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1 Executive Summary

The EU-funded VEDLIoT project (Very Efficient Deep Learning IoT system) builds a

platform for improving deep learning algorithms using IoT, edge and cloud resources.

Such platform is intended to include novel software toolchains and hardware acceler-

ators, with use cases in the industrial, automotive, and smart home areas. In VEDLIoT,

part of the platform is developed in Work Package 5, offering tools for security, ro-

bustness and safety.

This document reflects the work done in Work Package 5 during the first 9 months

of the project. It is split in six chapters: one introduction, four technical chapters,

and closing remarks. The introduction describes the Work Package structure (with 5

tasks) and presents the overall progress made in the first 9 months. All tools already

developed in Work Package 5 are contextually presented in Chapter 2, the introduc-

tion.

A first prototype for trusted execution of WebAssembly applications was developed

using Intel SGX. In Chapter 3, we describe this implementation along with the main

performance results of our implementation. WebAssembly is a lightweight, portable,

binary instruction format that can be efficiently embedded. There are already com-

pilers of most popular languages to generate WebAssembly code. We implemented

a runtime environment for executing trusted WebAssembly applications inside Intel

SGX enclaves. Our evaluation shows that several pieces of open software can be fully

executed inside an SGX enclave via WebAssembly, with low performance overheads.

One of the main goals in Work Package 5 is to provide means for distributed remote

attestation service for software components. The starting steps towards building

such a service is described in Chapter 4. There, we propose the development of a

servicewith intrusion and fault-tolerant remote attestation verification, membership

and configuration.

We also proposed and implemented a novel Trusted Execution Environment (TEE)

support for RISC-V processors. In order to test our ideas, we extended VexRiscv, an

open-source soft processor built with a pipeline that can easily accomodate plug-in

components. Our prototype implements RISC-V Physical Memory Protection, amem-

ory protection unit that provides support for secure processing and enables limiting

the physical addresses accessible by software. We provide our implementation as

open-source, with extensible documentation for users that intend to use and extend

our work. Chapter 5 gives many more details about our implementation and future

plans.

Next in order, Chapter 6 presents our first steps in extending Renode, a full-fledged

open-source simulator for complex networks of embedded systems. In our initial

work we improved Renodewith features related to Custom Function Units. Renode’s

support for CFUs is based on its integration with Verilator, a tool used to simulate

peripherals written in Verilog.

Finally, Chapter 7 provides our main achievements in the period covered by the work

reported in this deliverable (the first 9 months of the project). We also point out our

future directions, with the next steps in each activity of the Work Package.
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2 Introduction

The EU-funded VEDLIoT project (Very Efficient Deep Learning IoT system) develops

a platform that uses deep learning algorithms distributed throughout the IoT-edge-

cloud continuum. The proposed new platform, which includes innovative hardware

accelerators and software toolchains is expected to bring significant benefits to a

large number of applications, including industrial robots, self-driving cars, and smart

homes. Figure 2.1 displays the overall platform under development by VEDLIoT, with

different abstractions for each of the platform components. Work Package 5 (WP5)

is dedicated to security, robustness and safety, and this document is thefirst output

produced.

3

VEDLIoT overview

VEDLIoT internal, do not distribute

Figure 2.1. VEDLIoT abstracted overview.

WP5 components appear on the right-hand side.

WP5deals with the development of a toolbox of system-level functionalities towards

adding dependability and security support for the execution of edge applications.

We leverage hardware features for trusted execution environments combined with

well-established dependability techniques to support the tools developed in most

other work packages (accelerator design, hardware, deep learning, and use cases). In

particular, we focus on developing (1) end-to-end trust through a distributed attes-

tation mechanism, (2) secure execution and communication of critical code on edge

devices, (3) monitoring and adaptation mechanisms to increase the ability to control

safety and robustness, and (4) tools for simulation and continuous integration in dis-

tributed AI systems. WP5 is split into five tasks, for which a small progress summary

is given below.

Task 5.1 End-to-end attestation of distributed trusted environments

Duration: M1-M36

As part of VEDLIoT goals, we started new research on means for implementing at-

testation and trusted execution on embedded systems. Our first progress was made

in Task 5.2 (described below), implementing a trusted environment for running dis-

tributed applications on Intel SGX. Following that, to support trusted applications

in embedded devices, we turned our attention to ARM SoCs, using TrustZone as a
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trustedexecutionenvironment (TEE), combinedwithOP-TEE, anopen-source, trusted

operating system for ARM processors. TrustZone cannot directly support our ini-

tial work with Intel SGX because their design and implementation are very different.

While SGX allows for normal user-level processes to create and attest protected en-

claves, TrustZone splits the operating system into two parts, the normal world and

the secure world. Trusted applications can only run in the secure world, and the op-

eration necessary to change context between worlds is rather complex, and cannot

be done at user-level.

Having moved to ARM architectures, we started analysing how remote attestation

can occur on typical ARM hardware. We based our implementation on NXP’s i.MX8M

board, which provides all the components to support remote attestations: its ARM

processor implements TrustZoneand contains a key that is fusedby themanufacturer

and can be used as root-of-trust, as well as a secure boot mechanism, preventing an

attacker from substituting the trusted software. We are now in the process of port-

ing ourWebAssembly runtime towork onARMTrustZone. We intend to leverageWe-

bAssembly’s bytecode to provide code measurements, which is a fundamental part

of the remote attestation process. TheWebAssembly runtime can naturally abstract

the functionally-constrained environment of TrustZone as well as the OP-TEE limita-

tion that only supports programs written in C.

Dealingwith dynamic system composition as proposed in VEDLIoT poses a number of

challenges. One such challenge is to retrieve an up-to-date list of the devices on the

system at any given time. Also, the system must ensure that joining devices satisfy

high-level security requirements, as defined for critical IoT applications. For example,

a given application may only accept specific devices from a specific manufacturer,

or may only communicate with a specific version of a specific software component.

Attestation is one way of ensuring such guarantees.

As part of the attestation process, we propose the development of a distributed ser-

vice capable of regulating the participation of devices on IoT applications. This ser-

vice will implement three main features. It will act as verifier of the device charac-

teristics in the remote attestation procedure, comparing the device-attested mea-

surements with pre-defined application requirements. It will provide coordination

primitives to manage membership and failure detection, with a small storage space

for configuration data. It will be fault- and intrusion-tolerant, to ensure that neither

a failure nor successful attack to the service nodes will undermine the guarantees it

brings to IoT applications. Chapter 4 of this deliverable gives details of the design of

a trusted membership service implementing the features mentioned.

Task 5.2 Security support for distributed execution and communication

Duration: M4-M36

WebAssembly is an increasingly popular lightweight binary instruction format, which

can be efficiently embedded and sandboxed. Languages like C, C++, Rust, Go, and

manyothers canbe compiled intoWebAssembly. In the contextofVEDLIoT,we imple-

mented Twine, a WebAssembly trusted runtime designed to execute unmodified,

language-independent applications. As soon as the project started, we leveraged our

previous experiencewith Intel SGX to build the runtime environmentwithout dealing

with language-specific, complexAPIs. While SGXhardwareprovides secure execution

within the processor, Twine provides a secure, sandboxed software runtime nested

8
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within an SGX enclave, featuring aWebAssembly system interface (WASI) for compat-

ibility with unmodified WebAssembly applications.

The evaluation of Twine, with a large set of general-purpose benchmarks and real-

world applications, resulted in a paper entitled TWINE: An Embedded Trusted Run-

time for WebAssembly [71]. We used Twine to implement a secure, trusted version

of SQLite, a well-known full-fledged embeddable database, as we believe that such a

trusted database would be a reasonable component to be deployed in edge services.

Our evaluation shows that SQLite can be fully executed inside an SGX enclave via

WebAssembly and existing system interface, without adding significant performance

overheads. Webelieve that theperformancepenaltiesmeasured are largely compen-

sated by the additional security guarantees and its full compatibility with standard

WebAssembly. More information about our implementation can be found in the pa-

per, as well as in Chapter 3 of this deliverable.

As part of our work in providing hardware-trusted execution in VEDLIoT, we devel-

oped a novel Trusted Execution Environment (TEE) support for VexRiscv, an open-

sourceRISC-V soft processorwritten in SpinalHDL.VexRiscv takes auniquely software-

inspired approach to hardware description. Virtually every component is a plug-in

object connected to one or more stages in the pipeline. It can be scaled to fit a wide

range of use cases, from highly constrained bare-metal embedded applications to

multi-core Linux with the same code base.

A highly optimised RISC-V Physical Memory Protection (PMP) was developed under

this activity in VEDLIoT. The PMP is an optional memory protection unit which pro-

vides support for secure processing and enables limiting the physical addresses ac-

cessible by software running on a given core. With the PMP, physical memory access

privileges (read, write, execute) can be specified for each physical memory region

using control registers. PMP is configurable in RISC-V’s highest privilege level, ma-

chine mode (M), and controls memory access by software running in supervisor (S)

and user (U) mode. Small devices may only have M- and U-mode implemented. Ma-

chines running Linux, for example, require S-mode, because that is the privilege level

which controls the MMU.

Our PMP implementation is part of the latest VexRiscv master branch [76] and the

source code is openly available. Furthermore, documentation, links and supplemen-

tary materials regarding VexRiscv development are collectively presented on the a

webpage [67] to be used on the VEDLIoT project. The documentation is intended for

(a) new LiteX users who need a quick start guide, (b) hardware developers who need

a detailed explanation of the VexRiscv framework and (c) anyone interested in the

current state of RISC-V security extensions. The documentation details instructions

on building and running VexRiscv on the Arty A7 FPGA development board. There is

also a description and instructions for running RISC-V PMP unit tests. The future of

this work is an enhanced development of the RISC-V Memory Protection Unit (MPU)

for establishing Trusted Execution States (TES). The idea is to duplicate PMP, but give

control to S-mode software. This scheme allows developers to place an embedded

OS in S- instead of M-mode without giving up access to the memory protection hard-

ware required to isolate userspace threads. Then, a security monitor (i.e., hypervisor)

can run in M-mode, which uses the existing PMP hardware to separate the OS from

TEEs on the same device. A preliminary prototype of the MPU is being developed to

test setting up a TES for embedded systems with Zephyr OS. More details about the

9
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results obtained with our hardware-trusted execution environment can be found in

Chapter 5 of this deliverable.

With the growing usage of IoT devices in homes and industry, new challenges re-

garding network security arise. Often the security of small IoT devices is not a key

concern of vendors, thus presenting attack vectors and possible network infiltration

entry points. In VEDLIoT, the Secure IoT Gateway aims to shield the IoT network

from attacks by separating the IoT network from the local network with VPN tech-

nology. By using VPNs, we also encrypt the traffic sent and received by IoT devices.

This is accomplished by using hardware (the IoT Bridges) with a VPN client, which are

placed between the IoT devices and the local network. A centralised locally placed

VPN gateway (local gateway) acts as the VPN server supplier for the IoT bridges in

the local network. Besides these two locally placed components, we are also run-

ning a cloud based VPN service that allows for secure site-to-site VPN connections.

Everything is controlled andmonitored via a web application in the cloud. A brief de-

scription of the Secure IoT Gateway can be found in the Deliverable 2.2 (Integration

of wireless communication into the Secure IoT Gateway).

Task 5.3 Simulation platform for development and testing

Duration: M7-M30

The ability to simulate devices makes the development of embedded systems much

easier. As part of the Work Package we are developing improvements to the Ren-

ode Framework [24], an open-source simulator for complex embedded systems or

of networks of such devices. As VEDLIoT focus on IoT and Machine Learning aligns

well with Renode capabilities, we are improving the framework with features related

to CFUs - Custom Function Units.

CFUs are a mechanism of expanding the capabilities of a CPU with custom instruc-

tions, dedicated to accelerating Machine Learning processing. Support for CFUs is

based on Renode’s integration with Verilator, a tool used to provide Renode with an

ability to co-simulate peripherals with models written in Verilog. More information

on the standard and the Renode Framework is available in Chapter 6.

During the course of the project so far, we have implemented several improvements

to the Verilator integration in Renode. First of all, we improved the existing layers of

Verilator integration. We reduced the complexity of integration by migrating from a

third-party communication library to POSIX sockets. This also allowed us to provide

this integration, originally available on Linux only, for other operating systems, like

Windows and macOS.

During this time, the integration was enhanced with support for more communica-

tion protocols. At the moment Renode can communicate with verilated peripherals

implementing Wishbone, AXI4-Lite and AXI4 interfaces. These additions allowed us

to generalise our APIs, paving the way for proper CFU support.

Anticipating the high traffic between Renode and CFU implementations, we decided

to implement an additional communication method relying on native calls instead of

sockets. This allows not only for faster processing without the overhead induced by

the network stack, but also simplifies the communication flow and the debugging

process. The progress made in the implementation of a CFU for Renode is described

in Chapter 6 of this deliverable.

10
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Task 5.4 Continuous integration workflow

Duration: M18-M36

This task aims at preparing a system that can be used by project participants to test

andverify the software for theSoC createdaspart ofWorkPackage4. The systemwill

be basedon theplatformdeveloped in Task 5.3. Itwill provide continuous integration

capabilities, ensuringfitness of the software on each stage of development. This task

has not yet started, as it is scheduled for month 18.

Task 5.5 Safety and Robustness

Duration: M7-M36

This task addresses the question on how to argue about robustness and safety in a

distributed AI system. Thus, the definition and development of appropriate moni-

toring and adaptation mechanisms are the main part of this task. From sensor data

collection to data communication and processing, many aspects will be considered at

several levels, from specification to testing.

The implementation of the monitor components will guarantee timely and secure

execution, exploiting the existence of trusted execution environments. Robustness

will be verified with respect to certain defined execution envelopes or contexts. Al-

though the task started inmonth 7, all its work is still incipient. So far, most efforts to

kick off this taskweremade in task 5.1 to help tobuild the necessary secure execution

environment.

11



D5.1 Version 1

3 Trusted Application Execution

Trusted code execution is currently one of the major open challenges for distributed

applications such as the ones being developed in the framework of VEDLIoT. Data is a

key asset formany companies and the ability to execute code and process data out of

their premises is a prerequisite for outsourcing computing tasks, either to large data

centres in the cloud or to the edge of the network on thin clients and IoT devices.

Trusted execution environments (TEEs) such as Intel SGX [39], ARM TrustZone [77],

AMD SME/SEV [22] and RISC-V Keystone [64] gathered much attention lately as they

provide hardware support for secure code execution within special hardware con-

structs that are shielded from the outside world, including the operating system and

privileged users. Still, despite the many frameworks and runtime environments that

havebeendeveloped recently, programming applications for TEEs remains a complex

task. Developers must generally use custom tools and APIs, and they are restricted

to a few supported programming languages.

In this chapter, we describe a trusted runtime that supports execution of unmodi-

fied applications compiled to WebAssembly (Wasm) [48], a portable binary-code for-

mat for executable programs originally designed for efficient execution within Web

browsers. Among its many benefits, Wasm is optimised for speed, can be efficiently

embedded, sandboxed, and is considered secure [65].

LLVM is a compiler toolchain, one of the most popular compilation infrastructure

nowadays. It natively supports Wasm as a standard compilation target. Thanks to

that, programs developed in languages such as C, C++, Rust, Swift, Go, C#, D, Delphi,

Fortran, Haskell, Julia, Objective-C, and many others, can already be used as input

to produce Wasm executables. Therefore, by supporting Wasm, one can provide a

generic runtime environmentwithout resorting to language-specific, dedicated APIs.

Our approach completely abstracts theapplication fromtheunderlyinghardware and

operating system (OS). We developed our runtime as a first step in Work Package 5,

in order to be able to seamless execute trusted applications in the whole VEDLIoT

environment, be in IoT devices, in the edge, or in third-party clouds.

In the sections that follow, we present our first implementation of a lightweight em-

beddable Wasm virtual machine running in a TEE, named Twine (trusted Wasm in en-

clave). Figure 3.1 depicts its typical workflow. It acts as an adaptation layer between

the application and the underlying TEE, the OS and hardware. Twine includes a com-

prehensiveWASI (WebAssembly system interface) layer to allow for native execution

of legacy Wasm applications, without recompilation.

We currently support Intel SGX enclaves as TEEs: Twine dynamically translates WASI

Developer’s premises (safe) Host (unsafe)

!

!

!C/C++

Rust

Go

.c

.rs

.go…

LLVM

" WASM
!

#

AoT
! Network

(TLS)

$

$

TEE (safe)

"
VM! $

"

Figure 3.1. Overview of Twine’s workflow.
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operations into equivalent native OS calls or to functions from secure libraries pur-

posely built for SGX. In particular, Twine maps file operations to Intel protected file

system [54], and persisted data is transparently encrypted and never accessible in

plaintext from outside an enclave. Whereas a TEE provides a secure hardware exe-

cution runtime in the processor, Twine provides a secure software runtime (sandbox)

nested within the TEE, with a WASI interface for compatibility with legacy Wasm, ab-

stracting the underlying environment from the application.

WeevaluatedTwinewith severalmicro- andmacro-benchmarks, aswell as a full SQLite

implementation. We compared its performances against existing software packages,

with and without secure operations inside a TEE. Our results reveal that Twine per-

forms on par with systems providing similar security guarantees. We also observed

non-negligible performance overheads due to execution within the TEE under some

workloads. We believe this penalty is largely compensated by the additional security

guarantees and full compatibility with Wasm code thanks to the WASI interface.

The contributions presented in this chapter were extracted from a paper published

in the 37th IEEE International Conference on Data Engineering [69]. Our work repre-

sents the first real open-source implementation of a general-purposeWasm runtime

environment within SGX enclaves with full support for encrypted file system opera-

tions. In addition to this chapter, the paper presents related work, and an extensive

evaluation of our implementation, offering a good understanding of its performance

costs and associated bottlenecks. As a subordinate effect, we proposed an improved

implementation for Intel’s protected file system, showing the derived performance

improvements in the paper as well. This chapter is split into three sections. We pro-

vide some background on Intel SGX andWebAssembly in Section 3.1. The design and

implementation details of Twine are described in Section 3.2. We then summarise the

evaluation of our prototype in Section 3.3.

3.1 Background for Twine

This section provides background information on Intel SGX in (Section 3.1.1) and the

Wasm ecosystem (Section 3.1.2) to help understand the architecture and design of

Twine.

3.1.1 Intel SGX

Software Guard Extensions (SGX) [39] are a set of processor instructions found in

modern Intel processors [53] that allow programmers to create encrypted regions

of memory, called enclaves. Enclave memory content is automatically encrypted and

decrypted when read and written by instructions running inside the enclave itself.

Enclave encryption keys are kept inside the processor and no instruction has access

to the keys, not even when running with high hardware privilege levels, as OSs and

virtual machine managers do. The memory inside an enclave is protected from any

unauthorised access, even frommachine administrators with physical access.

Enclavememory access is accelerated by using a large cachememory, called EPC (en-

clave page cache). EPC size is limited, with the latest CPUs offering up to 256 MiB.

The processor keeps unencrypted copies of all enclave pages in EPC, and paging is

used when the EPC is full. The hardware also maintains cryptographic hashes for all

enclave pages in EPC, in such a way that a modification from outside an enclave can

be automatically detected. The EPC helps reduce access time to encrypted memory
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but also limits the number of pages concurrently available. Swapping degrades per-

formance and enclaved applications should strive to avoid it [75].

Instructions inside enclaves can access data outside the enclave, but calling instruc-

tions outside requires a special out call instruction (OCALL). Upon an OCALL, the CPU

exits the protected enclave to execute code on the outside. Conversely, there is an

enclave call (ECALL) instruction to call code inside an enclave. OCALL and ECALL instruc-

tions are slow because switching the context from inside to outside an enclave is

costly (up to 13’100 CPU cycles in latest server-grade processors). It has been shown

that enclaved applications can avoid such calls to reduce performance loss [84].

In order to build composed software using enclaves, one must have a method to es-

tablish trust. For example, a client must know if it can trust a given server and vice

versa. Intel SGX offers a remote attestation mechanism to prove that an enclave can

be trusted. Each processor has a secret key fused in its die, used to derivemany other

keys. One of the derived keys is used to build enclave attestations, calculated as a

signature of the whole content of an enclave at its creation. An external attestation

service confirms that a given enclave runs a particular piece of code on a genuine Intel

SGX processor.

3.1.2 WebAssembly

WebAssembly (Wasm) is a W3C recommended open standard for a portable and ex-

ecutable binary code format. It was originally designed to improve the performance

of applications embedded inWeb browsers, similar to the now-deprecatedMicrosoft

ActiveX, and directly superseding asm.js [41]. Since then, its support was extended

to standalone environments (i.e., outside browsers). Full application execution, es-

pecially in standalone environments, requires access to OS services, e.g., process and

memorymanagementor I/O, typically available via commonsystemcalls (for instance,

exposed by a POSIX interface). Hence, the interaction of Wasm with the underly-

ing OS is standardised through a specific API called WebAssembly system interface

(WASI) [70]. This interface allows for several implementations suited to differentOSs

and incorporating several non-functional abstractions, including virtualisation, sand-

boxing, access control, etc. In the latest specifications, theWASI interface consists of

45 functions covering various capabilities: access to process arguments and environ-

ment variables, file system interaction, events polling, processmanagement, random

number generation, socket interaction and time retrieval.

There are currently several options to produce Wasm binaries. Emscripten [91] and

Binaryen [1] can compile C/C++ intoWasmbinarieswith support for POSIXOS calls for

standaloneapplications. These tools can convert andexecute legacy applications into

their Wasm representation. However, the conversion is only possible by requesting

the Wasm runtime to expose functions that are generally bound to a specific OS, i.e.,

not a standard nor a public interface. Wasm applications become tightly coupled to

a given OS, defeating one of its main purposes, i.e., portability. WASI solves the issue

with a standard and lightweight interface that Wasm runtimes can comply with to

support a large variety of interactions abstracted from the OS. The introduction of

this abstract layer limits the coupling of Wasm applications to just WASI. As a result,

Wasm applications using WASI are system-agnostic and can run on any compliant OS

or browser.

LLVM [63] is a compilation toolchain for several different programming languages.
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Table 3.1. Comparison of Wasm runtimes.

Wasm runtime Language Embeddable Interpreter JIT AoT

Wasmtime [8] Rust 3*† 7 3 3

Wasmer [7] Rust 3*† 7 3 3

Lucet [4] Rust 3*† 7 7 3

WAVM [9] C++ 3* 7 3 3

Wasm3 [6] C 3* 3 7 7

WAMR [10] C 3 3 3 3

*
Requires adaptation for SGX. †Intel does not support Rust for enclave development.

The compilation is split into front- and back-end modules. The connection between

them uses the LLVM intermediate representation code. LLVM supports several front-

end modules for various languages and, similarly, many back-ends to generate dif-

ferent binary formats. Since v8.0, LLVM officially supports and can generate Wasm

codewithWASI. All compiler front-ends using recent LLVMversions can consequently

generate Wasm code. Note that, while Wasm represents an abstract machine, WASI

represents its abstract OS, i.e., a standard interface to runWasm applications outside

of a browser. Due to this tight dependency, tools generating Wasm code must be

adapted to couple the Wasm code generated with WASI calls.

TheexecutionofWasmcodemust behandledby adedicated runtime, able to execute

the instructions and implementing WASI calls. We discuss below the advantages and

drawbacks of existingWasm runtimes and explain why Twine settled for one of them.

Table 3.1 summarises themainproperties of theWasmruntimes considered. Wecom-

pare them in terms of executionmodes, implementation language and whether they

can be embedded into a TEE, such as SGX enclaves.

Wasmtime [8] is a Rust-based standalone runtime. It uses Cranelift [3], a low-level

retargetable just-in-time (JIT) compiler with similarities to LLVM. Wasmtime can be

used by various programming languages thanks to the wrappers available with the

runtime. Embedding a JIT compiler inside an SGX enclave, despite its potential per-

formance benefits, increases the trusted computing base by a large factor. Moreover,

Wasmtime and Cranelift are implemented in Rust: while tools exist to support Rust

binaries in SGX enclaves [88], we opted in Twine for thewell-supported standard Intel

toolchain.

Lucet [4] is a native Wasm compiler and runtime also implemented in Rust. It is de-

signed to safely execute untrustedWebAssembly programs embedded in third-party

applications. It supports ahead-of-time (AoT) compilation ofWasmapplications using

Cranelift. While the runtime is not coupled to Cranelift as Wasmtime, Lucet presents

similar integration challenges (Rust, large TCB).

Wasmer [7] is a Rust-based Wasm runtime for lightweight and portable containers

based on Wasm. It allows for JIT and AoT compilations with multiple back-ends, in-

cluding LLVM and Cranelift. It supports the two prominent application binary inter-

faces (ABI): WASI and Emscripten. We turned away fromWasmer for the same reason
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as the previous alternatives.

WAVM [9] is a Wasm virtual machine written in C++. It supports both WASI and Em-

scripten ABIs and offers various extensions, such as 128-bit SIMD, thread manage-

ment and exception handling. While implemented in C++, hence with native support

for enclave development, its tight coupling with LLVM makes it difficult (if possible

at all) to embed it inside SGX.

Wasm3 [6] is a micro-interpreter for Wasm, optimised for size, able to execute in re-

stricted memory environments and to provide fast startup latency. It was designed

for constrained edge devices with very limited resources (e.g., Arduino and Particle).

Having a reduced set of dependencies and small code base, it can easily fit within

SGX enclaves. However, it only supports interpreted code and, hence, provides lim-

ited performance for executing Wasm binaries.

The WebAssembly micro runtime (WAMR) [10] is a standalone Wasm runtime sup-

ported by the bytecode alliance open source community. This runtime supports two

interpreted executionmodes, one slower and one faster, the former using less mem-

ory than the other. It also supports two binary execution modes, AoT and JIT, both

using LLVM.WAMR is implemented in C with a small footprint (runtime binary size of

50KiB for AoT, 85KiB for interpreter) and very few external dependencies, which is

ideal for small embedded devices with limited resources. WAMR can be linked with

SGX enclaves out of the box, which significantly simplifies the integration of Wasm

and SGX.We, therefore, opted forWAMRas underlying runtime for Twine, as detailed

in Section 3.2.

3.2 Trusted runtime for WebAssembly

Twine is an execution environment suited for runningWasm applications inside TEEs.

It is built with twomain blocks: aWasm runtime and aWASI interface (see Figure 3.2).

TheWasm runtime runs entirely inside the TEE, andWASI works as a bridge between

trusted and untrusted environments, abstracting the machinery dedicated to com-

municate with the underlying OS. Thus, WASI is the equivalent to the traditional SGX

adaptation layer comprised of the OCALLs. The main advantage of relying on WASI is

that it brings a triple abstraction. Firstly, the programming language can be freely

chosen by the developers, provided it can be compiled with LLVM or another com-

piler that supports Wasm andWASI as a compilation target. This lifts the restrictions

imposed by SGX, typically forcing enclaved applications to be written in C/C++. Sec-

ondly, the TEE is abstracted away from the applications. Applications can be safely

executed as long as theTEE is able to interpret or executeWasm (supportedbyWASI),

opening the door to other TEE technologies. Finally, WASI is system-agnostic, as long

as the OS can provide an equivalent of the API required by WASI. Since WASI mimics

Hardware

Operating system

TWINE

WASM runtime

WASM system 
interface (WASI)Sandbox WASM binary!

" TEE (safe)

Figure 3.2. Overall Twine architecture.
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the system calls of POSIX systems, many Unix variants can implement it.

On top of its portability benefits, WASI focuses on security by sandboxing. Regular

applications usually call the OS through a standard interface (e.g., POSIX). WASI adds

a thin layer of control betweenWasmOS calls and the actual OS interface. As a result,

the runtimeenvironment can limitwhatWasmcandoonaprogram-by-programbasis,

preventingWasm code from using the full rights of the user running the process. For

instance, a WASI implementation can restrict the application to a subtree of the file

system, similar to the capabilities offered by chroot.

The combination of the enclave and sandbox capabilities of SGX and WASI, respec-

tively, ends up in a two-way sandboxing system partially inspired by MiniBox [66].

The system, which is considered untrusted in the threat model of SGX, cannot com-

promise the integrity of the enclave code nor the confidentiality of the data stored

in its memory. Likewise, Wasm applications, considered untrusted from the system’s

owner standpoint, cannot interact directly with the OS unless WASI explicitly grants

permission in theWasm runtime. Therefore, theWasm application providers and the

hosting platform can agree on the trust guarantees given by SGX and those of a refer-

ence Twine enclave with strong peer-reviewed sandboxing capabilities, makingWASI

a mutually trusted demilitarised zone.

3.2.1 Threat model

Twine leverages the protection of TEEs to offer a trusted environment for running

Wasm applications. Many guarantees offered by Twine are inherited from the under-

lying TEE, which in our implementation is Intel SGX. Note that a different TEEmay not

withstand the same level of threats.

Assumptions. We assume that no physical attack is possible against the computer

hardware. The TEE offers the level of protection as specified, and standard cryptog-

raphy cannot be subverted. Application and OS codes present no vulnerabilities by

implementation mistake nor careless design.

SGX enclaves. Code and data inside enclaves are considered as trusted, and nothing

from outside can be considered trusted. The non-enclaved part of a process, the OS

and any hypervisor are thus potentially hostile. The memory inside of an enclave can

only be read in encrypted form from the outside. Writing the memory enclave from

the outside causes the enclave to be terminated. Side-channel or denial-of-service

attacks may exist, and applications running inside enclaves must be written to be re-

sistant to them. While we consider side-channel attacks out of scope, mitigations

exist [32, 74].

Operating system. The OS follows an honest-but-curious model. In principle, the OS

follows its specification and poses no threat to user processes. A compromised OS

may arbitrarily respond to enclave calls, causing its malfunction; enclaves should be

carefully crafted to ignore abnormal responses or even abandon execution in such

cases.

3.2.2 WASI

Aspresented in Section3.1,weconsideredWasmtime,Wasmer, Lucet,WAVM,Wasm3

andWAMRas runtimecandidates for implementingTwine. Wasmtime,Wasmer, Lucet

andWAVMmay be executed inside SGX enclaves, but require substantial adaptations
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to comply with the SGX enclaves’ restrictions. Moreover, some of these runtime envi-

ronments (exceptWAVMandWasm3) arewritten inRust and require additional effort

to use as a trusted runtime, since Intel does not support this programming language

for enclave development. Wasm3, on the other hand, is small but only offers an in-

terpreter, this being an inadequate constraint for running standalone applications.

Finally, WAMR is also small, has few dependencies, and can link to binary code (al-

beit generated ahead of time, that is, no JIT). We chose to use WAMR and replace its

WASI interface, as explained below, in such a way that we can abstract the enclave

constraints while implementing systems calls.

WASI is the interface through which Wasm applications communicate with the out-

side world, similar to POSIX’s capabilities for regular native programs. The develop-

ment of TEE enabled applications requires to deal with crossing the boundary be-

tween trusted and untrusted environments, materialised with ECALLs and OCALLs in

Intel SGX. We believe that leveraging WASI as the communication layer meets the

purpose of Wasm, where the implementation is abstracted away for the application

itself. As a result, the applications compiled in Wasm with WASI support do not re-

quire any modification to be executed inside a TEE.

The toolkit of WAMR provides an ahead-of-time compiler, enabling to compile Wasm

applications into their native representation using LLVM before they reach Twine’s

enclave. As such, Twine does not contain a Wasm interpreter and can only execute

ahead-of-time compiled applications. The main advantage of this choice is that na-

tive code execution is faster than code interpretation, which is critical to be compet-

itive with the other secure TEE solutions [25, 38]. Moreover, the Wasm runtime has a

smallermemory footprint than the code interpreter, which are essential factors in the

context of SGX and cloud/edge computing. The option of embedding a JIT compiler

was not considered, as bringing LLVM machinery in an enclave requires modifying it

to the restrictions of SGX.

Unlike Twine, Intel SGX only guarantees the integrity of the enclave binary and not

the confidentiality. Integrity is verified with a signature in the code, but the code

itself must be in plaintext to be loaded into an enclave memory. Twine is able to

offer the confidentiality of Wasm applications because the Wasm code is supplied

using a secure channel after the enclave has been started. When the Wasm code is

received, it is mapped into a secure memory area called reserved memory [55]. That

memory area enables one to load arbitrary executable code and manage the pages’

permissions as if they were outside the enclave. Therefore, Wasm applications never

leave the secure memory of the enclave.

3.2.3 WASI implementation details

By the time Twine was developed, WAMR already included a WASI implementation

that relies heavily on POSIX calls. POSIX is not available inside SGX enclaves, so the

implementation of WASI written by the authors of WAMR needs to frequently cross

the trusted boundary of the enclave and plainly routes most of the WASI functions

to their POSIX equivalent using OCALLs. While this approach enables to run anyWasm

applications that comply with WASI inside an enclave, this does not bring additional

security regarding the data that transits through POSIX.

We designed Twine to implement a different WASI interface for WAMR, that is more

tailored to the specific TEE used (namely SGX). We estimated that plainly forward-
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ing WASI calls to outside the enclave was not the best option. First, for performance

reasons: most WASI calls would simply be translated to OCALLs. Second, we wanted

to leverage trusted implementations when available, as for instance Intel protected

file system (IPFS), described below (Section 3.2.4). Therefore, we refactoredWAMR’s

WASI implementation to keep its sandboxing enforcement, and we split the remain-

ing into twodistinct layers, one for specific implementations, when available, andone

for generic calls. Generic calls are handled by calling a POSIX-like library outside the

enclavewhile providing additional securitymeasures and sanity checks. Such calls are

only implemented when no trusted compatible implementation exists. For instance,

time retrieval is not supported by Intel SGX. Hence, Twine’s POSIX layer leaves the

enclave to fetch monotonic time while ensuring that the returned values are always

greater than the previous ones. If a trusted implementation exists (as the many in

Intel SDK), we use it to handle its corresponding WASI call. Sometimes a trusted im-

plementation needs to call outside the enclave, but they often offer more guaran-

tees than merely calling the OS. One notable example is the protected file system,

described below. Finally, Twine includes a compilation flag to globally disable the

untrusted POSIX implementation in the enclave, which is useful when developers re-

quire a strict and restricted environment or assess how their applications rely on ex-

ternal resources. In particular, the interface may expose states from the TEE to the

outside by leaking sensitive data in host calls, e.g., usage patterns and arguments,

despite the returned values being checked once retrieved in the enclave.

Memory management has an important impact on the performance of the code ex-

ecuted in an enclave (see Section 3.3). WAMR provides three modes to manage the

memory for Wasm applications: (1) the default memory allocator of the system, (2) a

custom memory allocator, and (3) a buffer of memory. Twine uses the latter op-

tion since we measured that an application that heavily relies on the memory allo-

cator of SGX to enlarge existing buffers performs poorly. For instance, SQLite micro-

benchmarks in Section 3.3.1, which requires to extend its internal buffer for every

new record being added. Before using a preallocated buffer for SQLite, we noticed

the complexity of the SGX memory allocator to be above linear.

In its current implementation, Twine requires to expose a single ECALL to supply the

Wasm application as an argument. This function starts the Wasm runtime and exe-

cutes the start routine of the Wasm application, as defined by WASI ABI specifica-

tions [11]. Future versions of Twine would only receive the Wasm applications from

trusted endpoints supplied by the applications providers, as shown in Figure 3.1. The

endpoint may either be hard-coded into the enclave code, and therefore part of the

SGXmeasurement mechanism that prevents binary tampering, or provided in a man-

ifest file with the enclave. The endpoint can verify that the code running in the en-

clave is trusted using SGX’s remote attestation. As a result, Twine will provide both

data and code confidentiality and integrity by relying on SGX capabilities, as well as

a secure channel of communication between the enclave and the trusted application

provider. While the enclave must rely on the OS for network communication, the

trusted code can use cryptographic techniques (e.g., elliptic-curve Diffie-Hellman) to

create a channel that cannot be eavesdropped on.

3.2.4 Intel Protected File System (IPFS)

To validate the abstraction offered by WASI, we implemented a subset of the WASI

calls (i.e., those related to file system interaction) using the Intel protected file sys-
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tem [54] (IPFS). Part of Intel SGX SDK, it mimics POSIX standard functions for file in-

put/output. The architecture of IPFS is split in two: (1) the trusted library, running in

the enclave that offers a POSIX-like API for file management, and (2) the untrusted

library, an adapter layer to interact with the POSIX functions outside of the enclave,

that actually read and write on the file system. Upon a write, content is encrypted

seamlessly by the trusted library, before beingwritten on themedia storage from the

untrusted library. Conversely, content is verified for integrity by the trusted enclave

during reading operations.

IPFS uses AES-GCM for authenticated encryption, leveraging the CPU’s native hard-

ware acceleration. An encrypted file is structured as a Merkle tree with nodes of

a fixed size of 4KiB. Each node contains the encryption key and tag for its children

nodes. Thus, IPFS iteratively decrypts parts of the tree as the program running in the

enclave requests data [85]. This mechanism ensures the confidentiality and the in-

tegrity of the data stored at rest on the untrusted file system. While the enclave is

running, the confidentiality and the integrity of the data are also guaranteed by SGX’s

memory shielding.

IPFS has several limitations, which are considered to be outside of its security ob-

jectives by Intel. Since the files are saved in the regular file system, there is no pro-

tection against malicious file deletion and swapping. Consequently, this technology

lacks protection against: (1) rollback attacks, IPFS cannot detect whether the latest

version of the file is opened or has been swapped by an older version, and (2) side-

channel attacks, IPFS leak file usage patterns, and various metadata such as the file

size (up to 4KiB granularity), access time and file name. We note how Obliviate [23],

a file system for SGX, partially mitigates such attacks.

IPFS provides convenient support to automatically create keys for encrypting files,

derived from the enclave signature and the processor’s (secret) keys. While auto-

matic key generation seems straightforward, a key generated by a specific enclave in

a given processor cannot be regenerated elsewhere. IPFS circumvents this limitation

with a non-standard file open function, where the caller passes the key as a parame-

ter. Our prototype relies on automatic generation as an alternative to a trustworthy

secret sharing service [47]. We leave as future work to extend the SGX-enabledWASI

layer to support encrypted communication through sockets.

In conclusion, files persisted by Twine are seen as ciphertext outside of the enclaves,

while transparently decryptedand integrity-checkedbeforebeinghandledbyaWasm

application.

3.3 Evaluation

The evaluation results presented in the paper [69] were intended as an answer to the

following questions:

• What is the performance overheads of using the runtime WAMR in SGX, com-

pared to native applications?

• Can a database engine realistically be compiled into Wasm and executed in a

TEE, while preserving acceptable performances?

• How do the database input and output operations behave when the EPC size

limit is reached?
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• What are theprimitives thatgeneratemostof theperformanceoverheadswhile

executing database queries? Can we improve them?

In this sectionwe summarise Twine’s evaluation results, andwe refer to the paper for

further details.

3.3.1 PolyBench/C micro-benchmarks

As a micro-benchmark experiment, we leveraged PolyBench/C [78], a group of CPU-

bound programs commonly used to evaluate the performance of Wasm execution

environments [56, 45]. Figure 3.3 shows the results for 30 PolyBench/C (v4.2.1-beta)

tests, compiled as native (plain x86-64 binaries) and Wasm compiled ahead-of-time.

Results are given for the native execution, those using WAMR for Wasm, and finally

using Twine for Wasm in SGX. Results are normalised against the native run time.

We can split the PolyBench/C test results in 5 groups, based on the proportion be-

tween the execution modes (native, WAMR and Twine): (1) similar execution time

(doitgen and seidel-2d); (2) WAMR results similar to each other, but overall slower

than tonative (2mm, 3cmmand durbin); (3) Twine is slower thanWAMRandnative (deriche,

gemver and lu); (4) execution times vary significantly between each variant (atax, gemm

and jacobi-2d); (5)WAMR is faster than its native counterpart.

Wasm applications are usually slower than native ones due to several reasons: in-

creased register pressure, more branch statements, increased code size, etc. Follow-

ing previouswork [56], we investigated deriche and gramschmidt using Linux’s perfor-

mance counters, as both produced better results withWasm (averages over 3 distinct

executions). Our analysis reports 58,002,746 L1 cache misses for native deriche and

57,384,578 for its Wasm counterpart. Similarly gramschmidt produces 3,679,222,800

and 3,673,458,022 for native and Wasm L1 cache misses. These results confirm that

these twoWasmprograms produce slightly fewer L1 cachingmisses (1.1% and 0.2%).

3.3.2 SQLite macro-benchmarks

SQLite [58] is a widely-used full-fledged embeddable database. It is perfectly suited

for SGX, thanks to its portability and compact size. For this reason, we thoroughly

evaluated it as a showcase for performance-intensive operations and file system in-

teractions. SQLite requires many specific OS functions that are missing from the

WASI specifications, due to standardisation and portability concerns inWasm. There-

fore, we relied on SQLite’s virtual file system (VFS), and accesses to the file system

are translated into the WASI API. Our modified virtual file system implements the

minimal requirements to make SQLite process and persist data, reducing the POSIX

functions to be supported by Twine WASI layer.
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Figure 3.3. Performance of PolyBench/C benchmarks, normalised to the native speed.
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Sincememory allocation in SGXenclaves is expensive (in some tests, it took up to 45%

of the CPU time to allocate it while inserting records in the database), memory preal-

location greatly optimises performance when the database size is known in advance.

First, we used SQLite’s own performance test program, Speedtest1 [5], running 29

out of the available 32 tests, covering a large spectrum of scenarios (we excluded

3 experiments because of issues with SQLite VFS). Each Speedtest1 experiment tar-

gets a single aspect of the database, e.g., selection using multiple joints, the update

of indexed records, etc. Tests are composed of an arbitrary number of SQL queries,

potentially executed multiple times depending on the load to generate. Figure 3.4

shows our results, normalised against the native execution. We include results for

in-memory configurations as well as for a persisted database, where WASI is used.

Whilewe provide additional details in the paper, we observed across all tests that the

WAMR’s slowdown relative to native on average is 4.1× and 3.7× for in-memory and

in-file database respectively. Twine’s average slowdown relative to WAMR is 1.7×
and 1.9× for in-memory and in-file database.

Experiments 100–120, 180–190, 230, 240, 270–300, 400 and 500 update the database

(e.g., creating tables, inserting, updating and deleting records). They share a simi-

lar pattern of performance penalty according to the variants. Experiments 130, 140

and145–170 indicate the sameperformance for in-memory andpersistentdatabases:

since they only execute read operations, they act on the page cache, with no file sys-

tem interaction. Using SGX with a persistent database adds a considerable overhead

under certain circumstances. In particular, experiments 410 and 510, which overflow

the page cache and randomly read records, cause additional latency due to the file

system interaction, exacerbated by enclave OCALLs and encryption, up to 12.4× and

22.1× for Twine and SGX-LKL respectively compared to the equivalent queries using

an in-memory database. Interestingly, experiments 142 (multiple SELECT with ORDER

BY, non-indexed) and 520 (multiple SELECT DISTINCT) show faster results using a per-

sistent database on-file for all the execution modes. Test 210 is I/O intensive: it al-

ters the database schema and, consequently, all the records. Similarly, experiment

260 issues a wide-range of SELECT to compute a sum, explaining the high execution

time across all execution modes, with a small overhead for SGX variants. In addition,

test 250 is highly I/O intensive with a persisted database, because it updates every

record of a table, requiring to reencrypt most of the database file.

Finally, 990 is a particular case of database housekeeping. It gathers statistics about

tables and indices, storing the collected information in internal tables of thedatabase

where the query optimiser can access the information and use it to help make better

query planning choices. The longer execution time of Twine and SGX-LKL with a per-
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Figure 3.4. Relative performance of SQLite Speedtest1 benchmarks.
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sistent database is explained by the added complexity of I/O from the enclave.

One of the most important costs impacting the performace of Twine is the use of

Intel’s IPFS for file I/O. In the full paper, we detail out a number of modifications

to IPFS in order to improve its performance. Compared to Intel’s version, insertion

achieves a 1.5× speedup and 2.5× for sequential reading. Finally, for random read-

ing, we achieved a 4.1× speedup.

3.4 Closing remarks

The lack of trust when outsourcing computation to remote parties is a major imped-

iment to the adoption of distributed architectures for VEDLIoT’s sensitive applica-

tions. Whereas this problem has been extensively studied in the context of cloud

computing across large data centres, it has been only scarcely addressed for decen-

tralised and resource-constrained environments as found in IoT or edge computing.

Weproposedanapproach for executingunmodifiedprograms inWebAssembly (Wasm)

within lightweight trusted execution environments that can be straightforwardly de-

ployed across client and edge computers. Wasm is a target binary format for applica-

tions written in languages supported by LLVM, such as C, C++, Rust, Fortran, Haskell,

etc. Twine is our trusted runtime with support for execution of unmodified Wasm

binaries within SGX enclaves. We provide an adaptation layer between the standard

Wasm system interface (WASI) used by the applications and the underlying OS, dy-

namically translating theWASI operations into equivalent native system calls or func-

tions from secure libraries purposely built for SGX enclaves. Our in-depth evalua-

tion shows performance on parwith other state-of-the-art approacheswhile offering

strong security guarantees and full compatibility with standard Wasm applications.

Twine has been made freely available as open-source software.
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4 Trusted Membership Service

An important challenge in IoT systems is how to deal with the dynamism on the sys-

tem composition (i.e., devices joining and leaving the system, crashes and recoveries,

etc.) Besides the fundamental problem of getting an up-to-date list of the devices

on the system at any given time, there is also the problem of ensuring joining devices

satisfy the high-level security requirements defined for critical IoT applications. For

example, a certain application can only accept devices from a pre-defined manufac-

turer and if they are running the last version of a given operating system.

To solve these type of problems, we propose the development of a distributed ser-

vice capable of regulating the participation of devices on IoT applications. This ser-

vice will implement three main features:

1. It must act as verifier of the device characteristics in remote attestation pro-

cedures [31], comparing the device-attested measurements with pre-defined

application requirements.

2. It must provide coordination primitives [40], similar to the ones provided by

Zookeeper [52], for supporting membership management, failure detection,

and limited storage (mostly for configuration data).

3. It must be fault- and intrusion-tolerant [42], just like a permissioned blockchain,

to ensure that a successful attack to the service nodes will not undermine the

security guarantees it brings to IoT applications.

In summary, we aim to design a Trusted Membership Service (TMS) capable of pro-

viding a reliable source of information about which devices are available to the ap-

plication, and to which extent these devices are running up-to-date software, among

other properties. The objective is to significantly increase the trust between interact-

ing IoT devices by regulating their participations in applications based on pre-defined

policies.

In this chapter we outline the basic characteristics of TMS and present our initial de-

sign for it. We start by describing an application scenario of TMS (Section 4.1), then

we proceed to discuss some background and existing techniques/tools that are being

employed in the system (Section 4.2), and finally we discuss the main architecture of

the system (Section 4.3). We conclude the chapter with a description of the status of

the service and an outline of our next steps.

4.1 Application Scenario

The VEDLIoT TMS consider a set of IoT devices running one ormore applications shar-

ing the same environment, interconnected with edge servers and a cloud infrastruc-

ture, as described in Figure 4.1.

In this scenario, the complexity of the manual configuration of devices and the as-

surance of correct software updates (to remove vulnerabilities) are the main issues

that need to be addressed. More specifically, we consider the following two specific

problems:
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Figure 4.1. Diverse IoT applications managed by VEDLIoT Trusted Membership Service (TMS).

Each color represents a different application and each device can run one or more deep learning

model (e.g., M1, M2), obtained from edge services or the cloud.

• Devices and servers need to be organized in application-specific topologies. Some

questions and challenges we need to solve are: How to make a device trust an-

other? How to ensure all nodes are running correct and up-to-date software?

Withminimal pre-configuration, how to establish secrets among nodes (crypto-

graphic keys, for example)?

• Devices and servers need configuration and coordination. The questions then are:

How to store and disseminate common application configuration? How to ob-

tain the list of nodes that are alive on an IoT application? How to make nodes

agree about something (e.g., a leader, a data dissemination/aggregation tree

topology)?

We propose to solve these problems by building a Trusted Membership Service (see

Figure 4.1) that will regulate and help the interactions between IoT devices in un-

trusted environments. This service will leverage recent advances in trusted com-

puting that enabled non-expensive IoT nodes to have secure hardware capable of

supporting remote attestation procedures [31]. Using this technology, we want to

provide TMS as a logically-centralized service, implemented using Byzantine Fault-

Tolerant (BFT) State Machine Replication (SMR), capable of verifying if the devices

satisfy the minimal requirements for participating in an application. Once a device is

accepted on the application, the TMS can (optionally) provide key material for help-

ing establish secure links between devices, effectively acting as a root of trust for IoT

applications.

4.2 Background

In this sectionwe describe themain technologies and concepts underlying the design

of TMS. Parts of the text used here are abridged versions of material that appeared

in previous publications of the author, in particular [40, 28].
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                      Figure 1: Conceptual Data Flow

   The text below summarizes the activities conducted by the roles
   illustrated in Figure 1.

   An Attester creates Evidence that is conveyed to a Verifier.

   A Verifier uses the Evidence, any Reference Values from Reference
   Value Providers, and any Endorsements from Endorsers, by applying an
   Appraisal Policy for Evidence to assess the trustworthiness of the
   Attester.  This procedure is called the appraisal of Evidence.

   Subsequently, the Verifier generates Attestation Results for use by
   Relying Parties.

   The Appraisal Policy for Evidence might be obtained from the Verifier
   Owner via some protocol mechanism, or might be configured into the
   Verifier by the Verifier Owner, or might be programmed into the
   Verifier, or might be obtained via some other mechanism.

Birkholz, et al.         Expires 25 October 2021                [Page 9]

Figure 4.2. RATS architecture [31].

4.2.1 Remote Attestation

Remote attestation is a method by which a node, the attester, proves to another, the

verifier, some properties of its hardware and software [31]. Typically, this is done

by using some secure hardware components such as a Trusted Platform Module [86]

or a processor-native trusted computing technology such as Intel SGX [53] and ARM

TrustZone [77], deployed on the attester. It is also not uncommon that the verifier

uses the evidence provided by the attester node to generate an attestation result (or

proof, if successful) to inform another node, the relying party, about the properties

of the attester.

Figure 4.2, taken from [31], illustrates how this architecture work and which kind of

information is required from all intervening parties. As can be seen in the figure, the

attester produce evidence about its properties, e.g., a set of local software measure-

ments (hashes), signed with a hardware key certified by the manufacturer, for the

verifier. The verifier checks the validity of this evidence using endorsements (e.g., a

manufacturer public key) and reference values (e.g., a cryptographic hash of an oper-

ating system) to validate the claims made by the attester, producing the attestation

result. Such result can be compared with an application-specific appraisal policy ei-

ther on the verifier or on the relying party (or both). Thismechanism can, for instance,

be used to ensure a relying party only interactwith an attester if it proves it is running

a certified hardware with the most up-to-date version of a certain operating system.

The objective of TMS, as explained before, is to act as a verifier, enabling secure in-

teraction between nodes in an IoT application.

4.2.2 Coordination Services

Coordination servicesprovidea consistent andhighly-availabledata storewithenough

synchronization power [50] for client processes to execute tasks such as mutual ex-

clusion and leader election, and to store important systemconfiguration. Such clients

areoften serviceprocessesdeployedon clusters of hundredsor thousandsof servers,

but they can also be IoT devices deployed on untrusted environments. Three key fea-
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tures of coordination services explain their wide adoption: (1) they provide a trust

anchor for a much larger distributed system; (2) this trust is justified by their robust

implementation using state machine replication protocols [57, 61] (see next section)

to avoid any single point of failure; and (3) their accessible and limited interface, also

called coordination kernel [52], which can be accessed through simple remote pro-

cedure calls (RPCs) that are intuitive even for programmers who are not experts in

distributed computing [34].

Independently from the specifics of the coordination kernel and underlying imple-

mentation details, coordination services implement three main features:

• Highly-available small storage: The coordination service is often an anchor of

trust in a much bigger distributed system and, amongst other things, is respon-

sible for reliably managing small chunks of important data. Thus, it must be

fault tolerant, which is usually achieved using the state state machine replica-

tion approach [79].

• Interfacewith synchronization power : Coordination tasks usually canbe reduced

to the problem of consensus [49]. Some older systems rely on the lock/lease

abstraction [34], which is not wait-free since a client that fails with the lock can

block other clients, at least for some time, until its lease expires. More recent

systems provide wait-free operations [27, 52, 2] based on primitives with syn-

chronization power [51], such as conditionally-atomic swaps and sequencers.

• Client failure detection: For implementing important coordination tasks such as

leader election and fault-tolerant task assignment, it is essential that clients

learn about the failure of other clients. Some systems explicitly provide such

failure detection (e.g., by maintaining client sessions and notifying registered

clients when such sessions terminate [52]), while others enable the expiration

of objects, which can be interpreted as failures of the clients responsible for

renewing the objects’ time to live [27, 2].

We want the TMS to provide some of the capabilities of a coordination service, in

particular to store important configuration for the IoT-applications it manages and

for keeping an up-to-date list of active devices on each application.

4.2.3 State Machine Replication

In the statemachine replication approach [79], an arbitrary number of client processes

issue requests to a set of replicas. These replicas implement a stateful service that

receives these requests and updates its state accordingly to the operation contained

in the clients’ requests. Once enough replicas transmit matching replies to the client,

its invocation returns the result computed by the service.

The goal of this technique is to make the service state maintained by each replica

evolve in a consistent way. In order to achieve this behavior, it is necessary to satisfy

the following requirements [79]:

1. Any two correct replicas r and r′ start with state s0;

2. If any two correct replicas r and r′ apply operation o to state S, both r and r′ will
obtain state S ′;
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3. Any twocorrect replicas r and r′ execute the samesequenceofoperations o0, ..., oi.

The first two requirements can be easily fulfilled if the service is deterministic, but

the last one requires a total order broadcast primitive, which is equivalent to solving

the consensus problem [49].

4.2.4 Blockchains

The concept of blockchain was introduced by Bitcoin to solve the double spending

problemassociatedwith cryptocurrencies inpublicly openpeer-to-peernetworks [72].

A blockchain is an open database that maintains a distributed ledger comprised by a

growing list of records called blocks, each of them containing transactions executed

by the system. This authenticated data structure [82] consists of a sequence of blocks

in which each one contains the cryptographic hash of the previous block in the chain.

A distributed system implements a robust transaction ledger (i.e., a blockchain) if it

satisfies the following two properties (adapted from [43]):

• Persistence: If a correct node reports a ledger that contains a transaction tx in a
blockmore than k blocks away fromtheendof the ledger, then txwill eventually
be reported in the sameposition in the ledger by anyhonest nodeof the system.

• Liveness : If a transaction is provided as input to all correct nodes, then there

exists a correct nodewhowill eventually report this transaction at a blockmore

than k blocks away from the end of the ledger.

Blockchain systems satisfy these properties abiding to either the permissionless or

permissioned models [87]. Permissionless blockchains are maintained across peer-

to-peer networks in a completely decentralized and anonymous manner [72, 89]. In

order to determine the next block to append to the ledger, peers need to execute a

Proof-of-Work (PoW) to create a valid block [43] (or an equivalent mechanism, e.g.,

Proof-of-Stake [44]) that is then disseminated to the network. The key idea behind

the permissionless consensus, employed in Bitcoin and Ethereum, is to prevent an

adversary from creating new blocks faster than honest participants. The first partic-

ipant that finds a solution to a PoW puzzle gets to append its block to the ledger on

all correct peers. Therefore, intuitively, as long as the adversary controls less than

half of the total computing power present in the network, it is unable to tamper with

the ledger.1 This phenomenon also enables participants to establish a total order

on the transactions by adopting the longest ledger with a valid PoW as the de facto

transaction history.

The PoW mechanism makes permissionless blockchains slow and extremely energy

demanding [87]. By contrast, permissioned blockchains do not expend as many re-

sources and are able to reach better transaction latency and throughput. This is be-

cause nodes participating in this type of ledgers execute a traditional BFT consensus

to decide on the next block to be appended to the ledger [36]. However, this ap-

proach requires a consortium of nodes that know each other for executing the con-

sensus protocol. In this scenario, the bound on the adversary’s power is structural,

1In fact the speed of the network also affects the maximum adversarial power tolerated, which is
typically assumed to be much smaller than 50% [43].
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Figure 4.3. BFT-SMaRt ordering message pattern.

not computational, i.e., safety is ensured as long as the adversary controls less than

a fraction of the nodes (usually a third).

4.2.5 BFT-SMaRt

BFT-SMaRt [30] is anopen-source library that implements amodular SMRprotocol [81],

as well as features such as state transfer and group reconfiguration. This library have

been developed by the VEDLIoT team at University of Lisboa during the last decade.

Such development has been funded by multiple previous FP7 and H2020 projects,

e.g., TClouds and SuperCloud. We will use this library to provide fault and intrusion

tolerance for VEDLIoT TMS, therefore, in this section we describe its main features.

SMR protocol.

BFT-SMaRtuses theMod-SMaRtprotocol to implement theSMRproperties described

in the previous section. Mod-SMaRt is a modular SMR protocol that works by execut-

ing a sequence of consensus instances based on the BFT consensus algorithm de-

scribed in [35]. The library implements Byzantine fault-tolerant state machine repli-

cation as described in previous section as long as less than a third of the replicas are

faulty/compromised and the network is good enough to eventually deliver messages

within certain (unknown a priori) time bounds [30]

During normal operation, the resulting communication pattern is similar to the well-

knownPBFT protocol [37] (Figure 4.3). Each consensus instance i beginswith a leader
replica proposing a batch of client operations to be decided within that instance. All

replicas that receive the proposal verify if its sender is correct by exchanging WRITE

messages containing a cryptographic hash of the proposed batch with all other repli-

cas. If a replica receives WRITE messages with the same hash from more than two

thirds of the replicas, it sends a signed ACCEPT message to all others containing this

hash. If a replica receives ACCEPT messages for the same hash from more than two

thirds of the replicas, it delivers the corresponding batch as the decision for this con-

sensus instance, alongside a proof comprised by the set of signed messages received

in this last phase.

If the leader replica is faulty and/or the network experiences a period of asynchrony,

Mod-SMaRt may trigger a synchronization phase to elect a new leader for the con-

sensus instances and synchronize all correct replicas [81].
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Figure 4.4. VEDLIoT Trusted Membership Service (TMS) main modules.

State transfer.

BFT-SMaRt also allows crashed replicas to recover and resumeexecution. This is done

by using an intermediate layer between the Mod-SMaRt protocol and the replicated

service, which is responsible for triggering service checkpoints and managing the re-

quest log.

The library provides two state transfer implementations in this layer. One uses an

approach similar to PBFT that consists of storing the request log in memory which is

periodically truncated after a snapshot of the service state is created. A recovering

replica obtains the state by probing other replicas about their last completed con-

sensus instance and asking f + 1 replicas to send the version of the state up to that

instance.2

The other implementation is the durability layer described in [29]. When this layer is

enabled, BFT-SMaRt stores the request log into stable storage to preserve the ser-

vice state even if all replicas fail by crashing. In order to write requests to disk as

efficiently as possible, delivered requests are written to the durable log in parallel

with their execution by the service. To better exploit the large bandwidth of sta-

ble storage devices, the system tries to write multiple batches at once, diluting the

cost of a synchronous write among many requests. This durability layer also enables

replicas to execute checkpoints at differentmoments of their execution and a collab-

orative state transfer. These features alleviate the performance degradation caused

by checkpoint generation and state transfer when the system is under heavy load.

A more recent work [28] extended BFT-SMaRt to keep a blockchain of transactions

instead of a classical log. This is the version we plan to use for implementing TMS.

4.3 Trusted Membership Service

The VEDLIoT Trusted Membership Service is replicated infrastructure that will sup-

port remote attestation, application membership management, auditable integrity-

protected storage and coordination primitives. These features will be implemented

on each of the replicas in three main modules, as illustrated in Figure 4.4.

The first module, Verifier, is used to support remote attestation, following the ideas

described in Section 4.2.1. This provide operations and functionalities for verifying

the evidence provided by a device for attestation. To do this, the module must be

2In order to render this mechanism as efficient as possible, only one replica sends the entire state,
while other f replicas send only a hash of it [37].
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Figure 4.5. TMS operation for a device joining the IoT application.

pre-configured with endorsements (e.g., devicemanufacturer keys), references (e.g.,

softwaremeasurements) and application-specific policies, defining the requirements

for each attested device to participate on a given application.

The second module is the Coordinator, which provides a key-value store interface en-

riched with a coordination kernel with synchronization power. This data will be kept

in memory for enabling fast reads. This module can be used to store application con-

figuration and some soft coordination data, e.g., the topology of a data aggregation

tree composed by the application devices.

The last module is a blockchain-like Trusted Log used for storing information in an

auditable data-structure. The information stored in this logwill be persisted in stable

storage for ensuring durability, even if all replicas crash (and later recover) [28].

TMS in action.

As explained before, these three modules will be deployed on each of the TMS repli-

caswhere theywill interact locally to process each service request. Since the TMSwill

be implementedon topofBFT-SMaRt, and its extension implementingablockchain [28],

all these requests will be delivered to each replica in the same order, and processed

deterministically.

Figure 4.5 illustrates how a replicated TMS can enable a device to join an application

with zero manual configuration on the device. The process start with the service be-

ing configured by the application owner, which collects information from devices and

software manufacturers for specifying the requirements for a device to participate

on the IoT application. With this information, the TMS can verify if the evidence pro-

vided by D1 is sufficient for including it on a certain application. The result of this

attestation serves as a proof to other devices (e.g., D2 in the figure) that D1 is trust-

worthy enough to be included on the application.

4.3.1 Challenges

Implementing the replicated TMS we are proposing in VEDLIoT requires more than

just the engineering effort of building the three modules described before on top of

BFT-SMaRt. In this section we describe a set of challenges that need to be addressed
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for making a fully-secure implementation of the service. We divided the challenges

in two groups, the more immediate ones, which will be addressed in the first half of

the project for having an usable version of TMS, and the long-term ones, which we

will address not only to improve TMS, but also aiming to advance the state-of-the-art

on BFT replication.

Immediate challenges.

There are two practical challenges that need to be solved for a replicated/BFT TMS

to fully implement a remote attestation verifier [31]. Both of them are related with

the determinism requirement of state machine replication. The first one is how to

generate a secure timestamp relatively close to real time for registering the events

stored in the system (e.g., join, leave, some data update) and ensure freshness for the

remote attestation protocol messages. The challenge here is that clock reads on the

different replicaswill bedifferent, so a robustmethodneed tobeused for consolidat-

ing a single timestamp that is not subject to manipulation by compromised replicas.

Existing solutions for this typically employ a leader-generated timestampp [37] or re-

quire an additional protocol for approximate agreement on the clock values. Wehave

to investigate and implement amethod that is, at the same time, efficient and robust

enough to be used in TMS.

The second challenge is similar, but related with adversary-resilient nonce genera-

tion. Nonces, in this case, should be random values generated by the replica group in

an unpredictable way, even if some of the replicas are compromised by an adversary.

To solve this we plan to investigate ways to get different random numbers from dif-

ferent replicas and generate a single nonce based on these. We believe a solution to

the timestamp problem could also be used for nonce generation.

Long-term challenges.

Besides the immediate problems that need to be addressed for implementing TMS,

we also want to advance the state-of-the-art on BFT replication by supporting two

non-functional requirements that are not yet properly addressed in BFT state ma-

chine replication.

The first one is how to ensure the confidentiality on the data stored on a replicated

service. Typically, BFT SMRmaintains the integrity and availability of a secure service

even if a fraction of the replicas fails in an arbitrary/Byzantine way (due to acciden-

tal or malicious events) [62, 37]. However, when considering the implementation of

intrusion-tolerant services [42], BFT SMR systems do not provide any means for se-

curing the confidentiality of the data kept in the service (i.e., its state) in face of com-

promises. For example, if a single replica of our proposed TMS is compromised, the

adversary can access all the data stored in its three modules. In VEDLIoT, we are in-

vestigating ways to integrate secret sharing protocols [80] on BFT SMR for ensuring

confidentiality of stored data.

A second challengewewant to address is how to improve the scalability ofBFT-SMaRt

(and consequently, TMS) in terms of the number of replicas supported by the sys-

tem. As can be seem in Figure 4.3, BFT state machine replication typically require

replicas to exchange a large number of messages to reach consensus. In particular,

BFT-SMaRt requires a quadratic number of messages (on the number of replicas) to

be exchanged for establishing agreement on the next batch of messages to be pro-
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cessed. Although the performance of such protocols for small replica groups (< 10
replicas) is considered sufficient for most applications [30, 28], when a large group

of replicas is considered, or when these replicas are deployed in different geographi-

cal locations, this negatively impact the performance of the protocol. In VEDLIoT we

want to investigate newprobabilistic agreement protocols that scale betterwhenwe

using 10s to 100s of machines, without sacrificing latency (as done in many works ad-

dressing this problem, e.g., [90]), since TMS operates in an IoT environment scenarios

where fast response is important.

4.4 Closing Remarks

This chapter presented theTrustedMembership Service (TMS), a componentwewant

to introduce in the VEDLIoT architecture for securely manage devices on IoT appli-

cation. TMS will implement features such as remote attestation, coordination, and

auditable storage (of small data and configurations). We outlined the design of the

systemtobe implemented in adecentralizedway, usingBFT-SMaRt, aByzantine fault-

tolerant replicated library [30]. The implementationof the service just startedandwe

expect to report it on future deliverables of WP5. We also presented a set of chal-

lenges that we plan to address during the implementation of TMS. We also expect to

report on these challenges on papers and future VEDLIoT deliverables.
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5 Embedded Trusted Execution Environment

The demand for lightweight trusted execution environments (TEEs) for networked

embeddedmicrocontrollers (i.e., the Internet of Things) has drastically increasedover

the last few years. The ARMCortex-M processor core series are themarket leader for

low-power networked embedded devices and are the first to introduce TrustZone

for Cortex-M, a set of hardware extensions which enable the construction of TEEs

for low-power embedded devices. The RISC-V ISA is an emerging open-source archi-

tecture and differentiates itself from existing instruction sets, such as ARM and x86,

through its extensibility. Bare-metal embedded devices with a single privilege level

can be built with only the core ISA. In many use cases, these devices are synthesized

on FPGAs to reduce time-to-market, and to reserve the possibility of patching the

hardware post-production.

Several FPGA-ready open-source RISC-V implementations have been developed, such

as the Rocket Chip [26] and LiteX SoC with VexRiscv core [59]. These projects have

greatly improved RISC-V’s accessibility as a platform for research in computer archi-

tecture. The free and open RISC-V ISA is rapidly gaining market share in the soft pro-

cessor space, but the community has yet to ratify a TEE extension. In VEDLIoT’sWork

Package 5, we areworking on the first design of RISC-V’s physical memory protection

(PMP) hardware, which is optimized for FPGAs. We discuss the background, design,

and initial implementation of the work in the following sections of this chapter.

5.1 Threat Landscape

The global trend of automating industrial practices with large-scale direct communi-

cation between machines over the Internet has dramatically altered the modern cy-

ber threatscape. Society is now in need of embedded systems capable of both over-

the-air (OTA) updates and remote attestation to maintain the growing fleet of IoT

devices. These features allow operators to patch vulnerabilities, recover from a com-

promise and verify device integrity without resorting to costly and labour-intensive

physical inspections. Despite the need, few embedded devices can perform these

operations, since they require hardware-enforced isolation guarantees. Trusted Exe-

cution Environments (TEE) or enclaves, provide a virtual runtime for critical software

and can be used to isolate key storage, the secure bootloader, OTA update mecha-

nisms and remote attestation software. With TEEs, if an attacker gains control of the

OS, the compromised device will be unable to attest its own integrity nor to prevent

the owner from remotely restoring the device.

FPGAs are widely used in both consumer and industrial embedded systems. They

are components in virtually all of the European Space Agency’s hardware, and are

viewed by the ESA as a key enabler of Space 4.0 [83, 33]. Intel and Xilinx, two leading

FPGA technology firms, both offer ISO 26262-certified chips for automotive applica-

tions [14, 16]. They have even been used as baseboardmanagement controllers [19],

which provide remote administrator access to servers via themotherboard. With the

proliferation of networked FPGAs in critical applications, strong security for soft pro-

cessors must become a priority. Often, a soft processor can fill design gaps where a

finite statemachinewould be too complex for the task, yet anoff-the-shelfMCU lacks

theneededversatility. In someuse cases, the ability to remotelymodify thehardware

34



D5.1 Version 1

itself is desirable, which is only possible on FPGAs. A safety- or security-critical bug

in an ASIC could lead to the recall of an entire vehicle fleet, or permanently disable

a satellite. After the discovery of the Meltdown and Spectre vulnerabilities in vir-

tually all multi-core speculative processors [60, 68], this possibility should be taken

seriously. Though FPGA-based soft processors are generally more expensive, slower,

and less efficient than ASICs, their popularity is steadily growing and will continue to

do so for the foreseeable future.

There are a handful of well-established, free and open ISAs available for use in soft

processors, such as Power ISA, OpenRISC 1000 and Lattice Mico32 [15, 20, 18]. How-

ever, RISC-V, a relative newcomer, has rapidly gainedmarket share due to its uniquely

democratic process of revision and ratification, which promotes community engage-

ment [13]. Revisions to the RISC-V ISA are made through public working group (WG)

discussions and pull requests on the specification’s GitHub repository. Implementers

must adhere to the specification to take advantage of the compiler toolchains and

operating system ports in the RISC-V ecosystem, but there are no contractual obliga-

tions to do so. There are ongoing discussions in the RISC-V TEE WG on how best to

facilitate enclave support. We have designed optimizations for a proposal from that

WG – Physical Memory Protection (PMP) and investigate its implications for soft pro-

cessors. Our novel microarchitectural optimizations aim at reducing the overhead of

PMP on FPGAs. We also plan on continuing this development to the Memory Protec-

tion Unit (previously known as supervisor physical memory protection - sPMP) which

is an extension of the existing PMP hardware in RISC-V. It will enable secure and effi-

cient code compartmentalization on embedded soft processors.

5.2 Physical Memory Protection in RISC-V

The RISC-V specification defines a physical memory protection extension which al-

lows machine (M) mode to place R/W/X restrictions on lower privilege levels for arbi-

trary memory regions. M-mode can also lock regions, which applies the restrictions

to all privilege levels until reset. On a multi-core system, each core has its own ded-

icated PMP unit. In embedded systems with memory-mapped IO, PMP is also used

to restrict access to peripherals from unprivileged code. Regions are defined with

two sets of control status registers (CSRs). The permissions and addressing modes

for each region are defined in an 8-byte segment of the pmpcfg CSRs, while the base

address is written to a pmpaddr CSR in an encoded format, depending on the mode.

These are:

• TOR (Top of range): The region ends at the specified address, and starts at the

end of the previous region.

• NA4 (Naturally-aligned 4-byte): The region starts at the specified address and

is four bytes wide.

• NAPOT (Naturally-aligned power-of-two): The pmpaddr CSR contains both the

start address and the size of the region, which is encoded as the number of

trailing ones.

5.3 SpinalHDL

SpinalHDL is an open-source Scala-based hardware description language that allows

developers to borrow concepts from functional and object-oriented programming. It
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is specifically designed for FPGAdevelopment. The SpinalHDL compiler can generate

both VHDL and Verilog code from Scala source files.

5.4 VexRiscv

VexRiscv is an open-source RISC-V processor written in SpinalHDL. In 2018, it was

awardedfirst place in theRISC-VFoundation’s SoftCPUcontest for achieving thehigh-

est performance on both Lattice and Microsemi FPGAs [12]. It can be scaled to fit a

wide range of use cases, from highly constrained bare-metal embedded applications

to multi-core Linux with the same code base. VexRiscv takes a uniquely software-

inspired approach to hardware description. Virtually every component is a plug-in

object connected to one or more stages in the pipeline. Plug-ins can insert data into

the pipeline at one stage, and VexRiscv will automatically propagate those signals

through down the pipeline to be accessed by later stages. Plug-ins can also provide

services, which are essentially APIs for other plug-ins to interact with. The result is a

highly configurable CPU where everything down to the register file can be changed.

5.5 LiteX

LiteX is an open-source Python-based system-onchip (SoC) builder and is compati-

ble with FPGAs from several vendors (e.g., Intel, Lattice, Microchip, Xilinx, etc.). The

LiteX toolbox includes support for many peripherals (DRAM, Ethernet, SATA, USB,

PCIe, etc.), enabling fast prototyping of complex SoC designs. Developers can choose

from an array of RISC-V CPUs (VexRiscv, Rocket, PicoRV32, etc.) or import their own

Wishbone-compatible Verilog design. LiteX is used in both commercial products and

research projects, such as theKestrel SoftBMC, TimVideos recording/streaming hard-

ware and the LiteX Row Hammer Tester from Antmicro. In this work, we build our

designs for a Xilinx Artix-7 FPGA with Vivado Design Suite 2017.1.

5.6 Zephyr RTOS

Embedded Real-timeOperating Systems (RTOS) utilizememory protection hardware

to isolate threads from kernel memory. This is an energy and cost-saving alterna-

tive toMMU-backedprocess isolation (e.g., Linux) becausewithout virtual addressing,

one can forgo page tables and a TLB. Zephyr RTOS, which runs on VexRiscv has kernel

support for PMP. Each userspace thread requires, at minimum, three dedicated pro-

tection regions: one for global read-only data, an execute-only code region and one

for thread stack memory (non-executable). The OS can assign any remaining regions

tomultiple threads for use as a shared buffer. On every context switch, the PMP con-

trol registers areoverwrittenwith thenext scheduleduserspace thread’s bounds. We

use Zephyr’s PMP concepts and usage to contextualize our hardware optimizations.

5.7 PMP Implementation in SpinalHDL for VexRiscv

In this section, we present our design and optimizations of PMP in SpinalHDL for

VexRiscv. In order to establish the current state-of-the-art, we first analyzed three

existing open-source implementations of PMP on other CPU cores:

• Rocket is an ASIC-optimized core written in Chisel [17].

• Ariane is a 6-stage core written in SystemVerilog [92].
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• NEORV32 is a 2-stage core written in VHDL [73].

Each of these CPU cores implement PMP support in roughly the same way. A dedi-

cated decoder unit (DU) is duplicated for each protection region, which translates the

PMP control registers into region bounds. The set of region bounds and permissions

are inputs to a permission checker unit (PCU), which is duplicated for each memory

port. The PCUs use purely combinatorial logic to determine the read, write and exe-

cute permissions for each memory access request in a single CPU cycle. To get a per-

formance baseline for our optimization efforts, we initially followed the purely com-

binatorial approach to PMP for our VexRiscv implementation, as was done in other

open-source projects. We synthesized the full CPU with a LiteX SoC for an Artix-7

A35TFPGAand found that thehardware footprint,measured in termsof lookup table

(LUT) utilization, is nearly doubled with the addition of a fully-featured PMP plug-in.

We then designed a series of optimizations based on region alignment, addressing

modes, granularity, logic, etc. We discuss a few of them below.

The PMP implementations used in other open-source projects use purely combinato-

rial logic. Each protection region has its own dedicated DU, which is problematic for

FPGA synthesis. This component contains word-sized arithmetic operations, each of

which occupy several CLBs when synthesized for our target platform. Each region is

configured by an 8-bit field in a pmpcfg register, so up to four regions can be simulta-

neously modified on a 32-bit machine (e.g., VexRiscv). This means that on any given

CPU cycle, there are at most four DUs computing new region bounds; the rest are

idle. We observe that, in fact, a single DU is sufficient to reprogram all PMP regions if

the CSR writes are done sequentially. Our solution introduces a finite state machine

which inserts pipeline stalls as it moves the single DU from one region to the next.

This distributes the operation over several cycles. As a result of these optimizations

we have roughly halved PMP’s hardware footprint on our target FPGA in exchange

for what is essentially a marginal increase in context switch latency. On Artix-7 archi-

tectures, it is much more efficient to store data arrays (e.g., the pmpaddrN registers)

in distributed RAM rather than registers. For example, a 32 × 6-bit dual-port RAM can

be implemented with just 4 LUTs [21]. In the initial implementation, every pmpaddr

register is accessed in parallel. In order to make use of distributed RAM, these must

be accessedoneor two at a time. Our sequential DUoptimization does precisely that.

Our PMP implementation is with 4-byte granularity and 16 regions. Future versions

of the PMP specifications are expected to support 64 regions.

5.8 Closing remarks

The future of this research includes extending PMP to implement the features of the

proposed Memory Protection Unit (MPU) extension. This entails adding a new set of

supervisor-accessible CSRs and another layer to the permission checking logic. Since

MPU registers are encoded in the same way as the existing PMP registers, a single

sequential decoder unit can be shared between the two plug-ins. As this proposal is

still verymuch in flux, we’ve omitted a fewnuances and areworking on implementing

only the core functionality where the MPU behaves almost identically to PMP, but

there is no lockingoption. TheMPUwouldenable settingupTrustedExecutionStates

(TES) in RISC-V based embedded systems. Another direction for TES research in this

work-package is developing a fine-grained separation of resources and peripherals

in trusted regions of embedded devices. The TES can also be used to enable remote
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attestation for low-end IoT devices.
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6 Custom Function Unit Support in Renode

Renode [24] is an open source, software-agnostic simulation framework created by

Antmicro that provides plug-and-play building blocks for creating custom, single or

multi-node, virtual hardware setups. It provides access to extensive debugging, trac-

ing and analysis functionalities, and can be integrated with local infrastructure for an

automated, Continuous Integration-drivendevelopment and testingflow. It supports

a broad range of the most popular architectures, e.g. Arm, RISC-V, OpenPOWER,

provides full determinism of execution and ensures that the developed software be-

haves just as if it was running on real hardware.

Besides a range of SoCs, Renode supports various sensors, enabling developers to

feed their systems with real video, audio, accelerometer and other types of data.

This allows for automated testing of real-life scenarios, without the need of prepar-

ing Renode-specific software versions. This capability of employing sensor data and

workingwith the same software that is running on target hardware is used by a range

of organizations focused on Machine Learning. For example, Renode is part of the

Continuous Integration system of TensorFlow Lite Micro, a popular Machine Learn-

ing framework for MCUs.

Renode allows users to freely combine CPUs, SoC inputs/outputs and peripherals to

create complex, heterogeneous systems that can be easily modified without hav-

ing to deal with tedious manual reconfiguration, flashing and resetting of physical

boards. It is also very often used for design space exploration, allowing evaluators

to come up with better architectures for their new products. Moreover, Renode can

help developers facing lowavailability of hardware, or even enable software develop-

ment before the hardware is on themarket, whichwasmost prominently exemplified

by Renode’s pre-silicon support for Microchip’s PolarFire SoC, a RISC-V FPGA SoC.

A single emulated machine in Renode consists of several key elements - one or more

CPU cores in one of the supported architectures, memory blocks and peripherals.

Different blocks can be combined together in a Renode Platform file, reflecting the

memory map of a specific SoC. These files can be easily adjusted by users, allowing

them to introduce changes or improvements to emulated platforms.

Renode is an Instruction Set Simulator, which means it does not try to reflect the

internal processing of the CPU or peripheral blocks. From the CPU perspective, it

works on an instruction level, keeping track of the user-visible state. The peripherals,

on theother hand, aremodeledon the register level - their behavior is consistentwith

the actual hardware, but the internal operation, timing of events, etc. may not always

reflect the real IP. This level of simulation is a good compromise between fidelity and

performance.

CPUemulation is performedusing the binary translation technique - Renode analyzes

the machine code of the loaded software and translates it into the machine code of

the host machine (typically AMD64). This allows for very efficient execution of the

guest code. The translator is implemented in C, ensuring high performance of the

process.

Peripheral devices are usually modeled in C#. Apart from the registers, peripherals
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can expose interrupt and GPIO lines, or any other external interface that is needed.

Thehigh level programming languageused formodelingmakes this process relatively

easy compared to modeling in lower level languages.

Within the VEDLIoT project, Renode aims to support developers with testing and de-

bugging capabilities, especially in the area of edge AI development.

6.1 Custom Function Unit

With the emergence of tiny ML solutions, designers are more and more inclined to-

wards using custom accelerators to increase their small systems’ capabilities. There

aremany hardware accelerators dedicated to offload edgeAI computation, but these

generic solutions do not always address the needs of very specific tiny ML applica-

tions.

The emergence of RISC-V ISA, defined with extendibility in mind, allows designers to

create very customaccelerators, tailored to their requirements. They can add specific

instructions, occupying the unused opcode space in the ISA to offload complex oper-

ations that are common in their use case. While technically possible, this process can

be difficult without proper organization and support, both from the hardware and

the software perspective. Without a proper standard to describe such accelerators,

designers need to spend time defining and implementing interfaces that could other-

wise be reused and shared among the community. To address this problem, a RISC-V

FPGA Soft ProcessorWorking Group (with an active participation fromAntmicro) pre-

pared a draft RISC-V Custom Function Unit (CFU) Specification.

6.1.1 RISC-V CFU specification

ACustomFunction Unit is a hardware implementation of some algorithm that is iden-

tified as “hot” in a specific use case. The designer creating a CFU aims to reduce the

load of the CPU bymoving several steps of the original solution to a faster, hardware-

based implementation.

The goal of the CFU specification is to define interfaces and composition methods of

Custom Function Units. The specification defines signals, software primitives, meta-

data and composition rules for CFUs.

The specification defines CFUs as hardware cores that:

• Accept requests and produce responses;

• May be either stateless or stateful;

• Do not have direct access to the systemmemory;

• Do not have access to internal CPU state, apart from the parameters passed to

them.

Included in the draft are the definitions of the logic interface, the software inter-

face, instruction encoding and CPU/CFUmetadata for automated block composition.

While this is still work in progress and the specification is not ratified as an official

RISC-V extension, practical implementations of the draft are available, with the most

prominentbeing theCFUPlaygroundproject [46] byGoogle (also supportedbyAntmi-

cro).
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Figure 6.1. CPU/CFU complex

6.1.1.1 CFU Logic Interface (CFU-LI)

The CFU-LI defines ways to connect CPUs and CFUs together. The specification de-

fines that the CPU always serves as the initiator of communication and the CFU re-

sponds to CPU’s requests. The interface is layered into 5 levels:

• Level 0, for single-cycle combinational operations

• Level 1, for fixed-latency, pipelined operations with in-order completion

• Level 2, for variable-latency, possibly pipelined, in order operations with op-

tional CFU backpressure

• Level 3, for variable-latency, possibly pipelined, in order operations with op-

tional CFU and CPU backpressure

• Level 4, for variable-latency, possibly pipelined, in-order issue/out-of-order com-

pletion, non-cancellable operations, with CFU and CPU backpressure

The increased level of complexity of these levels is reflected in the number of sig-

nals required to connect the CFU and the CPU, starting from 6 signals for Level 0 and

ending with 16 signals for Level 4.

6.1.1.2 Software interface

The CFU specification has to address several aspects of the software interface:

• A system may include many CFU units. They have to be selectable by the soft-

ware

• A CFUmay support many distinct operations (e.g. initialization, specific calcula-

tions, etc)

• A CFU may support multiple, selectable contexts with internal state

• A CFU request may fail, either due to improper internal state or an invalid call

(e.g. wrong CFU unit selected)
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RISC-V allows for custom instructions to be placed in any empty slot of the opcode

space. The CFU specification, however, assumes that specific custom-0 and custom-1

opcodes (as defined by the RISC-V ISA) will be used for CFUs.

The custom-0 instructions follow the RISC-V R instruction format, with the following

operands:

• rs1, rs2 - CPU registers which values should be passed to the CFU

• cfid - the CFU function ID

• rd - the CPU registers to hold the result of the operation

The custom-1 instructions follow the RISC-V I instruction format, with the following

operands:

• rs1 - the CPU register which value should be passed to the CFU

• imm - an immediate value

• cfid - the CFU function ID

• rd - the CPU registers to hold the result of the operation

To supportmultiple CFU units withmultiple contexts, a newmachine-level CSR is pro-

posed: mcfu_ctrl, with the following structure:

• [7:0] cfu_index

• [15:8] reserved

• [23:16] state_index

• [31:24] reserved

Since the CFU specification is still a draft, there aremany aspects to the interface that

are not yet defined: CFU discovery process, multi-hart support, different privilege

level support etc. These details, while very important for physical implementation of

CFUs, should not influence the emulation in a significant way.

6.2 Renode CFU integration

6.2.1 Current state

Since RISC-V ISA is designed to be extensible, Renode provides several features to

help users take advantage of this possibility. The most important feature in this con-

text is the ability to define custom instructions.

Renode users can define custom instructions in two ways:

• they can be implemented in C#, with full access to the rest of the framework,
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• they can be implemented in Python, trading some flexibility and performance

for the ease of prototyping.

To define a custom instruction, the user has to provide a masked instruction pattern

(specifying required zeros and ones) and the actual implementation. It is worth not-

ing that neither Python nor C# implementations require recompilation of Renode -

everything can be loaded in runtime. Both of these approaches are well suited for

CFU modeling. The current custom instruction support has two drawbacks that are

going to be addressed in the course of the project.

6.2.1.1 Lack of dedicated CFU abstraction

Even though the CFU interface is currently being specified, users wanting to imple-

ment CFU functions in Renode cannot benefit from it. As the Renode custom instruc-

tion API is generic, each custom instruction has to perform the same routine of op-

code parsing, arguments extraction and validation, etc. One of the preliminary goals

to be achieved as part of VEDLIoT is to design and implement a CFU interface that

will reduce the complexity of implementation of specific units.

6.2.1.2 Lack of Verilator support for CPU instructions

Custom Function Units are designed to perform arithmetic or logic operations, and

theyareusually developed in ahardwaredescription languagebyappropriately skilled

engineers. Requiring them to reimplement their HDL logic in C# or Python might

prove to be a barrier reducing the adoption of Renode in their workflows. Moreover,

if the implementation is developed in HDL first, then keeping both implementations

synchronized requires additional maintenance work. If we consider the HDL imple-

mentation of CFU to be “software,” then requiring users to reimplement them in

higher level language violates one of Renode principles - run the same software that

runs on hardware. For this purpose, this task aims to introduce an interface to allow

HDL CFU implementation to work with Renode.

6.2.2 Verilog support in Renode

Renode is able to use memory-mapped peripheral models written in Verilog, via Ver-

ilator. Verilator is an open-source tool that translates Verilog into C++ or SystemC

behavioral models. It is commonly used for simulation and testing of Verilog code, as

it offers higher performance than event-driven logic simulators. HDL code translated

with Verilator is commonly referred to as “verilated code.”

To connect a verilated IP with Renode, the user needs to compile it against Renode’s

integration library. This shim layer enables simulation of:

• AXI4-Lite

• WishBone

• AXI4

Communication between Renode and the verilated block is executed via network

sockets.
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6.2.3 Road towards CFU in Renode

To fully enable CFU support in Renode, two main tasks must be completed: adding

support for an API-based integration (in contrast to the current socket-based one)

and adding support for custom instructions handling.

6.2.3.1 API-based integration

As presented in the picture above, communication between Renode and a verilated

IP is executed over two or more sockets. There are two main important features of

this approach:

• Socket based communication enables distributed processing. This feature is im-

portant if we consider computation-heavy peripherals that are easier to simu-

lateona remote,moreperformantmachine then theoneusedby thedeveloper.

On the other hand, we expect CFUs to be much simpler than peripherals. They

should not require excessive processing power to complete an operation in a

reasonable time.

• Socket based communication introduces additional processing overhead. Ver-

ilated peripherals in Renode are accessed in two situations: after a certain pe-

riod of time and when the CPU tries to interact with them. While the CPU inter-

action depends solely on the software running on the emulated platform, the

periodic communication can be configured according to the user’s needs. Usu-

ally the user would prefer less frequent communication, trading fidelity for per-

formance. It is assumed that the communication overhead is negligible in com-

parison to the actual processing time of verilated blocks. With the CFU units,

however, therewill be no periodic communication - they are accessedwhenever

a given CPU instruction is encountered. Since AI processing typically focuses on

computation instead of peripheral access, with CFUs designed to offload most

common instructions, it is assumed that accesses to verilated blocks will be fre-

quent. This leads toa conclusion that socket-induceddelaymightgreatly impact

the whole emulation performance.

With this in mind, it was decided that a new interface will be designed, allowing veri-

lated blocks to be connected over API instead of sockets.
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TheAPIwasdesignedand the implementation is ongoing. Oneof themain challenges

of this task is to hide the complexity of implementation from users attempting to

connect their verilated models to the Renode’s shim layer.

6.2.3.2 Verilated custom instructions

The current Verilator interface layer in Renode enables communication with perifer-

als connected through a hardware bus. CFUs are designed as part of the processor

pipeline, thus they do not fit in the currently available scenario. This task aims to

define a new interface layer and integrate it with the current shim integration code.

TheAPI is expected to be simple. It will implement the register- and immediate-based

functions, exception handling, register access and logging capability. The API will fo-

cus on Feature Level 0, allowing the user to create combinatorial custom function

units. Further levels will be considered at a later stage of the project.

6.3 Closing remarks

During the course of the project we improved the interface Renode uses to connect

to verilated peripherals. We moved from a socket-based connection to a native API-

based one, allowing us for more performant co-simulation. This will be a basis for

future CFU connection. We introducedmany improvements in the bus protocols han-

dling and tested new scenarios of usage. Furthermore, we ported the support for

co-simulation with verilated peripherals to Windows and macOS. All changes were

released publicly as part of Renode repositories.

Future work will begin with designing and implementing the CFU interface. We will

prepare an automated infrastructure for testing of the correctness of calculations

and performance of the integrated setup. As a reference for CFU accelerator imple-

mentations we will use the CFU Playground project [46]. As a follow-up, more CFU

interface levels will be implemented to allow for more complex scenarios to be co-

simulated with Renode. With these capabilities in place we will be able to focus on

simulation of the SoC developed as part of Task 4.7.
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7 Main achievements and future work

In the first 9 months of VEDLIoT, we started working in most tasks of Work Package

5 (some tasks initiated in month 7). Task 5.4 only starts in month 18. This document

explained how the work is organised into tasks in the Introduction (Chapter 2). Fol-

lowing chapters reported the research and development work undertaken.

In Chapter 3, we presented our work on providing Twine, a trusted execution envi-

ronment that is adapted to executing edge applications on Intel processors. We de-

signed, implemented, and evaluated our implementation, and published a scientific

paper describing our results. We are nowworking on a second component, fitted for

ARM processors, that will be presented in the upcoming deliverables. We reuse part

of Twine in this new component, andwe are addingmany functions for implementing

remote attestation, which are absent in ARM processors.

We developed a highly optimised RISC-V physical memory protection as an exten-

sion to the RISC-V architecture, presented in Chapter 5. Our memory protection will

be able to offer similar guarantees as found in ARM processors, and support simi-

lar attestation procedures as being currently developed in this Work Package. Our

memory protection implementation is part of the latest VexRiscv (an open-source

RISC-V soft processor) and the source code is openly available, with documentation

and many links to supplementary materials. In the next steps, we intend to enhance

ourmemoryprotection for establishing trustedexecution states, allowing for simpler

implementation when using user-space software.

In Chapter 4we outlined the design of a trustedmembership service to improve the

security of distributed IoT applications. As discussed there, in the comingmonths we

will be implementing a prototype of such service, targeting first a small number of

replicas and connected devices. In parallel, we are investigating how to support this

type of intrusion-tolerant, blockchain-like service in amore scalable way and preserv-

ing data confidentiality in case of successful attacks. Furthermore, we are also work-

ing on a robustnessmonitoring support for deep learning applications. Ourfirst ideas

are to monitor, detect and compensate bit flips and other non-malicious failures on

devices. We expect to report progress on these efforts in the next Work Package 5

deliverables.

The improvements we developed for the Renode framework, an open-source simu-

lator for complex embedded systems, are presented in Chapter 6. We worked on im-

proving Renode with new features for custom function units, a mechanism very use-

ful to expand aCPUwith custom instructions to acceleratemachine learning. Support

for custom function units is based on Renode’s integration with Verilator, a tool used

to simulate peripherals with models written in Verilog. We improved the interface

Renode uses to connect to Verilator peripherals and introducedmany improvements

in the protocols involved, and all changes were released publicly. For the near future,

we will design and implement the actual custom function unit interface, along with

an automated infrastructure for testing and benchmarking. This implementation will

allow for more complex scenarios to be simulated with Renode, as the ones under

development in Work Package 4.

46



D5.1 Version 1

8 References

[1] Binaryen, a compiler and toolchain for Wasm. Accessed on: Oct. 13, 2020.

[2] CoreOS etcd. https://github.com/coreos/etcd/.

[3] Cranelift, a code generator. Accessed on: Oct. 8, 2020.

[4] Lucet, a native WebAssembly compiler and runtime. Accessed on: Oct. 9, 2020.

[5] SQLite, measuring and Reducing CPU Usage. Accessed on: Oct. 14, 2020.

[6] Wasm3, the fastest WebAssembly interpreter. Accessed on: Oct. 10, 2020.

[7] Wasmer, a runtime for WebAssembly. Accessed on: Oct. 8, 2020.

[8] Wasmtime, runtime for WebAssembly & WASI. Accessed on: Oct. 9.2021.

[9] WAVM, a WebAssembly Virtual Machine. Accessed on: Oct. 14, 2020.

[10] WebAssembly Micro Runtime. Accessed on: Oct. 8, 2020.

[11] WebAssembly System Interface — WASI Application ABI, September 2020. Ac-

cessed on: Oct. 14, 2020.

[12] Alicia Daleiden. RISC-V SoftCPU Contest Highlights, December 2018.

[13] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual Vol-

ume I: Unprivileged ISA, December 2019.

[14] Giulio Corradi and Steven McNeil. Xilinx Reduces Risk and Increases Efficiency

for IEC61508 and ISO26262 Certified Safety Applications, October 2020.

[15] Intel. Nios® II Processor Reference Guide, October 2020.

[16] Intel Newsroom. Altera Functional Safety Package Combines FPGA Flexibility

with ‘Lockstep’ Processor Solution to Reduce Risk and Time-to-Market, Novem-

ber 2015.

[17] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, JohnHauser, Adam Izraele-

vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric

Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,

David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo and

AndrewWaterman. The Rocket Chip Generator, April 2016.

[18] Lattice Semiconductor Corporation . LatticeMico32 Processor Reference Man-

ual, December 2012.

[19] Michael Larabel. Raptor Announces Kestrel Open-Source, Open HDL/Firmware

Soft BMC, January 2021.

[20] Opencores . OpenRISC 1000 Architecture Manual, January 2003.

47

https://github.com/coreos/etcd/


D5.1 Version 1

[21] Xilinx . 7 Series FPGAs Configurable Logic Block, September 2016.

[22] Advanced Micro Devices. Secure Encrypted Virtualization API: Technical pre-

view. Technical Report 55766, Advanced Micro Devices, July 2019.

[23] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. OBLIVIATE: A Data Oblivious Filesystem for Intel SGX. In NDSS, 2018.

[24] Antmicro. Renode. Accessed on: Jul. 1, 2021.

[25] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L. Still-

well, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof

Fetzer. SCONE: Secure linux containers with intel SGX. In USENIX OSDI’16.

[26] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, JohnHauser, Adam Izraele-

vitz, et al. The rocket chip generator. EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[27] Alysson Bessani, Eduardo Alchieri, Miguel Correia, and Joni S. Fraga. DepSpace:

a Byzantine fault-tolerant coordination service. In Proc. of the 3rd ACMEuropean

Systems Conference – EuroSys’08, pages 163–176, April 2008.

[28] Alysson Bessani, Eduardo Alchieri, Joao Sousa, AndreOliveira, and Fernando Pe-

done. From Byzantine replication to blockchain: Consensus is only the begin-

ning. In Proc. of the 50th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks, June 2020.

[29] Alysson Bessani, Marcel Santos, Joao Felix, Nuno Neves, andMiguel Correia. On

the efficiency of durable state machine replication. In Proceedings of the 2013

USENIX Annual Technical Conference, San Jose, CA, USA, 2013.

[30] AlyssonBessani, Joao Sousa, and EduardoAlchieri. Statemachine replication for

the masses with BFT-SMaRt. In Proc. of the IEEE/IFIP International Conference on

Dependable Systems and Networks – DSN 2014, June 2014.

[31] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan. Remote attestation

procedures architecture, 2021.

[32] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,

Kari Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable

Side-Channel Protection for SGX Using Data Location Randomization. In ACSAC

’19.

[33] Klemen Bravhar, Victor Martins, Lucana Santos, and David Merodio Codinachs.

Brave ng-medium fpga reconfiguration through spacewire: example use case

and performance analysis. In 2018 NASA/ESA Conference on Adaptive Hardware

and Systems (AHS), pages 135–141. IEEE, 2018.

[34] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.

In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-

tation (OSDI ’06), pages 335–350, 2006.

48



D5.1 Version 1

[35] Christian Cachin. Yet another visit to Paxos. Technical Report RZ 3754, IBM

Research Zurich, 2009.

[36] Christian Cachin and Marko Vukolic. Blockchain consensus protocol in the wild

(invitedpaper). InProceedings of the 31th International SymposiumonDistributed

Computing, Vienna, Austria, 2017.

[37] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proc.

of the USENIX Symposium on Operating Systems Design and Implementation, New

Orleans, Louisiana, USA, 1999.

[38] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A Practical Library

OS for Unmodified Applications on SGX. In USENIX ATC’17.

[39] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint

Archive, Report 2016/086, 2016. https://eprint.iacr.org/2016/086.

[40] Tobias Distler, Christopher Bahn, Alysson Bessani, Frank Fischer, and Flavio Jun-

queira. Extensible distributed coordination. In Proc. of the 10th ACM European

Systems Conference – EuroSys’15, April 2015.

[41] Brendan Eich. From ASM.js to WebAssembly, June 2015.

[42] Joni Silva Fraga and David Powell. A fault- and intrusion-tolerant file system.

In Proceedings of the 3rd International Conference on Computer Security, pages

203–218, 1985.

[43] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-

col: Analysis and applications. In Proceedings of the 34th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Sofia,

Bulgaria, 2015.

[44] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of

the 26th Symposium on Operating Systems Principles, Shanghai, China, 2017.

[45] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. AccTEE: A

WebAssembly-based two-way sandbox for trusted resource accounting. In ACM

Middleware’19.

[46] Google. Cfu playground. Accessed on: Jul. 1, 2021.

[47] F. Gregor,W.Ozga, S. Vaucher, R. Pires, D. LeQuoc, S. Arnautov, A.Martin, V. Schi-

avoni, P. Felber, and C. Fetzer. Trust management as a service: Enabling trusted

execution in the face of Byzantine stakeholders. In IEEE/IFIP DSN’20.

[48] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to

speed with WebAssembly. In PLDI’17.

[49] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related prob-

lems. In Sape Mullender, editor, Distributed Systems (2nd Ed.), pages 97–145.

ACM Press/Addison-Wesley Publishing Co., 1993.

49

https://eprint.iacr.org/2016/086


D5.1 Version 1

[50] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Programing

Languages and Systems, 13(1):124–149, 1991.

[51] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3):463–492, 1990.

[52] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free coordina-

tion for Internet-scale systems. In Proceedings of the 2010 USENIX Annual Tech-

nical Conference (ATC ’10), pages 145–158, 2010.

[53] Intel Corporation. Intel processors with SGX extensions. Accessed on: Jan. 18,

2021.

[54] Intel Corporation. Overview of Intel Protected File System Library Using SGX,

December 2016.

[55] Intel Corporation. Intel Software Guard Extensions (Intel SGX) SDK for Linux OS

— Developer Reference, August 2020. version 2.11.

[56] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so fast:

Analyzing the performance of WebAssembly vs. native code. In USENIX ATC’19.

[57] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-

performance broadcast for primary-backup systems. In Proceedings of the 41st

International Conference on Dependable Systems and Networks (DSN ’11), pages

245–256, 2011.

[58] L. Junyan, X. Shiguo, and L. Yijie. Application research of embedded database

SQLite. In 2009 International Forum on Information Technology and Applications,

volume 2, pages 539–543, 2009.

[59] Florent Kermarrec, Sébastien Bourdeauducq, Hannah Badier, and Jean-

Christophe Le Lann. Litex: an open-source soc builder and library based on mi-

gen python dsl. InOSDA 2019, colocated with DATE 2019 Design Automation and

Test in Europe, 2019.

[60] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre

attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security

and Privacy (SP), pages 1–19. IEEE, 2019.

[61] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-

tems, 16(2):133–169, 1998.

[62] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals

problem. ACM Trans. on Programing Languages and Systems, 4(3):382–401, 1982.

[63] Chris Lattner and Vikram S. Adve. LLVM: a compilation framework for lifelong

program analysis and transformation. In IEEE CGO’04.

[64] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.

Keystone: An Open Framework for Architecting Trusted Execution Environ-

ments. In ACM EuroSys, 2020.

50



D5.1 Version 1

[65] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything Old is New

Again: Binary Security of WebAssembly. In 29th USENIX Security, 2020.

[66] Yanlin Li, JonathanMcCune, JamesNewsome, Adrian Perrig, BrandonBaker, and

Will Drewry. MiniBox: A two-way sandbox for x86 native code. InUSENIX ATC’14.

[67] Samuel Lindemer. VexRiscv in VEDLIoT, July 2021.

[68] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-

down: Reading kernel memory from user space. In 27th {USENIX} Security Sym-

posium ({USENIX} Security 18), pages 973–990, 2018.

[69] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. Twine: An

embedded trusted runtime for webassembly. In 37th IEEE International Confer-

ence on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pages

205–216. IEEE, 2021.

[70] Mozilla. Standardizing WASI: A system interface to run WebAssembly outside

the web., March 2019.

[71] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. Twine: An

embedded trusted runtime for webassembly. In 2021 IEEE 37th International

Conference on Data Engineering (ICDE), pages 205–216, 2021.

[72] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[73] S. Nolting. The neorv32 risc-v processor. https://github.com/stnolting/

neorv32, 2020.

[74] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre Martin, Christof Fet-

zer, and Mark Silberstein. Varys: Protecting SGX Enclaves from Practical Side-

Channel Attacks. In USENIX ATC ’18.

[75] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: Exit-

Less OS Services for SGX Enclaves. In ACM EuroSys’17.

[76] Charles Papon. VexRiscv, a RISC-V implementation written in SpinalHDL, July

2021.

[77] Sandro Pinto and Nuno Santos. Demystifying ARM TrustZone: A comprehensive

survey. ACM CSUR, 51(6):1–36, 2019.

[78] Louis-Noel Pouchet and Tomofumi Yuki. PolyBench/C, the Polyhedral Bench-

marking suite 4.2.

[79] Fred B. Schneider. Implementing fault-tolerant services using the statemachine

approach: A tutorial. ACM Computer Survey, 22(4):299–319, 1990.

[80] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612?613, November

1979.

[81] Joao Sousa and Alysson Bessani. From Byzantine consensus to BFT state ma-

chine replication: A latency-optimal transformation. In Proceedings of the 9th

European Dependable Computing Conference, Sibiu, Romania, 2012.

51

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32


D5.1 Version 1

[82] Roberto Tamassia. Authenticated data structures. In Proceedings of the 11th

Annual European Symposium on Algorithms, Budapest, Hungary, 2003.

[83] The European Space Agency. High Density European Rad-Hard SRAM-Based

FPGA- First Validated Prototypes – BRAVE, 2017.

[84] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,

Ron Yariv, and Noam Milshten. Switchless calls made practical in Intel SGX. In

3rd SysTEX, page 22–27, New York, NY, USA, 2018. ACM.

[85] Tate Tian. Understanding SGX Protected File System, January 2017.

[86] TrustedComputingGroup. Trusted platformmodule library specification, family

?2.0?, 2019.

[87] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT

replication. In Open Problems in Network Security - IFIP WG 11.4 International

Workshop, Zurich, Switzerland, 2015.

[88] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li,

Yulong Zhang, Tao Wei, and Zhiqiang Lin. Towards memory safe enclave pro-

gramming with Rust-SGX. In ACM CCS’19.

[89] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,

2015.

[90] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff: BFT con-

sensus with linearity and responsiveness. In Proc. of the 2019 ACM Symposium

on Principles of Distributed Computing, 2019.

[91] Alon Zakai. Emscripten: An LLVM-to-JavaScript compiler. In OOPSLA/SPLASH,

page 301–312, New York, NY, USA, 2011. ACM.

[92] Florian Zaruba and Luca Benini. The cost of application-class processing: Energy

and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fd-

soi technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

27(11):2629–2640, 2019.

52


	Executive Summary
	Introduction
	Trusted Application Execution
	Background for Twine
	Intel SGX
	WebAssembly

	Trusted runtime for WebAssembly
	Threat model
	WASI
	WASI implementation details
	Intel Protected File System (IPFS)

	Evaluation
	PolyBench/C micro-benchmarks
	SQLite macro-benchmarks

	Closing remarks

	Trusted Membership Service
	Application Scenario
	Background
	Remote Attestation
	Coordination Services
	State Machine Replication
	Blockchains
	BFT-SMaRt

	Trusted Membership Service
	Challenges

	Closing Remarks

	Embedded Trusted Execution Environment
	Threat Landscape
	Physical Memory Protection in RISC-V
	SpinalHDL
	VexRiscv
	LiteX
	Zephyr RTOS
	PMP Implementation in SpinalHDL for VexRiscv
	Closing remarks

	Custom Function Unit Support in Renode
	Custom Function Unit
	RISC-V CFU specification

	Renode CFU integration
	Current state
	Verilog support in Renode
	Road towards CFU in Renode

	Closing remarks

	Main achievements and future work
	References

