using the u.RECS Testbed 

For first experiments utilizing the u.RECS testbed, we have chosen the same models that are 

used for the evaluation of ML accelerators in D3.1 [1]. The results presented in this chapter 

have been achieved using the SECO RUSSELL (SM-B71) on the ADVANTECH SOM-DB8500 

SMARC-baseboard. The SMARC module is available in a wide variety of options. The 

following configuration has been used in our experiments: 

SECO RUSSELL (SM-B71) 

• Xilinx Zynq UltraScale+ XCZU4EG-1 FPGA 

o Quad-core Arm Cortex-A53, Dual-core Arm Cortex-R5F, Mali-400MP2 

o 88k 6-input look-up tables (LUTs) 

o 176k Flip-Flops (FFs) 

o 728 DSP Slices 

o 128 36kb BRAM blocks (4.5 Mb total) 

o 48 288kb URAM blocks (13.5 Mb total) 

• 2 GByte 64-Bit DDR4 SDRAM (PS) 

• 512 MByte 64-Bit DDR4 SDRAM (PL) 

• 4 GByte eMMC 

As a baseline for later comparison to the accelerators developed in VEDLIoT, the Xilinx Deep 

Learning Processor Unit (DPU) [7] is used in VEDLIoT. A detailed discussion of the tool flow 

and measurements on other FPGA platforms is provided in D3.1 [1].  

Utilizing the basic FPGA infrastructure, developed in Task 4.4, the FPGA design for this 

evaluation contains the Xilinx DPU and the necessary infrastructure, such as the AXI-buses 

for communication and an interrupt controller. Additionally, Ethernet, SD-card and serial 

interfaces of the processor system in the SoC are activated. For the measurements, a 

PetaLinux-image [8] was created (including the configuration for the FPGA fabric as well as 

the PetaLinux OS for the processing system) and booted from an SD-card. In addition to the 

boot image, the models, as well as the test data, are also stored on the SD-card.  

Power measurements for the experiments have been performed with high-speed current 

logging. In addition to the complete system power, the u.RECS test setup offers the 

possibility to power the baseboard components and the SMARC modules separately. In the 

following tables, the power values for the SMARC module itself are presented. The power 

consumption for the baseboard stays constant. Independent of the DPU configurations and 

regardless of whether the system is in idle mode or actively running inferences, the power 

consumption of the baseboard is on average 1.02 W. The used fan, which is optional for 

cooling the module, adds 0.35W to the baseboard power consumption.  

The PetaLinux-image was created using the Xilinx tool flow, version 2021.1. For the AI-

models preparation, the Xilinx Vitis-AI tool flow [9], version 1.4, was used. The following 

models have been used: MobileNetV2, ResNet50 and YoloV4. For analyzing the benefit of 

further model optimizations, which is also an important topic in VEDLIoT, a pruned YoloV4 

model has been added, which was optimized by the Xilinx model optimizer for inference on 
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the DPU. The number of operations needed for one inference are given in Table 1. These 

serve as the basis for the calculation of the performance ratios in the subsequent tables. 

Table 1: Operations and multiply-adds of the used models 

Model Operations / Inference 

MobileNetV2 0.61 GOps1 (0.305 Billion Mul-Adds) 

ResNet50 7.78 GOps (3.89 Billion Mul-Adds) 

YoloV4 60.4 GOps (30.2 Billion Mul-Adds) 

YoloV4 Pruned 38.2 GOps (19.1 Billion Mul-Adds) 

 

Various DPU configurations have been implemented and are compared in terms of 

performance and efficiency. At design time, several parameters for the DPU configurations 

can be chosen, like high/low DPS usage or dedicated low power modes. For the presented 

implementations, the configurations that showed maximum performance in our 

experiments have been chosen. In addition to the size and number of DPUs, the number of 

software threads has been varied. Single-threaded refers to an implementation where pre-

processing, DPU calls, and post-processing are performed by a single thread. In the 

multithreaded implementations, the threads are evenly distributed between pre-

processing, DPU-calls, and post-processing [1]. Batch size is one for all reported FPGA 

implementations. 

For evaluation, we have used several configurations based on three different DPU cores, 

ranging from the smallest one (B512) to the largest (B4096). The number behind the “B” 

corresponds to the peak INT8 operations per clock cycle for the DPU core. For all models, a 

small configuration has been realized, using one or two B512 DPUs, respectively. A mid-size 

version has been implemented based on the B2304 DPU. While all DPUs are evaluated based 

on clock frequency of 300 MHz, the B2304 is also used at 200 MHz, showing the impact of a 

scaled DPU clock frequency on the overall performance and energy efficiency. Finally, the 

two largest DPUs (B3136 and B4096) are evaluated. The theoretical peak performance, 

which depends on the DPU architecture and on the used clock frequency, is provided for all 

configurations in the subsequent tables. 

2.2.1 Results for ResNet50 

A set of 1,000 images has been used for the performance evaluation based on ResNet50. 

The following three tables summarize the results achieved for the SECO RUSSELL using 

different DPU configurations. For all analysed models, pre-processing includes reading the 

input data from the SD card and during post-processing, the results are stored in external 

DRAM. The metrics that are used for evaluation are discussed in detail in D3.1 (Chapter 6.1) 

[1] and are briefly summarized here: 

• Inference time: Time for the completion of the inference operation. This time does 

not include any data pre- or post-processing times.  

• Latency: Total inference time for a request including both data pre- and post-

processing. 

 

1 Giga Operations 
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• Achieved performance: In contrast to peak performance, this is the performance 

that is achieved for the execution of a specific DL model. This value can be reported 

in GOPS (Giga Operations Per Second) or/and in inferences per second. 

• Peak performance: Theoretical value determined by the available hardware and 

operating frequency. 

• Performance Ratio: Ratio between the achieved performance and the peak 

performance. This metric is interesting to determine how effectively the hardware is 

being used for the inference operation. 

• Power: Average system power (here: power of the SMARC module) 

• Energy/Inference: Energy [J] required for a single inference 

• Power Efficiency: Metric for the power efficiency of the execution of an inference 

operation on a particular architecture. This metric is a combination of the achieved 

performance and power and is reported in Giga Operations Per Second (GOPS) per 

Watt (W). 

In the tables, power refers to average power during inference. Idle power is reported for 

two system states: First, the system is powered on but the reconfigurable SoC is not yet 

configured; second, the reconfigurable SoC is configured and Linux has finished booting on 

the embedded Arm cores (but ML inference has not yet started).  

The achieved results significantly depend on the utilization of the DPU. For single thread 

implementations, the latencies of the single steps (pre-processing, inference, and post-

processing) add up to the total time for one frame. When using multithreading, the latency 

increases but the throughput (inferences/s) also significantly grows. For all 

implementations, a higher number of threads results in higher performance in terms of 

inferences per second. In parallel, also the latency increases. Hence, for a given application, 

the optimal trade-off between latency and performance can be chosen. 

 

Table 2: Evaluation of ResNet50 on the SECO RUSSELL (SM-B71) using B512 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B512 x1, 300MHz B512 x2, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 62.78 121.51 243.59 63.57 84.26 164.33 

Latency [ms] 79.69 138.50 260.58 80.51 101.29 181.44 

Achieved performance 

[Inferences/s] 
12.53 16.39 16.38 12.40 23.62 24.24 

Achieved performance 

[GOPS] 
97.48 127.51 127.44 96.47 183.76 188.59 

Peak performance 

[GOPS] 
153.6 153.6 153.6 307.2 307.2 307.2 

Performance Ratio 63.46% 83.01% 82.97% 31.40% 59.82% 61.39% 

Cost Metrics 

FPGA Resources  
35k (39.3%) LUTs, 44k (24.8%) FFs,  
110 (15.1%) DSP, 13.5 (10.6%) BRAM, 

16 (33.3%) URAM 

68k (77.4%) LUTs, 89k (50.9%) FFs,  

220 (30.2%) DSP, 49 (38.3%) BRAM, 

32 (66.7%) URAM 
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Power [W] 6.51 6.76 6.79 7.00 7.91 7.83 

Idle Power [W] 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 

Energy/Inference [J] 0.520 0.412 0.415 0.565 0.335 0.323 

Power Efficiency 
[GOPS/W] 

14.97 18.86 18.77 13.78 23.23 24.09 

 

Table 3: Evaluation of ResNet50 on the SECO RUSSELL (SM-B71) using B2304 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B2304 x1, 200MHz B2304 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 27.55 51.36 102.87 19.26 34.86 70.01 

Latency [ms] 44.49 68.36 119.94 36.18 51.98 87.26 

Achieved performance 

[Inferences/s] 
22.48 38.69 38.69 27.60 56.78 56.85 

Achieved performance 

[GOPS] 
174.89 301.01 301.01 214.73 441.75 442.29 

Peak performance 

[GOPS] 
460.8 460.8 460.8 691.2 691.2 691.2 

Performance Ratio 37.95% 65.32% 65.32% 31.07% 63.91% 63.99% 

Cost Metrics 

FPGA Resources  
47k (53.7%) LUTs, 79k (45.0%) FFs,  
422 (58.0%) DSP, 61 (47.7%) BRAM, 40 (83.3%) URAM 

Power [W] 8.14 8.24 8.30 9.92 10.08 10.40 

Idle Power [W] 0.07/6.02 0.07/6.02 0.07/6.02 0.07/6.83 0.07/6.83 0.07/6.83 

Energy/Inference [J] 0.362 0.213 0.215 0.359 0.178 0.183 

Power Efficiency 
[GOPS/W] 

21.49 36.53 36.27 21.65 43.82 42.73 

 

Table 4: Evaluation of ResNet50 on the SECO RUSSELL (SM-B71) using B3136 and B4096 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B3136 x1, 300MHz B4096 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 16.61 29.75 59.94 13.49 23.75 48.33 

Latency [ms] 33.50 46.94 77.43 30.39 40.91 66.05 
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Achieved performance 

[Inferences/s] 
29.73 66.38 66.31 32.76 83.16 82.31 

Achieved performance 

[GOPS] 
231.30 516.44 515.89 254.87 646.98 640.37 

Peak performance 

[GOPS] 
940.8 940.8 940.8 1228.8 1228.8 1228.8 

Performance Ratio 24.89% 54.89% 54.84% 20.74% 52.65% 52.11% 

Cost Metrics 

FPGA Resources  
51k (58.6%) LUTs, 90k (51.2%) FFs,  
548 (75.3%) DSP, 71 (55.5%) BRAM, 

44 (91.7%) URAM 

57k (64.7%) LUTs, 108k (61.7%) FFs,  
690 (94.8%) DSP, 81 (63.3%) BRAM, 

48 (100.0%) URAM 

Power [W] 9.07 11.64 11.62 9.78 13.39 13.20 

Idle Power [W] 0.07/7.09 0.07/7.09 0.07/7.09 0.07/7.56 0.07/7.56 0.07/7.56 

Energy/Inference [J] 0.305 0.175 0.175 0.298 0.161 0.160 

Power Efficiency 
[GOPS/W] 

25.50 44.37 44.40 26.06 48.32 48.51 

 

2.2.2 Results for MobileNetV2 

MobileNetV2 was used as an example for a small neural network. A set of 1000 images has 

been used for the evaluations, summarized in the following three tables. For the medium 

and large DPUs, the utilization, i.e., the achieved performance vs. the theoretical maximum, 

is quite low. This is mainly due to the I/O overhead since in this case pre-processing requires 

more time than the inference on the DPU. Obviously, a small implementation like the B512 

is best suited for such nets. 

Table 5: Evaluation of MobileNetV2 on the SECO RUSSELL (SM-B71) using B512 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B512 x1, 300MHz B512 x2, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 11.20 19.38 39.62 11.56 15.22 26.69 

Latency [ms] 28.11 36.58 57.47 28.41 32.33 45.55 

Achieved performance 

[Inferences/s] 
35.45 101.64 100.39 35.04 117.11 148.68 

Achieved performance 

[GOPS] 
21.62 62.00 61.24 21.37 71.44 90.69 

Peak performance 

[GOPS] 
153.6 153.6 153.6 307.2 307.2 307.2 

Performance Ratio 14.08% 40.36% 39.87% 6.96% 23.26% 29.52% 

Cost Metrics 
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FPGA Resources  
35k (39.3%) LUTs, 44k (24.8%) FFs,  
110 (15.1%) DSP, 13.5 (10.6%) BRAM, 

16 (33.3%) URAM 

68k (77.4%) LUTs, 89k (50.9%) FFs,  
220 (30.2%) DSP, 49 (38.3%) BRAM, 

32 (66.7%) URAM 

Power [W] 6.14 7.06 6.96 6.65 7.87 8.30 

Idle Power [W] 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 

Energy/Inference [J] 0.173 0.069 0.069 0.190 0.067 0.056 

Power Efficiency 
[GOPS/W] 

3.52 8.78 8.80 3.21 9.08 10.93 

 

Table 6: Evaluation of MobileNetV2 on the SECO RUSSELL (SM-B71) using B2304 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B2304 x1, 200MHz B2304 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 7.00 8.10 21.95 5.48 6.07 7.88 

Latency [ms] 23.93 25.12 41.35 22.37 23.25 27.11 

Achieved performance 

[Inferences/s] 
41.60 117.81 179.74 44.44 116.95 201.78 

Achieved performance 

[GOPS] 
25.38 71.86 109.64 27.11 71.34 123.09 

Peak performance 

[GOPS] 
460.8 460.8 460.8 691.2 691.2 691.2 

Performance Ratio 5.51% 15.59% 23.79% 3.92% 10.32% 17.81% 

Cost Metrics 

FPGA Resources  
47k (53.7%) LUTs, 79k (45.0%) FFs,  
422 (58.0%) DSP, 61 (47.7%) BRAM, 40 (83.3%) URAM 

Power [W] 6.62 7.37 8.30 7.41 8.32 9.40 

Idle Power [W] 0.07/6.02 0.07/6.02 0.07/6.02 0.07/6.83 0.07/6.83 0.07/6.83 

Energy/Inference [J] 0.159 0.063 0.046 0.167 0.071 0.047 

Power Efficiency 
[GOPS/W] 

3.83 9.75 13.21 3.66 8.57 13.09 
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Table 7: Evaluation of MobileNetV2 on the SECO RUSSELL (SM-B71) using B3136 and B4096 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B3136 x1, 300MHz B4096 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 5.22 5.69 7.22 4.71 5.05 6.19 

Latency [ms] 22.08 22.86 26.58 21.58 22.14 25.41 

Achieved performance 

[Inferences/s] 
44.93 116.81 201.00 46.05 117.42 202.00 

Achieved performance 

[GOPS] 
27.41 71.25 122.61 28.09 71.63 123.22 

Peak performance 

[GOPS] 
940.8 940.8 940.8 1228.8 1228.8 1228.8 

Performance Ratio 2.91% 7.57% 13.03% 2.29% 5.83% 10.03% 

Cost Metrics 

FPGA Resources  
51k (58.6%) LUTs, 90k (51.2%) FFs,  
548 (75.3%) DSP, 71 (55.5%) BRAM, 

44 (91.7%) URAM 

57k (64.7%) LUTs, 108k (61.7%) FFs,  
690 (94.8%) DSP, 81 (63.3%) BRAM, 

48 (100.0%) URAM 

Power [W] 7.73 8.59 9.77 8.13 8.95 10.03 

Idle Power [W] 0.07/7.09 0.07/7.09 0.07/7.09 0.07/7.56 0.07/7.56 0.07/7.56 

Energy/Inference [J] 0.172 0.074 0.049 0.176 0.076 0.050 

Power Efficiency 
[GOPS/W] 

3.55 8.29 12.55 3.46 8.00 12.29 

 

2.2.3 Results for YoloV4 

For performance evaluation of YoloV4, a set of 404 images has been used. The results are 

summarized in the subsequent tables, showing a high utilization of the different DPUs. 

Table 8: Evaluation of YoloV4 on the SECO RUSSELL (SM-B71) using B512 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B512 x1, 300MHz B512 x2, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 464.48 895.26 1786.11 465.03 617.53 1194.42 

Latency [ms] 475.76 907.73 1798.71 476.31 629.82 1206.90 

Achieved performance 

[Inferences/s] 
2.10 2.23 2.23 2.10 3.23 3.33 

Achieved performance 

[GOPS] 
126.84 134.69 134.69 126.84 195.09 201.13 
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Peak performance 

[GOPS] 
153.6 153.6 153.6 307.2 307.2 307.2 

Performance Ratio 82.58% 87.69% 87.69% 41.29% 63.51% 65.47% 

Cost Metrics 

FPGA Resources  
35k (39.3%) LUTs, 44k (24.8%) FFs,  
110 (15.1%) DSP, 13.5 (10.6%) BRAM, 

16 (33.3%) URAM 

68k (77.4%) LUTs, 89k (50.9%) FFs,  
220 (30.2%) DSP, 49 (38.3%) BRAM, 

32 (66.7%) URAM 

Power [W] 6.72 6.82 6.80 7.23 7.83 7.90 

Idle Power [W] 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 

Energy/Inference [J] 3.202 3.057 3.051 3.442 2.424 2.372 

Power Efficiency 
[GOPS/W] 

18.88 19.75 19.81 17.54 24.92 25.46 

 

Table 9: Evaluation of YoloV4 on the SECO RUSSELL (SM-B71) using B2304 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B2304 x1, 200MHz B2304 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 194.17 355.29 708.87 135.02 237.10 473.15 

Latency [ms] 205.48 368.15 721.69 146.39 250.291 486.51 

Achieved performance 

[Inferences/s] 
4.86 5.60 5.62 6.81 8.38 8.42 

Achieved performance 

[GOPS] 
293.54 338.24 339.45 411.32 506.15 508.57 

Peak performance 

[GOPS] 
460.8 460.8 460.8 691.2 691.2 691.2 

Performance Ratio 63.70% 73.40% 73.67% 59.51% 73.23% 73.58% 

Cost Metrics 

FPGA Resources  
47k (53.7%) LUTs, 79k (45.0%) FFs,  
422 (58.0%) DSP, 61 (47.7%) BRAM, 40 (83.3%) URAM 

Power [W] 8.23 8.57 8.59 10.13 10.87 10.89 

Idle Power [W] 0.07/6.02 0.07/6.02 0.07/6.02 0.07/6.83 0.07/6.83 0.07/6.83 

Energy/Inference [J] 1.693 1.530 1.528 1.488 1.297 1.293 

Power Efficiency 
[GOPS/W] 

35.67 39.47 39.52 40.60 46.56 46.70 
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Table 10: Evaluation of YoloV4 on the SECO RUSSELL (SM-B71) using B3136 and B4096 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B3136 x1, 300MHz B4096 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 109.05 185.40 370.14 82.14 131.71 263.31 

Latency [ms] 120.34 198.62 383.72 93.42 144.51 276.33 

Achieved performance 

[Inferences/s] 
8.28 10.76 10.76 10.66 15.12 15.12 

Achieved performance 

[GOPS] 
500.11 649.90 649.90 643.86 913.25 913.25 

Peak performance 

[GOPS] 
940.8 940.8 940.8 1228.8 1228.8 1228.8 

Performance Ratio 53.16% 69.08% 69.08% 52.40% 74.32% 74.32% 

Cost Metrics 

FPGA Resources  
51k (58.6%) LUTs, 90k (51.2%) FFs,  
548 (75.3%) DSP, 71 (55.5%) BRAM, 

44 (91.7%) URAM 

57k (64.7%) LUTs, 108k (61.7%) FFs,  
690 (94.8%) DSP, 81 (63.3%) BRAM, 

48 (100.0%) URAM 

Power [W] 11.20 12.49 12.51 13.14 15.42 15.44 

Idle Power [W] 0.07/7.09 0.07/7.09 0.07/7.09 0.07/7.56 0.07/7.56 0.07/7.56 

Energy/Inference [J] 1.352 1.161 1.173 1.233 1.020 1.021 

Power Efficiency 
[GOPS/W] 

44.65 52.03 51.95 49.00 59.23 59.15 

 

2.2.4 Results for YoloV4 Pruned 

Compared to the original YoloV4, used in the evaluation above, the pruned version of 

YoloV4 reduces the number of required operations per inference from 60.4 GOps to 

38.2 GOps. Although the power efficiency in terms of GOPS/W stays comparable to the non-

pruned version, the energy efficiency in terms of Energy/Inference is significantly reduced, 

as can be seen from the tables below. 

Table 11: Evaluation of YoloV4 Pruned on the SECO RUSSELL (SM-B71) using B512 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B512 x1, 300MHz B512 x2, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 302.40 571.4 1140.19 302.82 401.12 762.17 

Latency [ms] 313.71 583.86 1152.67 314.12 413.42 774.62 
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Achieved performance 

[Inferences/s] 
3.18 3.50 3.49 3.18 4.96 5.22 

Achieved performance 

[GOPS] 
121.48 133.70 133.32 121.48 189.47 199.40 

Peak performance 

[GOPS] 
153.6 153.6 153.6 307.2 307.2 307.2 

Performance Ratio 79.09% 87.04% 86.80% 39.54% 61.68% 64.91% 

Cost Metrics 

FPGA Resources  
35k (39.3%) LUTs, 44k (24.8%) FFs,  
110 (15.1%) DSP, 13.5 (10.6%) BRAM, 

16 (33.3%) URAM 

68k (77.4%) LUTs, 89k (50.9%) FFs,  
220 (30.2%) DSP, 49 (38.3%) BRAM, 

32 (66.7%) URAM 

Power [W] 6.71 6.83 6.83 7.21 7.84 7.94 

Idle Power [W] 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 0.07/6.14 

Energy/Inference [J] 2.111 1.953 1.958 2.267 1.580 1.522 

Power Efficiency 
[GOPS/W] 

18.10 19.58 19.52 16.85 24.17 25.11 

 

Table 12: Evaluation of YoloV4 Pruned on the SECO RUSSELL (SM-B71) using B2304 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B2304 x1, 200MHz B2304 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 134.03 235.00 469.70 94.85 156.96 313.32 

Latency [ms] 145.47 248.05 482.81 106.24 169.88 326.44 

Achieved performance 

[Inferences/s] 
6.86 8.50 8.47 9.38 12.70 12.69 

Achieved performance 

[GOPS] 
262.05 324.7 323.55 358.32 485.14 484.76 

Peak performance 

[GOPS] 
460.8 460.8 460.8 691.2 691.2 691.2 

Performance Ratio 56.87% 70.46% 70.21% 51.84% 70.19% 70.13% 

Cost Metrics 

FPGA Resources  
47k (53.7%) LUTs, 79k (45.0%) FFs,  
422 (58.0%) DSP, 61 (47.7%) BRAM, 40 (83.3%) URAM 

Power [W] 8.02 8.57 8.55 9.77 10.90 10.89 

Idle Power [W] 0.07/6.02 0.07/6.02 0.07/6.02 0.07/6.83 0.07/6.83 0.07/6.83 

Energy/Inference [J] 1.169 1.008 1.009 1.042 0.858 0.858 

Power Efficiency 
[GOPS/W] 

32.67 37.89 37.84 36.68 44.51 44.51 
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Table 13: Evaluation of YoloV4 Pruned on the SECO RUSSELL (SM-B71) using B3136 and B4096 DPUs 

Platform SM-B71 on SOM-DB2500 

DPU B3136 x1, 300MHz B4096 x1, 300MHz 

Number of threads  1 2 4 1 2 4 

Inference Time [ms] 76.76 121.32 242.01 63.31 94.67 188.47 

Latency [ms] 88.06 134.19 255.12 21.53 107.49 201.76 

Achieved performance 

[Inferences/s] 
11.30 16.42 16.44 13.32 21.03 21.11 

Achieved performance 

[GOPS] 
431.66 627.24 628.01 508.82 803.35 806.40 

Peak performance 

[GOPS] 
940.8 940.8 940.8 1228.8 1228.8 1228.8 

Performance Ratio 45.88% 66.67% 66.75% 41.41% 65.38% 65.63% 

Cost Metrics 

FPGA Resources  
51k (58.6%) LUTs, 90k (51.2%) FFs,  
548 (75.3%) DSP, 71 (55.5%) BRAM, 

44 (91.7%) URAM 

57k (64.7%) LUTs, 108k (61.7%) FFs,  
690 (94.8%) DSP, 81 (63.3%) BRAM, 

48 (100.0%) URAM 

Power [W] 10.77 12.49 12.43 12.49 15.24 15.24 

Idle Power [W] 0.07/7.09 0.07/7.09 0.07/7.09 0.07/7.56 0.07/7.56 0.07/7.56 

Energy/Inference [J] 0.953 0.760 0.756 0.938 0.725 0.722 

Power Efficiency 
[GOPS/W] 

40.08 50.22 50.52 40.74 52.71 52.91 

 

2.2.5 Comparison of Results  

Except for the final softmax layers, the complete networks are run on the DPUs. The 

examples clearly indicate that the DPU configurations need to be selected based on the 

available hardware platform in combination with the application requirements, i.e., the 

complexity of the model that is used. For small models, such as MobileNetV2, a bigger DPU 

configuration does not increase the energy efficiency nor inference performance in 

comparison to a small or mid-range DPU. For computationally more complex models like 

YoloV4, the energy efficiency is best with larger DPU configurations. Despite the higher 

performance ratio on smaller DPUs, the overall shorter execution time with the B4096-DPU 

decreases the impact of static power dissipation and therefore increases power efficiency. 

The same holds true for different clock frequencies as shown with the B2304-DPU. The 

increased frequency leads to a shorter inference time and a higher efficiency, despite the 

higher power draw. 



D3.2  Version 1.0 

24 

 

 

Figure 6: Power efficiency of the implementations for ResNet50, YoloV4 and MobileNetV2 

Figure 6 summarizes the achieved power efficiency (in GOPS/Watt) for the various 

implementations. As mentioned above, efficiency increases for larger models. Extending the 

number of threads beyond two typically did not result in significant additional performance 

or efficiency gains. Figure 7 shows a different view on the results for YoloV4 and 

MobileNetV2, being the largest and smallest examples in our evaluation. Here, some of the 

results are skipped to increase readability. The individual labels for the data points are 

named by the DPU type followed by the clock frequency (only for the B2304 DPU) and by 

the number of threads. Including the pruned version of YoloV4 in this figure would result in 

very close values compared to the non-pruned version. Hence, for showing the benefits of 

the pruned version, Figure 8 illustrates the efficiency by combining the energy per inference 

with the achieved performance (in terms of inferences per second). 

 

Figure 7: Comparison of performance and power for YoloV4 and MobileNetV2 

The diagrams illustrate the design space that is achieved only by varying the DPU sizes. 

Varying additional parameters of the DPU, like optimization for low power will further 
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increase the number of possible solutions. Based on the application requirements, the best 

solution needs to be selected. In VEDLIoT, we want to target this challenge by utilizing the 

EmbeDL tool flow for optimizing the models toward the architectures. This will result in a 

first approach for model-hardware-co-design, that will be further developed with the 

architectures and methodologies discussed in the next chapter. 

 

Figure 8: Comparison of energy efficiency (in terms of Energy per Inference) and achieved performance  
for YoloV4 and the pruned version of YoloV4 
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3 Reconfigurable DL Accelerators 

Based on the evaluation of existing architectures (see D3.1 [1]), new accelerators for deep 

learning will be developed in VEDLIoT. This chapter summarizes the ideas and first results 

developed within Task 3.3. The focus of our implementations will be on efficient utilization 

of low-precision units, whenever possible. Implementations will be realized on FPGAs, 

making use of the specific features of the reconfigurable devices, including runtime 

reconfiguration. Targeting Xilinx FPGAs in the first place, the DPU implementations that are 

presented in Chapter 2.2 will serve as a basis for later comparison to the developments 

within VEDLIoT.  

3.1 Evaluation of Open-source Solutions for ML Acceleration 

A wide variety of IP cores and hardware accelerators for machine learning has been 

identified and compared in D3.1 [1]. For FPGA implementations, two general approaches can 

be distinguished. On the one hand, dedicated, typically configurable accelerator IP-cores are 

available, typically targeting a wide variety of ML models. In Chapter 3.1.1 we briefly discuss 

the ML accelerators that have been identified as being of high interest for utilization in 

VEDLIoT, focusing on open-source architectures. On the other hand, hardware generators 

are available, that can be used to generate an architecture optimized for a specific model. 

These will be discussed in Chapter 3.1.2. 

3.1.1 Open-source ML Accelerators 

In this chapter, we include a description of some open-source IP-cores targeting ML 

acceleration that we are considering for our project. The accelerators are NVDLA [10], VTA 

[11] and Gemmini [12]. An extended description of the IP-core accelerators can be found in 

D3.1 [1] (Chapters 7.61 and 7.6.2), D6.1 [13] (Chapters 4.6.1 and 4.6.2) and in the appendix 

of this deliverable. We are interested in the evaluation of such accelerators, not only as to 

compare with the other accelerators already evaluated in Task 3.1 (and results reported in 

D3.1 [1]) but also as potential starting points or baselines for the accelerators to be 

developed within Task 3.3 and Task 3.4.  

The NVDLA package provides a simulation and an FPGA platform. The simulation platform 

is based on GreenSocs QBox [14]. The FPGA platform is used only for validation, not 

optimizations and it uses the Amazon EC2 “F1” environment [15]. The TVM-VTA package [16] 

contains a simulation infrastructure that supports fast simulation (sim) for testing compiler 

passes and also a cycle-accurate simulator (tsim [17]) that does RTL simulation with Verilator 

from TVM. VTA can also be ported to FPGAs. So far, it provides support for the PYNQ [18] 

and Ultra96 [19] development boards, equipped with Xilinx FPGAs. The Gemmini package 

includes a flow to generate RTL, which can then be used for simulation. Some simulators 

that can be used to simulate Gemmini are Spike [20], Verilator [21], MIDAS [22] and FireSim 

[23].  

Table 14 summarizes the considered ML accelerators. All three IP-core accelerators 

mentioned above are open-source. VTA and Gemmini have an active community on github 

that keeps updating the IP-cores. On the other hand, NVDLA does not have an active 

community as the last update was in 2019. 

 



D3.2  Version 1.0 

27 

 

Table 14: Overview of the open-source ML accelerators  
that can serve as a baseline for the accelerators developed in VEDLIoT 

IP-core  

Accelerator 

Environment  

for Simulation 

Ported  

to FPGA 

Year of last 

modification 

NVDLA 
NVDLA virtual simulator,  

FireSim-NVDLA 
x* 2019 

VTA Fast Sim, TSIM x 2022 

GEMMINI 
Spike, Verilator, MIDAS, 

FireSim** 
- 2022 

*: available only with cloud FPGAs on AWS  

**: FireSim runs on cloud FPGAs 

Considering all the information gathered so far, we plan on evaluating all three IP-cores, but 

we will start with VTA as it supports simulation and can also be ported on actual FPGAs which 

match the hardware that is available in VEDLIoT. The steps of the evaluations are to map the 

deep neural network (DNN) models used in the evaluation of the other accelerators (see 

D3.1 [1]), such as Resnet50, to VTA’s simulator first and later deploy them on the actual 

hardware. We will try to collect the same metrics as done for the evaluation of the rest of 

the accelerators and use those results to guide us into exploring ways of accelerating the 

execution. More details on potential optimizations considered are discussed in Chapter 

3.2.2. 

3.1.2 Open-source Hardware Generators for Deep Neural Networks 

Automatic generation of a hardware architecture based on a high-level description of the 

DNN model is a promising approach to efficiently utilize the high flexibility of FPGAs. 

Architectures can be optimized towards the specific requirements of a model and a target 

application, e.g., with respect to the required accuracy or performance/power trade-off, 

resulting, among others, in different quantization schemes. Various frameworks have been 

proposed, targeting customizable hardware accelerators, as discussed, e.g., in [24].  

Among the different approaches, two have been identified in D3.1, being of special interest 

for the accelerator design in VEDLIoT: FINN [25] and DNNBuilder/AccDNN [26] (cf. [1]). FINN 

is an experimental framework from Xilinx research Labs targeting the generation of 

dataflow-architectures for quantized neural networks on FPGAs. It is supported by an active 

community on GitHub [27]. FINN uses a template-based approach with C++ descriptions of 

multiple layers and an HLS (high-level synthesis) backend that generates the required 

hardware. AccDNN (Accelerator Core Compiler for Deep Neural Network) has been 

developed in cooperation between the University of Illinois, Urbana-Champaign and IBM. 

The framework (which is called DNNBuilder in the corresponding research papers) 

automatically converts deep neural networks, trained using Caffe, to RTL code that can be 

synthesized for FPGAs without additional FPGA design effort. In its current version, AccDNN 

only supports models trained with the Caffee framework. Additionally, only convolutional 

layers, max-pooling layers, fully connected layers, and batch normalization layers can be 

used. The total number of convolutional and fully connected layers in the network should 

be less than 15. The tool is available on GitHub [28] with last updates in 2019. Since the 

accelerator designs in VEDLIoT should also serve as a basis for the co-design approach, 
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targeted WP3, we focus on a template-based approach like proposed in FINN, which is 

discussed in more detail in the next chapter. 

3.2 DL-Accelerator Development in VEDLIoT 

The accelerator development in VEDLIoT has just started. In the following, we summarize 

the ongoing work in Task 3.3 and provide an outlook for the subsequent Task 3.4, focusing 

on the co-design of models and architectures. 

3.2.1 Template-based Accelerator Design  

The accelerator developments in VEDLIoT target a highly flexible, modular approach that 

will be made available to the community as an open-source project. Focusing on 

reconfigurable architectures, the implementations shall be scalable from small low-power 

implementations to large FPGAs and even combinations of FPGAs. In this way, the 

accelerators can be utilized for the complete compute continuum – from far-edge 

applications (based on u.RECS) via near-edge (t.RECS) towards the cloud (in the RECS|Box). 

The accelerator shall be optimized for the DL models explored in the project’s use cases but 

needs to be flexible enough to fit other models so that it can be utilized and optimized 

within the open-call cases. 

As mentioned above, we want to achieve the required flexibility and scalability by a 

template-based approach. The templates will be primarily based on C++ code, enabling easy 

fast design cycles utilizing high-level synthesis, as well as options for hardware-software co-

design and co-verification when combining compiled C++ code (running on the processor 

systems) and synthesized implementations (running in the FPGA fabric). For model 

components that need to be optimized, e.g., for minimum latency or maximum resource 

efficiency, the set of templates can be extended with optimized RTL building blocks, 

wherever necessary. 

The authors of [24] identified various research questions that are well in line with the use 

case requirements and targeted accelerator designs in VEDLIoT. In addition to inference, we 

want to provide the possibility for FPGA-based training. Among others, this opens up new 

opportunities for the acceleration of federated learning and deep reinforcement learning, 

providing interesting use-case opportunities for the VEDLIoT open calls. Therefore, we not 

only target different integer quantizations within the C++ templates but also will support 

variable precision floating-point numbers. 

 

Figure 9: General architectures for the implementation of the neural network accelerators 

When implementing neural networks in HLS, we can think of two different basic 

architectures, shown in Figure 9. Architecture A uses a single compute unit for all layers 
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which gets supplied with the appropriate weight matrices and inputs for each layer. 

Architecture B implements each layer as individual hardware modules that can be pipelined 

in a dataflow architecture. For inference, architecture B can be implemented quite 

efficiently. However, for training, it can be difficult to efficiently pipeline the different layer 

modules as the weights need to be accessed and updated multiple times in the pipeline. 

As a starting point, first designs for the inference and training of networks of fully connected 

layers with architecture B have been implemented. The library consists of C++-templates 

that allow parameterizable neural network layers (e.g., number of neurons in a fully 

connected layer) and configurable HLS-implementation of these layers (e.g., by configuring 

pipeline depths or loop unrolling factors). 

Next steps are adding more layer types, such as convolutional layers and pooling layers, and 

to enable configurability of the data types used for the computations. The current 

implementation uses floating point values for all computations. While this might be 

necessary for the training, inference will benefit from fixed-point values of configurable size. 

With additional layer types and fixed-point values, it will be possible to implement state-of-

the-art CNNs, like YOLOv4, MobileNetV3, and Resnet50, with this neural network HLS 

library.  

The accelerators will be integrated in the platforms developed in WP4. In addition to 

utilizing reconfigurable SoCs with embedded Arm cores, we plan to integrate the 

accelerators into the Soft SoC system, developed in Task 4.6 and 4.7. In this way, the 

developments can not only be used for FPGA implementations but can also serve as a 

blueprint for future ASIC implementations. 

First Case Study – Accelerator for Deep Reinforcement Learning 

In addition to inference acceleration for DNNs, deep reinforcement learning has been 

identified as a promising approach with high relevance for future applications on the one 

hand and high potential for hardware acceleration on the other hand. In reinforcement 

learning, an agent interacts with an environment by receiving an observation of the 

environment’s state and choosing an action accordingly, as shown in Figure 10. The agent 

then receives rewards, and the goal of the reinforcement learning agent is to maximize 

these rewards over time. Research in reinforcement learning has progressed quickly within 

the last years, especially in deep reinforcement learning, where deep neural networks are 

used to learn the optimal policy. This led to a drastic increase in the required training time 

and hardware resources required for successful training. GPUs have often been used to 

speed-up the neural network training in the reinforcement learning algorithms. An 

interesting alternative that has started to be explored, are specialized accelerators on 

reconfigurable hardware.  

 

Figure 10: The basic Reinforcement Learning setup. An agent interacts with an environment by observing the state 
and choosing an action 
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In [29] we provide a detailed overview of the current state-of-the-art of reinforcement 

learning accelerators. Specialized domain-specific architectures often surpass the efficiency 

of GPU-based approaches to deep reinforcement learning. In addition to the overview of 

existing architectures, the survey gives some directions for future research. While the 

existing work shows that specialized accelerators can be useful in reinforcement learning, 

much additional research needs to be done. Many of the state-of-the-art reinforcement 

learning algorithms have not yet been implemented, or at least not fully implemented, on 

reconfigurable hardware. For example, Deep Q-Learning implementations often employ 

extremely simplified versions of experience replay, a central feature of Deep Q-Learning. 

A significant part of all Deep Reinforcement Learning algorithms is the training of (often 

multiple) neural networks. Hence, the template library will not only focus on DNN inference 

but will be enhanced with specific functions that are required especially for reinforcement 

learning. Based on the HLS library, state-of-the-art Deep Reinforcement Learning algorithms 

will be implemented, evaluated on standard reinforcement learning benchmarks, and 

applied to real world problems. 

3.2.2 Co-designed Hardware Accelerators 

As part of the tasks in this project we will be evaluating and developing different ML 

accelerators. After having evaluated different off-the-shelf accelerators, we have started to 

focus on the development of more dedicated accelerators and using FPGA-based design to 

explore different optimizations. One development path for these accelerators is by starting 

with the generic or model-agnostic accelerators as presented in Chapter 3.1.1. Next, we will 

explore the benefits of moving away from generic designs to mapping specific models into 

hardware. This is the work that is being performed within the context of the activities in 

Task 3.3. Our plan is to follow the model customized approach where, as the name suggests, 

an FPGA is reconfigured based on the targeted model. We follow this approach as it has 

been extensively used and shown to provide relatively good results, as it is tailored to the 

model-specific structure [30] [31] [32] [33]. We name this design the customized accelerator. 

This accelerator will be implemented in an FPGA and will be integrated into the hardware 

being developed in WP4. From the customized accelerator, we will work together with the 

model optimizations to further improve performance and efficiency by applying the 

principles of hardware-software co-design towards the accelerator to be developed in Task 

3.4. 

For the customized accelerator we will consider applying different optimizations. One of the 

optimizations that have been proven to reduce the area and energy requirement is 

quantization. Doing inference with INT8 has become almost a standard [34] [35]. This is 

because it could achieve almost the same inference accuracy of 32-bit floating-point 

inference using much fewer resources [35]. Our plan is to investigate using more aggressive 

quantization with bit widths smaller than 8. This could include using mixed precision weights 

either intra-layer or inter-layer of a combination of them. 

Another optimization is to harness the sparsity of the DNNs. Different DNNs exhibit various 

degrees of sparsity both in the weights and activations [36]. This sparsity could potentially 

help to reduce the computation, storage, and bandwidth requirements leading to more 

efficient inference. However, while there are efficient techniques to exploit structured 

sparsity or high degrees of sparsity; dealing with unstructured sparsity is still a challenging 

area [37]. 

The design of the customized accelerator could be realized either using existing frameworks 

that map high-level DNN representation to an FPGA implementation or by implementing the 
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algorithm for the execution of the model using High-Level Synthesis (HLS). We plan on 

starting with the former approach and using FINN. FINN looks to be a good choice as it is 

aligned to our planned approach of designing model-specific implementations. It 

emphasizes on generating dataflow-style architectures customized for each network and 

has been commonly used in research as a design and evaluation tool [38] [25] [39]. 

The second approach could be realized using specialized High-Level Synthesis (HLS) 

implementations of one of SOTA designs [30] [31] [32] [33]. For achieving this goal, we want 

to make use of the library of the C++-templates described in Chapter 3.2.1. More specifically, 

for this approach we plan to apply the acceleration schemes described in [32]. This 

acceleration scheme targets the parallelism in both within the feature maps and across 

filters; it has been analytically shown to be the most promising [31] [32]. 

The analysis of the performance of the two approaches mentioned above, given the 

workloads, the use cases of the project, and the targeted hardware will lead us to identify 

which optimizations we could leverage (including the aforementioned aggressive 

quantization and sparsity). Consequently, we will be deriving the ongoing process of co-

designing our components and having the next versions of our accelerator. 

3.2.3 Dynamically Reconfigurable Accelerators 

An important feature of FPGAs is their flexibility. For being able to compete with GPUs and 

TPUs in terms of performance and energy efficiency, the implemented architectures on the 

FPGAs need to be highly optimized. Using the template-based approach, discussed above, 

we target fine-grained architectural optimizations that enable us to build accelerators 

specifically tailored towards different applications or application requirements for the same 

model. One implementation can, e.g., offer maximum performance, another one can provide 

the best energy efficiency and a third requires minimum FPGA resources. Within VEDLIoT 

we do not only want to statically choose between the implementations at design-time but 

offer possibilities to adapt the architecture at runtime. This will be done by dynamic partial 

reconfiguration of the FPGA fabric.  

First experiments utilizing partial dynamic reconfiguration will be based on the DPU 

implementations on the u.RECS that have been sketched in Chapter 2.2. We will add the 

possibility to dynamically switch between the different DPU implementations. Depending 

on its actual requirements or on environmental conditions, an application can select the best 

trade-off between performance and power or between performance and accuracy, among 

others. Resources that become available if a smaller DPU implementation is selected shall 

be made available for other accelerators, enabling, e.g., additional pre- or post-processing 

steps. The dynamic reconfiguration is closely linked to the design of the basic FPGA 

infrastructure in Task 4.4 and will be supported by the block-based design developed in WP4. 

As soon as the first implementation based on our HLS templates are available, the flexibility 

of the approach will be further enhanced. For minimizing the reconfiguration times, we want 

to investigate the possibility to change parts of the accelerator at runtime. This approach 

will be closely coupled to the soft SoC system, developed in WP4, Tasks 4.6 and 4.7. We 

especially want to establish a tight integration of the accelerator with the reconfigurable 

RISC-V architectures that are developed in WP4. On system level, we will provide the 

possibility to exchange accelerators between FPGA devices with minimum overhead. Here, 

we especially want to investigate the possibility to relocate accelerators from one platform 

to another without re-implementing the designs. The results will be further used in WP6, 

targeting on-demand reconfiguration to increase efficiency and reliability in Task 6.4. 
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4 Conclusion 

This deliverable provides an overview about the work performed in the Task 3.2 and the 

ongoing work in Task 3.3. A testbed for the u.RECS system that is developed within VEDLIoT 

has been realized and is now available to all partners for early evaluations. It serves as an 

important platform for the realization and evaluation of the basic FPGA infrastructure in 

Task 4.4. Additionally, it is used as a reference for the hardware development towards the 

u.RECS in Task 4.1 and can be used for evaluation of new compute and accelerator modules. 

The integration of FPGAs via SMARC modules enables the analysis of available and newly 

developed reconfigurable accelerators. As a baseline for the accelerator designs in VEDLIoT, 

various implementations based on the Xilinx DPU have been realized using the u.RECS 

testbed. The results are compared with respect to performance and efficiency, extending 

the previous benchmarking activities, summarized in D3.1 [1].  

The design of reconfigurable accelerators in VEDLIoT uses a template-based approach, 

enabling flexible realization of accelerators. Like for the system architecture, we focus on a 

modular, scalable approach. The template-based design will be used for the envisioned co-

design approach targeted in Task 3.4. As soon as the first designs are finished, further 

efficiency enhancements are planned by utilizing partial dynamic reconfiguration of the 

FPGAs. The accelerators will be integrated and evaluated on the RECS hardware platforms 

developed in WP4. Additionally, they will be combined with the soft SoC system, developed 

in Tasks 4.6 and 4.7. In WP6, the approach towards runtime reconfiguration of accelerators 

will be further utilized to increase efficiency and reliability. 
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5 Appendix 

NVDLA 

NVDLA is a free, standardized open architecture for accelerating deep learning inference. 

For a brief description of the IP, the reader is referred to D3.1 [1] or D6.1 [13]. 

NVDLA can be configured to balance performance, power and area. Some of the parameters 

that can be configured are: 

• Data types: Supports binary, int4, int8, int16, int32, fp16, fp32, fp64 

• Supported image memory formats: planar, semi-planar, other packed memory 

formats 

• Convolution buffer size: The buffer is formed by banks, where the number of banks 

can be from 2 to 32 and the size of each bank from 4 KiB to 8 KiB. 

• MAC array size: 2D array where the width can be from 8 to 64 and the depth from 4 

to 64 

• Activation engine size: Adjusts the number of activation outputs per cycle from 1 

through 16. 

• Pooling engine size: Adjusts the outputs per cycle between 1 and 4 

• Memory interface bit width: It is adjusted based on the width of the external memory 

interface 

• Memory read latency tolerance  

 

VTA 

VTA is an open source, parameterized accelerator for fast dense linear algebra operations. 

A brief description can be found in D6.1. 

VTA can be configured by modifying the parameters in the configuration file. Some of those 

parameters are: 

• TARGET: Supports “pynq”, “ultra96”, “sim” and “tsim” 

• LOG_BATCH: Batch dimension of inner tensor computation 

• LOG_BLOCK: Input/output channel dimensions of the inner tensor computation 

• LOG_INP_BUFF_SIZE: Size in Bytes of input buffer 

• LOG_WGT_BUFF_SIZE: Size in Bytes of weight buffer 

• LOG_ACC_BUFF_SIZE: Size in Bytes of accumulator 

The parameters with “LOG” on the name can only be powers of 2. 
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Gemmini 

Gemmini is an open-source accelerator for DNN workloads. Gemmini’s architecture consists 

of the following major components: 

• Three controllers: 

o Execute Controller: Executes “execute”-type ISA commands 

o Load Controller: Responsible for instructions that move data from main 

memory 

o Store Controller: Responsible for instructions that move data to main 

memory 

• Scratchpad: Where the inputs are stored 

• Accumulator: Where partial sums and final results are stored 

• Spatial array, composed of tiles that consist of arrays of PEs 

• Two DMAs: One for moving data from main memory to SRAMs and one for moving 

data to main memory 

• Re-Order Buffer (ROB): Detects hazards between instructions in different controllers 

 

Gemmini is configurable. Some of the parameters that can be configured are: 

• Spatial array 

o Dataflow: Weight and/or output stationary 

o Dimensions 

o Levels of pipelining 

• Scratchpad and Accumulator 

o Capacity 

o Banks 

o Single/dual-port 

• Global memory 

o Capacity 

o Banks 

o Optional L3 

• Host CPU 

o In-order/out-of-order 

o ROB capacity 

o L1 capacity 

Gemmini can be programmed on high level with ONNX models. 
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