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1 Executive Summary

The VEDLIoT project, funded by EU, builds a Very Efficient Deep Learning IoT plat-

form for the next generation of IoT architecture. The project comprises of 8 work

packages active from the first month. The Work Package 5 (WP5) develops part of

the platform focusing on providing and integrating tools and mechanisms for secu-

rity, safety and robustness. This document, ”D5.2: Extended design and first imple-

mentationof Security, Safety andRobustnessmechanisms and tools” brings together

thework carriedout inWorkPackage5duringmonths 9-18of theproject. It is divided

into nine chapters including six technical chapters.

The first chapter introduces and summarises the structure, and content of the rest of

thedocument. The second chapter is an introduction to theproject andworkpackage

goals with respect to the five tasks of the Work Package. In Chapter 3, we describe

the work carried out on remote attestation of IoT devices using Trusted Execution

Environments. We also focus on the implementation of WebAssembly runtime and

remote attestation for TrustZone in this chapter. Our work on state-of-the-art and

cutting-edge Trusted Execution Environments to support trusted execution of criti-

cal IoT software has continued to branch out since thefirst fewmonths of the project.

We discuss the design and implementation of these TEE-based mechanisms, includ-

ing TrustZone-M and RISC-V in the Chapter 4. In Chapter 5, we bring an initial dis-

cussion on safety standards with respect to ML specification, verification, inference

and learning. We also discuss the integration of safety requirements with the work

carried out in Work Package 2. Chapter 6 presents our work in extending Renode, a

full-fledged open-source simulator for complex networks of embedded systems. In

months 9-18, we have worked on supporting CFU - Custom Function Units, tailored

one-off AI accelerators designed to be integrated with RISC-V soft CPU. One of the

main goals and tasks in theWork Package 5 is to support development of distributed

remoteattestation services for software components of IoT. The implementation and

architecture of such a trusted verifier service is described in detail in Chapter 7. We

also discuss the initial experiments, results and future steps to argue robustness in

the project, in Chapter 8. Finally, we close the document with Chapter 9 by providing

ourmain achievements, future directions alongwith the next steps in each activity of

the Work Package (carried out in months 9-18 of the project).
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2 Introduction

VEDLIoT (Very EfficientDeep Learning in IoT) is developing a framework for theNext

Generation of IoT architecture, which will be configurable to be placed at any level

from sensor nodes to the cloud. This developing VEDLIoT platform is targeted to-

wards cars, robotization and predictive maintenance of industry and assisted living

at home. The huge amount of collected data and the high computational power re-

quired in such applications call for complex solutions within a limited time frame. In

VEDLIoT, Artificial Intelligence (AI) and Deep Learning (DL) are utilized to handle the

complexity of the problem. Another critical challenge is the security, safety and ro-

bustness for these systems, which is targeted in Work Package 5 (WP5). The follow-

ing document follows up from the first deliverable (D5.1) as it takes the design and

implementation of security, safety and robustness mechanisms and tools to the next

level. A representation of the different components of VEDLIoT and their relation to

WP5 is shown in Figure 2.1.

The work package is divided into five tasks which deal with the following targets: (i)

the development of end-to-end trust through a distributed attestation mechanism,

(ii) implementing communication security based onmutual attestation, (iii) providing

means for secure execution of critical code on edge devices inside trusted execution

environments and (iv) developing software-based monitoring and adaptation mech-

anisms to control safety and robustness in distributed AI systems.

Task 5.1 End-to-end attestation of distributed trusted environments (M1-M36)

Our efforts on implementing end-to-end attestation were introduced in the deliver-

able D5.1. We continue our work on implementing attestation and trusted execution

on embedded systemswhich is part of theVEDLIoT goals. We conducted a systematic

survey describing the general principles of attestation, in particular highlighting the

differences between local and remote variants. The survey also targets the existing

support for attestation mechanisms in the TEE implementations currently available

in commodity hardware. Section 3.1 of this document describes the results and dis-
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cussions of the survey.

To support the attestation process, the work on the development of a distributed

service, SIRE, capable of regulating the participation of devices on IoT applications

has matured. The SIRE system is still not fully developed, but a few parts have now

been implemented and are being tested for their security and scalability. We discuss

the progress and future work on SIRE in Chapter 7.

It is known that almost all standard attestation mechanisms suffer from the draw-

backs of the Time-Of-Check to Time-Of-Use (TOCTOU) invalidity. It remains a con-

cern for the device owners and users that the attested state of the device may have

changed during the interval between attestation and device usage. Since device cer-

tificates reflect the attested software stack of the device, if the attestation result

of the device is not valid due to a race condition, the certificate is misleading. As a

part of the work on attestation in this task, we have begun the design and plan for

an automated remote attestation and certification scheme building on standards like

RemoteATtestation procedureS (RATS) [44] to eliminate the TOCTOUproblem. More

details of this preliminary research are shown in Section 3.2 of this document.

Task 5.2 Security support for distributed execution and communication (M4-M36)

Our efforts on security support for execution of critical software and communication

inVEDLIoT includeshardware-basedTrustedExecutionEnvironments (TEEs), e.g., Arm

TrustZone-A, TrustZone-M and emerging RISC-V solutions.

WebAssembly is a portable, compact, low-level, stack based binary code format that

allows standalone execution running inside and outside browsers. Very few options

exist at the moment to host Wasm applications inside TEEs. We exploit the sand-

box capabilities from software fault isolation and control-flow integrity to isolate

Wasm code from the trusted OS. We have proposed WasmOnTZ, which is a trusted

runtime to execute Wasm applications with remote attestation capabilities (details

in Section 3.3). To the best of our knowledge, WasmOnTZ is the first Wasm runtime

running entirely inside Arm TrustZone with full support for remote attestation, opti-

mised explicitly for Wasm to establish trust on hosted applications. Our design was

implemented using a standard development board found in the market, verified and

tested. Withmanydifferent experiments, wemeasured the costs of using the specific

mechanisms needed by WasmOnTZ. We were able to demonstrate that our imple-

mentation is lightweight, achieving results comparable with Wasm running without

a trusted environment.

TrustZone-M is Arm’s recent addition in Cortex-M based devices extending the sup-

port of TEEs in the IoT architecture. Our work in VEDLIoT on this state-of-the-art

TEE includes identifying serious vulnerabilities in TrustZone-M and proposing effi-

cient solutions. We have proposed a secure communication framework to build se-

cure communication between the two worlds of TrustZone-M, using a lightweight

message protection scheme leveraging the Memory Protection Unit (MPU). ShieLD

is the first framework proposed to solve the issue of vulnerable inter-world commu-

nication for the TrustZone-M platform. We present an extensive micro-benchmark

performance evaluation of it’s overhead on system operations proving its suitability

for constrained IoT devices. Another problem in TEEs arises when a secure applica-

tion is compromised (due to an undetected vulnerability) as it becomes extremely

challenging to detect this compromise and deploy remedial actions. Several exam-

9
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ples of stealthy rootkits exploiting compromised TEEs exist. The fundamental prob-

lem is that in a multi-vendor environment, the device users have to trust that soft-

ware in secure areas of the device is trustworthy and will not abuse the privileged

access to manipulate or exfiltrate data. To counter this problem, we have proposed

TEE-Watchdog, a framework tomapuser/vendor-definedpolicies to the systemmem-

ory, efficiently detect access violations and register policy-violating application’s be-

haviour. This mechanism ensures fine-grained access control over secure system pe-

ripherals, immutability of proposed system components and confidentiality and in-

tegrity of the associated data. Chapter 4 of this document is dedicated to the work

related to Arm TrustZone-M.

We also continued the work on the novel RISC-V architecture, to support hardware-

assisted trusted execution of critical code. Following up from our previous collabora-

tive work on PMP support on VexRiscv, we observed an incompatibility between the

PMP driver’s system call routine and a built-in RISC-V security feature, which effec-

tively renders one PMP region unusable (see Section 4.3). To this end, we are contin-

uing our investigations for potential solutions.

Task 5.3 Simulation platform for development and testing (M7-M30)

We continue our work on developing the improvements to the Renode Framework

to enhance the ease of development of embedded systems. In VEDLIoT, we focus on

IoT andmachine learning, and such an open-source simulator for complex embedded

systems or of networks of such devices aligns well with the project goal. As part of

the Work Package 4, VEDLIoT is developing an FPGA based accelerator for Machine

Learning payloads. Handling custom hardware can be even more challenging from

the software perspective, if the hardware is being designed in parallel with the soft-

ware. TheRISC-V ISA is FPGA-friendly and calls for proper verificationof the software-

hardware interoperability at all stages of development. Chapter 6 is dedicated to an

accelerator that will be focused around the use of custom RISC-V instructions, hence

we setup the proper testing functionality with the Renode framework.

Task 5.4 Continuous integration workflow (M18-M36)

This task is scheduled for month 18. The task will prepare a system as part of Task

4.6 and Task 4.7. The system will provide continuous integration capabilities allow-

ing the project members to add their own tests ensuring fitness of the software on

each stage of development. The tests will range from verification of basic function-

ality to analysis of full system behavior, including remote attestation and encryption

mechanisms.

Task 5.5 Safety and Robustness (M7-M36)

The task started in month 7 and addresses robustness and safety in a distributed AI

system, considering aspects from sensor data collection to data communication and

processing at several levels, from specification to testing.

As a part of this task, we are considering the safety of using ML algorithms in high-

stake real-world domains like the automotive domain, discussing it in Chapter 5. Our

investigation of ML-based systems has identified gaps when it comes to safety. We

concentrate on safety as a cluster of concerns that interacts with other aspects of

the system, such as hardware configuration, communication, and AI modelling. Each

cluster of concerns represents a specific aspect of the system at different levels of

10
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abstractions, this concept is taken from the compositional architectural framework

developed in WP2 [139].

Another major goal of this task focuses on development of monitoring and adapta-

tion mechanisms to increase robustness in distributed AI systems. To achieve this

goal, we have designed and implemented the local monitoring of a device within

a more complex framework that ensures advanced traffic-safety during their run-

time execution. We have conducted tests and experiments usingmulti-layermachine

learning strategy to improve the performance of a model. In particular, we evaluate

the idea of splitting a dataset into specific domains to train specificmodels for better

performance. In this document, Chapter 8 talks about the tests and experiments to

increase robustness in AI systems.

11
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3 Attestation and Trusted WebAssembly Execution

Our first progress in Work Package 5 was made in implementing a trusted environ-

ment for running distributed applications on Intel SGX (Software Guard Extensions).

We followed upwith that work to support trusted applications in embedded devices,

which turned our attention to Arm TrustZone. Along with trusted execution of appli-

cations, we also started analysing how remote attestation occurs on Arm hardware

as compared to other systems. We focus on investigating remote attestation and

trusted WebAssembly execution. This chapter is divided into three major sections:

(i) a survey on remote attestation schemes for TEEs, (ii) a preliminary discussion on

Time-Of-Check to Time-Of-Use (TOCTOU) invalidity and (iii) trustedWebAssembly ex-

ecution.

3.1 Attestation Mechanisms for Trusted Execution Environments

Confidentiality and integrity are essential features when building secure computer

systems. This is particularly important when the underlying system cannot be fully

trusted or controlled. For example, video broadcasting software can be tampered

with by end-users to circumvent digital rights management, or virtual machines are

candidly open to the indiscretion of their cloud-based untrusted hosts. The introduc-

tion of Intel SGX, AMD SEV, RISC-V, Arm TrustZone-A and TrustZone-M Trusted Ex-

ecution Environments (TEEs) into commodity processors significantly mitigates the

attack surface against powerful attackers. In a nutshell, TEEs let a piece of software

be executed with stronger security guarantees, including privacy and integrity prop-

erties, without relying on a trustworthy operating system.

Remote attestation allows establishing a trust relationship with a specific piece of

software by verifying its authenticity and integrity. Through remote attestation, one

ensures to be communicating with a specific, trusted (attested) program remotely.

TEEs can support and strengthen the attestation process, ensuring that programs

are shielded against many powerful attacks by isolating critical security software, as-

sets and private information from the rest of the system. In this work, we describe

the current state-of-the-art best practices regarding remote attestationmechanisms

for TEEs, complementary to [99], covering fourmajor technologies available for com-

modity hardware, i.e., Intel SGX, Arm TrustZone-A/-M, AMD SEV and emerging TEEs

using RISC-V ISA.

In this section of the deliverable we describe the general principles of attestation, in

particular highlighting the differences between local and remote variants. We also

present a small survey on the existing support for attestationmechanisms in the TEE

implementations currently available in commodity hardware. We conclude the sec-

tion discussing some future directions for research on the subject.

3.1.1 Attestation

Attestation enables a trusted environment to prove its identity to another piece of

software. The target environment that receives an attestation request can assess

whether a given proof is genuine by verifying its authentication, usually based on a

symmetric-key scheme. Such amechanism is required to establish secure communica-

tion channels between trusted environments, and is often used to delegate comput-
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ing tasks securely. Attestation can be done locally, when target and trusted environ-

ments are hosted on the same system, or on the same CPU if the secret provisioned

for the attestation is bound to the processor. As an example, Intel SGX’s remote at-

testation (detailed in Section 3.1.2.3) leverages a local attestationmechanism to sign

proofs in another trusted environment (called the quoting enclave) through a secure

communication channel.

Remote attestation: Remote attestation allows to establish trust between devices

and provide cryptographic proofs that the executing software is genuine and untam-

pered [51]. In the remainder, we adopt the terminology proposed by the IETF to de-

scribe remote attestation and related architectures [46]. Under these terms, a relying

party wishes to establish a trusted relationshipwith an attester, with the help of a ver-

ifier. The attester provides the state of its system, indicating the hardware and the

software stack that runs on its device by collecting a set of claims. Once the attester is

proven genuine, the relying party can safely interact with it and transfer confidential

data or delegate computations. Remote attestation mechanisms are popular among

the TEEs, due to their carefully controlled environments and their ability to generate

code measurements/claims.

Mutual attestation: Trusted applications may need stronger trust assurances by en-

suring both ends of a secure channel are attested. For example, when retrieving con-

fidential data from a sensing IoT device (where data is particularly sensitive), the de-

vice must authenticate the remote party, while the latter must ensure the sensing

device has not been spoofed or tampered with. Mutual attestation [137] protocols

have been designed to appraise the trustworthiness of both end devices involved in

a communication.

Threat model: Remote attestation protocols usually follow the Dolev-Yao intruder

model [60], which assumes that an adversary has complete control over the commu-

nication channel (i.e., an attacker can do everything except breaking cryptography).

Recent state-of-the-art formal analysers, such as Scyther [56], assist the automatic

verification of security protocols. Typically, these tools assert the secrecy of the pri-

vate session keys, and the following claims of authentication: aliveness, weak agree-

ment, non-injective agreement, non-injective synchronisation and reachability (i.e., the

protocol ended on both parties). While we omit to present these terms for concise-

ness[57, 98], they represent essential characteristics for security protocols.

3.1.2 Issuing Attestations using TEEs

Several solutions exist to implement hardware support for trusted computing, and

TEEs are particularly promising. Depending on the implementation, they guarantee

the confidentiality and the integrity of the code and data of trusted applications,

thanks to the assistance of CPU security features. This work surveysmodern and pre-

vailing TEEs from processor designers and vendors with remote attestation capabili-

ties for commodity or server-grade processors, namely Intel SGX [53], AMD SEV [58],

and ARM TrustZone [116]. Besides, RISC-V, an open ISA with multiple open-source

implementations, ratified the Physical Memory Protection (PMP) instructions, offer-

ing similar capabilities to memory protection offered by aforementioned technolo-

gies [10]. As such, we also included many emerging academic and proprietary frame-

works that capitalise on standard RISC-V primitives, which are Keystone [89], Sanc-

tum [55], TIMBER-V [145] and LIRA-V [132]. We have omitted the TEEs lacking re-
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Table 3.1. Comparison of the state-of-the-art TEEs

mote attestation mechanisms (e.g., IBM PEF [75]) and TEEs not supported on cur-

rently available CPUs (e.g., Intel TDX [125], Realm [28] from ARM CCA [32]).

3.1.2.1 Analysed characteristics

We propose a series of cornerstone features of TEEs and remote attestation capabil-

ities and compare many emerging and well-established state-of-the-art solutions in

Table 3.1. Each feature is detailed below and can either bemissing ( ), partially ( ) or

fully ( ) available. Partial fulfilment means no built-in support, but extended by the

literature. While we define these features below, we elaborate further about each

TEE in the remainder of the section.

Integrity : an active mechanism preventing DRAM of TEE instances from being tam-

peredwith. Freshness : protecting DRAMof TEE instances against replay and rollback

attacks. Encryption: TEE instances’ DRAM is encrypted for providing some assurance

that no unauthorised access ormemory snooping of the enclave occurs. Unlimited do-

mains : many TEE instances can run concurrently, while the TEE boundaries between

these instances are guaranteed by hardware. Partial fulfilment means that the num-

ber of domains is capped. Open source: indicate whether the solution is partially or

fully publicly available. Local attestation: a TEE instance can attest another instance

running on the same system. Remote attestation: a TEE instance can be attested by

remote parties. API for attestation: an API is available by the trusted applications to

interact with the process of remote attestation. Mutual attestation: the identity of

the attester and the verifier are authenticated upon remote attestations. User mode

support : states whether the trusted applications are hosted in user mode, according

to the processor architecture. Industrial TEE : contrast the TEEs used in production

andmade by the industry from the research prototypes designed by academia. Isola-

tion and attestation granularity : the level of granularity where the TEE operates for

providing isolation and attestation of the trusted software. System support for isola-
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Figure 3.1. The workflow of deployment and attestation of TEEs

tion: the hardware mechanisms used to isolate trusted applications.

3.1.2.2 Trusted environments and remote attestation

The attestation of software and hardware components requires an environment to

issue evidence securely. In practice, this role is usually assigned to some software

or hardware mechanism that cannot be tampered with. These environments rely on

measuring the executed software (e.g., by hashing its code) and combining that out-

put with cryptographical values derived from the hardware, such as a root of trust

fused in the die or a physical unclonable function. We analysed today’s practices for

the leading processor vendors for issuing cryptographically signed evidences.

Figure 3.1 illustrates the generic workflow TEE developers usually follow for the de-

ployment of trusted applications. Initially, the application is compiled and measured

on the developers’ premises. It is later transferred to an untrusted system, executed

in the TEE facility. Once the trusted application is loaded and required to receive sen-

sitive data, it communicates with a verifier to establish a trusted channel. The TEE

environment must facilitate this transaction by exposing an evidence to the trusted

application, which adds keymaterial to bootstrap a secure channel from the TEE, thus

preventing an attacker from eavesdropping on the communication. The verifier as-

serts theevidence,maintaininga list of reference values to identify genuine instances

of trusted applications proceed to data exchanges.

3.1.2.3 Intel SGX

Intel Software Guard Extensions (Intel SGX) [53] introduced TEEs for mass-market

processors in 2015. Specifically, Intel’s Skylake architecture introduced a new set of

processor instructions to create encrypted regions of memory, called enclaves, living

within the processes of the user space. These instructions are their own ISA called

XuCode [78] that together with Model Specific Registers (MSR) provide the require-

ments to form the implementation of SGX. Amemory region is reserved at boot time

for storing codeanddataof encryptedenclaves. Thismemory area, called theEnclave

Page Cache (EPC), is inaccessible to other programs running on the samemachine, in-

cluding the operating system and the hypervisor. The traffic between the CPU and

the system memory remains confidential thanks to the Memory Encryption Engine

(MEE). The EPC also stores verification codes to ensure that the RAM corresponding

to the EPC was not modified by any software external to the enclave.

A trusted application can receive a cryptographically signed evidence, i.e., a quote,

which may be enhanced by additional information, such as a public key (e.g., used

for establishing a communication channel). The quote binds a genuine Intel SGX pro-

cessor with the measurement of the application when loaded into the enclave. This
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quote can then be forwarded to a relying party and be verified remotely using the

Intel attestation service [21, 49] or a dedicated public key infrastructure [126].

Unlike local attestation, remoteattestation requires anasymmetric-key scheme,which

is made possible by the quoting enclave. The quoting enclave is a special enclave

that has access to the device-specific private key through the EGETKEY instruction.

In a remote attestation scenario, a service (i.e., verifier) submits a challenge to the

untrusted application with a nonce (Figure 3.2-À). Together with the identity of the

quoting enclave, the challenge is forwarded to the application enclave (Figure 3.2-

Á). The application enclave (i.e., attester) prepares a response to the challenge by

creating a manifest (i.e., a set of claims) and a public key (Figure 3.2-Â), that is used

to send back confidential information to the application enclave. The manifest hash

is used as auxiliary data in the report for the local attestation with the quoting en-

clave. After verifying the report (Figure 3.2-Å) the quoting enclave replaces theMAC

with the signature from the EPID key and returns the quote (i.e., evidence) to the ap-

plication (Figure 3.2-Æ) which sends it back to the service (Figure 3.2-Ç). The service

verifies the signature of the quote (Figure 3.2-È) using either the EPID public key and

revocation information or an attestation verification service [21]. Finally, the service

ensures the integrity of the manifest by verifying the response to the challenge.

Intel SGX has many advantages but suffers frommany limitations as well. First, most

of theSGX implementations limit theEPCsize to93.5MB [141]. Newer Intel Xeonpro-

cessors extend that limit to 512GB. Besides, the enclave model prevents performing

system calls and direct hardware access since the threat model distrusts the outer

world, leading to the development of partitioned applications.

3.1.2.4 Arm TrustZone architectures

Depending on the architecture of Arm’s processors, TrustZone comes in twoflavours:

TrustZone-A (for the Cortex-A) and TrustZone-M (for the Cortex-M).

Arm TrustZone-A provides the hardware elements to establish a single TEE per sys-

tem [116]. Broadly adopted by commodity devices (including mobile devices, IoT

edge nodes, etc.), TrustZone splits the processor into two states: the secure world

(TEE) and the normal world (untrusted environment). A secure monitor instruction

(i.e., the SMC) is switching between worlds, and each world operates with their own

user and kernel spaces.

Despite the commercial success of TrustZone-A, it lacks attestationmechanisms, pre-

venting relying parties from validating and trusting the state of a TrustZone-A TEE

remotely. Nevertheless, researchers proposed several variants of one-way remote
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attestation protocols for Arm TrustZone [151, 92], as well as mutual remote attesta-

tion [17, 131]. Devices lacking built-in attestation mechanisms may rely on a secret

fused in the die as a root of trust to derive private cryptographic materials (e.g., a

private key for evidence issuance). We describe the remote attestation mechanism

of Shepherd et al. [131] as a study case. This solution establishes mutually trusted

channels for bi-directional attestation, based on a Trusted Measurer (TM), which is a

software component located in the trusted world and authenticated by the TEE’s se-

cure boot, to generate evidences based on the OS and TA states (i.e., a set of claims).

A private key is provisioned and sealed in the TEE’s secure storage and used by the

TM to sign evidences, similar to a firmware TPM [120]. Using a dedicated protocol for

remote attestation, the bi-directional attestation is accomplished.

ArmTrustZone-Apresents someadvantages anddrawbacks. Similar toSGX, themem-

ory available to TAs, for instance, in the open source trusted OS OP-TEE, is limited to

a few MB [70]. Due to this constraint, software needs to be partitioned to leverage

TrustZone. Furthermore, OP-TEE is small and does not implement a POSIX API, mak-

ing developing TAs difficult, notably when porting legacy code. While most compo-

nents of TrustZone have open source alternatives (e.g., the firmware and the trusted

OS), many vendors do not disclose the implementation of the secure monitor.

ArmTrustZone-M,much like its predecessor TrustZone-A, provides anefficientmech-

anism to isolate the system into two distinct states/processing environments[33, 29].

The TrustZone-M extension brings the possibility of trusted execution into resource-

constrained IoT devices (e.g., Cortex-M23/M33/M35P/M55). Despite the similarity re-

garding the high-level concept, TrustZone-M differs from TrustZone-A in low-level

implementation of some features. The switch between the secure and the normal

world is embedded in hardware (carried out using SG instruction) and is much faster

than the secure monitor instruction (i.e., the SMC)[84, 34].

Since TrustZone-M is a relatively new addition, recently available for the IoT infras-

tructure, existingworkonattestationmechanisms for thehardware/software is scarce.

Nonetheless, TrustZone-M fulfils some basic requirements for attestation like (i) Se-

cure storage, (ii) Secure boot, (iii) Secure inter-world communication and (iv) isolation

of software. Thus, schemes like [15] have leveraged TrustZone-M to develop attesta-

tion and use TZ-M’s TEE capabilities to establish a chain of trust. TrustedFirmware-M,

following the guidelines of PSA, also supports initial attestation of device-specific

data in the form of a secure service[101, 31].

TrustZone-M provides several advantages as a TEE to support remote attestation but

also has a few drawbacks. It provides efficient isolation of the software modules and

a faster context switch between the secure and normal world. This is advantageous

as it is critical to have minimum attestation latency in the real-time operations of au-

tonomousembedded systems. Theavailability of hardware-uniquekeys in TrustZone-

M enabled devices further ensures that the attestation results generated by the TCB

cannot be forged. Besides, the software stackmaybe fully open source, thanks to the

absence of a secure monitor. On the other hand, since the components involved in

measuring, attesting, and verifying the data/system need to be protected as part of

the TCB, it increases the TCB size on the attested devices, raising the attack surface.
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3.1.2.5 AMD SEV

AMD Secure Encrypted Virtualization (SEV) [58] allows isolating virtualised environ-

ments (e.g., containers and virtual machines) from trusted hypervisors. SEV uses an

embedded hardware AES engine, which relies on multiple keys to encrypt memory

seamlessly. It exploits a closed Arm Cortex-v5 processor as a secure co-processor,

used to generate cryptographic materials kept in the CPU. Each virtual machine and

hypervisor is assigned a particular key and tagged with an Address Space IDentifier

(ASID), preventing cross-TEE attacks. Code and data are protected by AES encryption

with a 128-bit key based on the tag outside the processor package.

At its core, SEV leverages a Chip Endorsement Key (CEK), a secret fused in the die of

the processor issued by AMD for its attestationmechanism. SEVmay start the virtual

machines from an unencrypted state, similar to SGX. In such cases, the secrets and

confidential data must then be provisioned using remote attestations queries. The

AMDsecure processor cryptographicallymeasures the content of the virtualmachine

into a launch digest (i.e., claim). While SEV and SEV-ES (SEV Encrypted State) [83] only

support remote attestation during the launch of the guest operating system, SEV-

SNP supports a more flexible model. That latter bootstraps private communication

keys, enabling theguest virtualmachine to request attestation reports (i.e., evidence)

at any time and obtain cryptographic materials for data sealing, i.e., storing data se-

curely at rest (Figure 3.3).

The approach increases the attack surface of the secure environment since the TCB

is enlarged. The guest operating system must also support SEV, cannot access host

devices (PCI passthrough), and the first edition of SEV (called vanilla in Table 3.1) is

limited to 16 virtual machines. Future iterations of SEV Secure Nested Paging (SEV-

SNP) [18], plan to overcome limitations, typically by means of in-silicon redesigns.

3.1.2.6 RISC-V architectures

There exist several proposals for TEE designs for RISC-V based on PMP instructions

including support for remote attestation. We survey the most important ones in the

following. Keystone [89] is a modular framework that provides the building blocks

to create trusted execution environments, rather than providing an all-in-one solu-

tion that is inflexible and is another fixed design point. Keystone utilises a secure

boot mechanism that measures the secure monitor image, generates an attestation

key and signs them using a hardware-visible secret (i.e., root of trust). The secure

monitor exposes a Supervisor System Interface (SBI) for the enclaves to communi-
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cate. A subset of the SBI is dedicated to issue evidences signed by provisioned keys

(i.e., endorsed by the verifier), based on the measurement of the secure monitor, the

runtime and the enclave’s application. As such, when a remote attestation request

takes place, the remote party (i.e., verifier) sends a challenge to the trusted applica-

tion. The response contains the evidence with the public session key of the attester.

Finally, the verifier asserts or denies the evidence based on the public signature and

the measurements of components (i.e., claims).

Sanctum [55] has been the first proposition with support for attesting trusted ap-

plications. A remote attestation protocol is proposed, as well as a comprehensive

design for deriving trust from a root of trust. Upon booting the system, mroot gen-

erates the cryptographic materials for signing if started for the first time and hands

off to the secure monitor. Similar to SGX, Sanctum owns a dedicated signing enclave,

that receives a derived private key from the secure monitor for evidence generation.

A regular enclave can request an evidence to the signing enclave based on multiple

claims. This evidence is then forwarded to the verifier by the secure channel.

TIMBER-V [145] achieved the isolation of execution on small embedded processors

thanks to hardware-assisted memory tagging. The trust manager exposes an API for

the enclaves to retrieve an evidence, based on a given enclave identity, a secret plat-

form key (i.e., root of trust), and an arbitrary identifier provided by the trusted appli-

cation. The remote attestation protocol is twofold: the remote party (i.e., verifier)

sends a challenge to the trusted application (i.e., attester). Next, the challenge is

forwarded to the trust manager as an identifier to issue an evidence, which is au-

thenticated using a MAC. The usage of symmetric cryptography is unusual in remote

attestation because the verifier requires to own the secret key to verify the evidence.

LIRA-V [132] drafted a mutual remote attestation for constrained edge devices. The

protocol relies exclusively onmachinemode (M-mode) ormachine and usermode (M-

mode andU-mode). Themeasurement of code (i.e., claim) is computedonparts of the

device physical memory regions by a program stored in the ROM. LIRA-V’s mutual

attestation protocol works similar to the protocol illustrated in TrustZone-A and is

formally verified.

3.1.3 Takeaways from the Survey

This section presented and compared state-of-the-art remote attestation schemes,

which leverage hardware-assisted TEEs, helpful for deploying and running trusted

applications from commodity devices to cloud providers, in applications as seen in

VEDLIoT. TEE-based remote attestation has not yet been extensively studied and

seems to remain an industrial challenge. Whether provided by manufacturers or de-

veloped by third parties, remote attestation remains an essential part of the design

of trusted computing solutions. This study sheds some light on the limitations of

state-of-the-art TEEs and identifies promising directions for future work. Finally, this

survey has been published in the 22nd international conference on distributed appli-

cations and interoperable systems conference (DAIS’22) [106].

3.2 Remote ATtestation procedureS (RATS)

In this section of the chapter, we present an ongoing work on PKI-integrated auto-

mated remote attestation of IoT devices following state-of-the-art attestationmech-

anisms. Asmentionedearlier, RemoteAttestation (RA) is aprocesswhereone trusted

19



D5.2 Version 20

entity (verifier) remotely verifies the software integrity of a device (attester). Proce-

dures like over-the-air updates, device certification, vulnerability patching rely on RA

to establish the integrity of the device they are communicating with. Remote attes-

tation serves as a foundation for many security services besides certification, such as

software update, system reset, and runtime software/device verification. The Inter-

net Engineering Task Force (IETF) are working on an interoperable standard RA pro-

cedure; i.e., Remote ATtestation procedureS (RATS) [45]. RATS attests devices that

implement Trusted PlatformModule (TPM1.2 or TPM2.0). The device being attested

(IoT device) provides TPM-generated information regarding the health of it’s soft-

ware using the quote mechanism. This evidence is verified by the attestation body

using the the TPM event logs and pre-established proofs.

3.2.1 Trusted Platform Module

The Trusted PlatformModule (TPM) is an international standard [12] by the Trusted

Computing Group (TCG) to enable hardware Root of Trust (RoT). TPM2.0was created

by TCG to provide flexible usage for the evolving IoT platforms: automotive, IIoT,

smart homes, etc. The TPM establishes RoT in the underlying platform and provides

secure storage, system’s measurements and secure reporting. The TPM memory is

shielded from access by any entity other than the TPM. The TPM provides assurance

of the integrity of the software on device by takingmeasurements. An integritymea-

surement is a value that shows a possible change in the trusted state of the platform.

Loading a new software, a systemupdate ormodification of configurations are exam-

ples of events that can trigger the TPM to take new measurements and record them

in Platform Configuration Registers (PCR). The TPM maintains a log of all measure-

ments and the log can be evaluated to determine the integrity of themeasurements.

The PCR values are hash-of-hashes and are hence dependent on the order in which

the events are hashed. A PCR generated from three distinct events X, Y and Z will

have a different value if the same events occurred in a different order (e.g., X, Z and

Y or Z, X, Y).

TPMQuote provides amechanism that the PCRs can be used by other devices to ver-

ify the integrity of a device in consideration. Any device that needs to perform veri-

fication needs to send a request preferably accompanied by a unique random nonce

which adds freshness and prevents replay attacks. This nonce is combinedwith a PCR

value and signed by the device being verified. This structure is called a quote and is

used to verify the device’s integrity. TPM 2.0 supports the TPM2_Quote command

to generate a quote. It takes TPM2B_DATA which is the nonce, TPML_PCR_SELEC-

TION containing the PCRs selected and returns the quote i.e., TPM2B_ATTEST and

the signature TPMT_SIGNATURE. A TPM Event Log contains entries against every

PCR measurement made. The Log contains the measurement hash and information

regarding the event that triggered the measurement. The Event Log can be read by

any verificationprocess to verify the integrity of thePCRvalues. Event logs are stored

in different formats, optimized to a particular environment they are generated in.

3.2.2 Time-Of-Check to Time-Of-Use (TOCTOU) Invalidity

Almost all standard attestation mechanisms like RATS suffer from the drawbacks of

the Time-Of-Check to Time-Of-Use (TOCTOU) invalidity [112]. It remains a concern

for the device owners and users that the attested state of the device for which the

certificatewas issuedmay have changed during the interval between attestation and
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device usage. Since the certificate reflects an attested software stack of the device,

if the attested state of the device has changed due to exploitation of a vulnerability

or addition of new software, the certificate is misleading. Over the years, a few so-

lutions have been proposed to counter the TOCTOU problem. We are designing an

automated remote attestation and certification scheme building on standards like

RATS for remote attestation to eliminate the TOCTOU problem in certificates. We

propose the integration of its processes into PKI (utilizing X509v3 Certificates).

3.3 WebAssemblyRuntimewithRemoteAttestation forTrustZone

Security is criticalwhendesigning anddeployingdistributed applications formutually

untrustworthy stakeholders, e.g., developers, data providers and hosting companies.

The problem grows in complexity when one considers decentralised operations of

heterogeneous IoT, edge and cloud devices, all at risk of being compromised.

Trusted execution environments (TEEs), i.e., Intel SGX [53] or Arm TrustZone [116],

offer hardware support for securely executing applications in shielded environments,

i.e., enclaves. While TEEs are promoted by the commercial offerings of major cloud

providers, they do not guarantee that the code itself is trustworthy and has not been

tampered with. Remote attestation [111, 48, 62, 77, 86] is typically used to assess

the code before its execution. However, while this key security feature is provided

by some TEEs, e.g., Intel SGX [124], Arm TrustZone lacks built-in support for remote

attestation. Given the swift growth of popularity of Arm-based architectures in the

IoT edge computing [11] and its recent adoption in the general computermarket [27],

this is concerning. In addition, recent attacks have shown how to compromise IoT

devices via malicious firmware updates [96] or software flaws [95], typically beyond

the threat model of TrustZone. Nonetheless, the inability of manufacturers to verify

the authenticity of their software upon executionmakes these platforms inadequate

for handling sensitive tasks and data, in particularwhen dealingwith recent scenarios

such as trustworthy machine learning systems at the edge [91].

WebAssembly (Wasm) [72] is a new bytecode standard for near-native speed applica-

tions. It enables developers to build their software components with the productiv-

ity benefits of modern programming languages while supporting legacy code, since

modern compilers support Wasm [88]. TrustZone is a constrained environment that

runs small executables using a specialised API. Wasmfits well in this model, thanks to

its small runtime overhead, portability, supporting non-standard system interfaces,

and fast execution as its bytecode can be compiled ahead-of-time. EmbeddingWasm

in TrustZone can be helpful inmany use cases. The smartphone industry could rely on

Wasm as an interoperable bytecode to execute secure applications inside TrustZone,

as exclusively reserved for the manufacturer’s needs or for strategic partners [123].

Automotive applications could rely on IoT devices to runmachine learning algorithms

inside enclaves, ensuring the validity of the results via attestation and usingWasm to

leverage legacy machine learning frameworks.

In this section we present our work to developWaTZ, an efficient and secure runtime

for trusted execution of Wasm code inside TrustZone, adding support for remote at-

testation. We leverage the sandbox isolation of Wasm to mitigate, and possibly pre-

vent, vertical privilege escalations and lateral attacks. We combine TrustZone with

Wasmbytecode to issue trustworthy evidences, attesting the genuineness of running

software. In Section 3.3.3, we adapted and fully implemented the remote attesta-
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tion protocol from SGX [80], using a public-key infrastructure. As such, we facilitate

the deployment of fully decentralised applications spanning various devices at the

core or the edge of the network. Wasm extends OP-TEE [93], a popular open-source

trusted OS, and we validated our prototype with hardware Arm boards.

Themain researchquestions thatWaTZ intends to answer, and themain contributions

of this work are the following:

Are there system challenges when embedding Wasm into Arm TrustZone? Trust-

Zone requires using a trusted operating system, which declares non-standardised API

to interact with system resources. This, coupled with the constrained nature of TEEs

(e.g., no system call, limited memory), increases the complexity of hosting general-

purpose applications compiled in Wasm. We show (Section 3.3.2) that WaTZ is the

first system to run Wasm applications in TrustZone, while leveraging WASI standard,

a POSIX-like layer for Wasm, to interact with the TEE facilities. Our WaTZ prototype

supports a subset of WASI API to evaluate a database engine (SQLite [82]) and a ma-

chine learning library (Genann [3]).

How can relying parties trust the remote execution of Wasm applications? Given

the lack of built-in remote attestation in TrustZone, we propose a protocol (Sec-

tion 3.3.3) to attest Wasm code embedded in our trusted environment. We identify

the hardware requirements of IoT devices to provide attestable guarantees (e.g., a

root of trust, secure boot), showing how they can be combined with the trusted en-

vironment to verify Wasm binaries. We contribute an extension of the WASI speci-

fications, called WASI-RA, to enable the hosted Wasm applications to attest against

trusted parties and communicate shared secrets and confidential data, based on Intel

SGX’s remote attestation protocol.

The remainder of the section is organised as follows. We first present in Section 3.3.1

some background information and related work. Section 3.3.2 introduces the overall

design and architecture of the WaTZ runtime. The remote attestation mechanism of

WaTZ is described in Section 3.3.3 and we wrap-up the discussion in Section 3.3.4.

3.3.1 Background and Related Work

Our WaTZ runtime supports trusted execution of Wasm code inside TrustZone with

remote attestation mechanisms. This section briefly introduces the underlying tech-

nologies and highlights how our approach improves related work.

Arm TrustZone:

TrustZone provides the hardware elements enabling TEEs on Arm processors [109].

OP-TEE [93] is a popular open-source runtime environment with native support for

TrustZone. It offers a developer-friendly setup [69] to build trusted applications (TA).

OP-TEE follows the TEE architecture and API standardised by GlobalPlatform (GP

API) [4], built around three components: a client application, a dedicated Linux driver

and the OP-TEE OS. The OS of the normal world is referred to as Rich Execution Envi-

ronment (REE). The host application runs in the normal world, as a client of a Trusted

Application (TA) in the secure world. Host applications leverage client APIs.

WebAssembly: WebAssembly [72] is a W3C open standard for a portable, compact,

low-level, stack-based binary code format. Initially focused on browser-embedded

applications, the specifications allow for standalone execution running outside
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AOT WASI RA RA in WASI µRT IoT TEE TEE(s)

Twine 3 3 7 7 3 7 SGX

Veracruz 7 3 3 7 7 7 Nitro, CCA

Enarx 7 3 3 7 7 7 SGX, SEV

AccTEE 7 7 7 7 7 7 SGX

Se-Lambda 7 7 3 7 7 7 SGX

Teaclave 7 7 3 7 3 7 SGX

WaTZ 3 3 3 3 3 3 TrustZone

Table 3.2. Comparison of the related work features

browsers as well. We exploit the sandbox capabilities from software fault isola-

tion [143] and control-flow integrity [14] to isolate Wasm code from the trusted OS.

We also leverage WebAssembly System Interface (WASI) [9], a POSIX-like interface

used by Wasm programs to interact with the underlying OS.

WebAssembly and TEEs: Few options exist to host Wasm applications inside TEEs.

Twine [102], an embedded trusted runtime forWasm, executesWasmapplications in-

side Intel SGX enclaves. Twine relies on theWebAssemblyMicro Runtime (WAMR) [8],

enabled with WASI to interact with a secure file system. Enarx [2] targets Intel SGX

enclaves and AMD SEV virtual machines. Veracruz [7] only supports VM-based TEEs,

such as Arm CCA [32] and AWS Nitro [1] enclaves, having recently dropped SGX and

TrustZoneenclaves considered too constraining [6]. AccTEE [66] andSe-Lambda [118]

run Wasm binaries in Intel SGX enclaves using the V8 JavaScript/Wasm engine. Ta-

ble 3.2 compares WaTZ against state-of-the-art TEE runtimes for Wasm along the

following dimensions: AOT (process ahead-of-time compiled Wasm bytecode),WASI

(enable system interaction), RA (support remote attestation), RA in WASI (provide a

WASI API to control the remote attestation), µRT (use a lightweight runtime, which

is <1MB in memory), IoT TEE (designed for IoT devices), and TEE(s) (summarises the

TEE technologies).

3.3.2 WaTZ: System Overview

This section introduces WaTZ’s threat model, design, architecture, and details of the

trusted runtime.

3.3.2.1 Threat model

We consider the following aspects.

(a) Hardware. WaTZ leverages the followinghardware capabilities: (i) TrustZone secu-

rity extensions, (ii) a root of trust, and (iii) secure boot. While we consider a powerful

attacker with physical access to the devices, we assume that the protections offered

by hardware cannot be subverted. We consider storage rollback attacks out of scope,

which can be mitigated using hardware monotonic counters [100].

(b) Secure world. We assume the bootloader and trusted OS do not contain vulnera-

bilities enabling an attacker to breach the TEE. The cryptographic primitives and al-

gorithms are considered correct. Code and data inside the secure world are trusted

and cannot be accessed from the normal world, except through dedicated channels

controlled by WaTZ. Finally, side-channel attacks [119, 73, 150] are out of scope.

(c) Normalworld. Wemakenoassumption regarding thenormalworld, which includes

the richOS and the user space. CompromisedOSesmay arbitrarily respond to trusted
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Figure 3.4. Overall architecture of WaTZ

OScalls, causing itsmalfunction. The trustedapplications relyingon thenormalworld

should be carefully crafted to ignore abnormal responses or even abort execution in

such cases.

3.3.2.2 Design overview

WaTZ is a trusted runtime to execute Wasm applications with remote attestation ca-

pabilities. Figure 3.4 illustrates its components. Its small footprint (265 kB on disk,

with the runtime and WaTZ’s components) brings several advantages. Smaller pro-

grams offer smaller attack surfaces. TEEs and small devices (edge or IoT) are usually

tight in memory. Its small footprint allows deploying and running a complete Wasm

virtual machine inside TrustZone using a small edge-scale Arm processor. We esti-

mate that the increase of the trusted computing base (TCB) due to the embedding of

the Wasm runtime in the TEE is outweighed by its benefits.

To provide trusted OS features to Wasm applications, we contribute an adaptation

layer that binds WASI to the API existing in the trusted environment (i.e., GP API in

our prototype). This, in conjunction with the reliance of Wasm applications on WASI,

allows WaTZ to run unmodified Wasm applications, while benefiting from a TEE.

To offer remote attestation, we designed and implemented WASI-RA, an extension

ofWASI enabling the hostedWasm applications to interact with the process of attes-

tation. We guarantee thatWaTZ is booted correctly andwas not tamperedwith using

a secure boot system. WhenWaTZ loads aWasm application, its bytecode is stored in

the secure memory andmeasured to produce a hash. Using our interface, aWasm at-

tester can requestWaTZ to generate trusted evidences based on the hardware secret

and the hash of the Wasm bytecode. Furthermore, WaTZ includes a remote attesta-

tion protocol to enable a third-party verifier to check if the evidences are genuine,

which relies on themeasured fingerprint of theWasm applications. Upon positive at-

testation, our protocol simplifies the establishment of a hybrid cryptosystem for the

verifier and the attester, which can be later used to create secure channels.

3.3.2.3 Embedded runtime

We built WaTZ as an embedded Wasm runtime with a WASI interface as this de-

sign provides several advantages, i.e., removing some barriers for building TAs. First,

WaTZ opens the choice for programming languages. Provided that the compiler can

emit Wasm bytecode and support WASI, it is a clear advantage over vanilla bare OP-

TEE, which limits developers to C only. Second, this hides the complexity of writ-

ing code dedicated to OP-TEE sinceWASI abstracts the implementation details of GP

API. Furthermore, WebAssembly separates the virtual address spaces used forWasm

applications and the native runtime process, and code, stacks and heap are handled

separately, making memory-oriented attacks or developer mistakes more unlikely.

Besides, WASI ensures that the applications do not harm the secure world and acts
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as a gatekeeper to run operations outside of the virtual machine. Finally, applica-

tions are not tightly coupled to the underlying TEE, and WaTZ can load any regular

Wasm/WASI application without changes. As a result, Wasm brings more flexibility,

versatility and security compared to their native counterpart, allied with its strong

sandboxing mechanism that isolates each hosted Wasm application. This newly in-

troduced isolation layer extends the single trusted world of TrustZone to an environ-

ment with multiple secure and mutually distrusting enclaves.

Instances of trustedWasm applications are started by a user space process in the nor-

mal world, which uses the standard TEE API to prepare a buffer containing theWasm

application and trigger WaTZ in the secure world. Once in the secure world, WaTZ

copies the bytecode into a secure, sandboxedmemory, calculates the hash for future

attestation and starts the execution immediately. The Wasm applications natively

use the standard WASI interface to interact with the OS, which, in turn, diverts the

calls toWaTZ.We implemented a new kernel module for OP-TEE, i.e., theWaTZ attes-

tation service, enabling the runtime to generate evidences for relying parties, in order

to prove the authenticity of the applications. While several open-source alternatives

exist to executeWasm code, we settled onWAMR [8], a lightweight and embeddable

runtime implemented in C, ideal for TEEs in general (small TCB) and OP-TEE in partic-

ular (i.e., TA written in C).

3.3.2.4 Execution modes

WAMR can execute code in threemodes, each with its benefits and drawbacks: inter-

preted, compiled just-in-time (JIT) and compiled ahead-of-time (AOT). Interpreted is

the simplest yet slowest, as it does not require pre-processing the bytecode. When

using JIT compilation, thebytecode is translated intonative codewhenever executed,

but embedding a compiler in the runtime increases its complexity, size anddependen-

cies. Indeed, WAMR uses LLVM [88] as its JIT and AOT compiler, which is not trivial

to port to a restricted environment like OP-TEE. With AOT compilation, the bytecode

is translated before execution, so the runtime does not need to include a compiler,

but requires the TA to allocate executable memory. We opted for AOT compilation

forWaTZ’s runtime. However, OP-TEE’smemorymanagement API cannotmodify the

pages’ protection to mark them as executable [5]. Hence, we extended the trusted

kernel to provide such capabilities to TAs. According to our measurements, AOT exe-

cution is on average 28 times faster than Wasm interpretation.

3.3.3 Remote Attestation of WebAssembly

This section presents the remote attestation mechanism implemented in WaTZ, first

by explaining how the hardware is trusted, then extending this principle to the secure

OS.

Root of trust: We designed WaTZ for devices that expose a hardware root of trust

to the secure world. We extended OP-TEE to deterministically derive a key pair from

the hardware root of trust. Normal and secure OS can hence be updated without

losing the key materials, and on-chip key generation guarantees that the private key

never leaves the trusted kernel OS. The public key is then exported and used as an

endorsement value to be verified during remote attestation requests. The key pair,

i.e., attestation keys, is at the core of WaTZ’s mechanisms to provide attestation sig-

natures and guarantee platform authenticity.
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Secure boot: Secure boot is a security mechanism to ensure that the device is boot-

ing in a trusted state. WaTZ requires the device to implement secure boot, so only

a trusted entity is able to provide software to boot the secure world (i.e., bootload-

ers, trusted OS). Therefore, this enforces a chain of trust that protects the attesta-

tion keys from being extracted from the secure kernel OS. The boot sequence is as

follows: the first-stage bootloader (ROM) verifies if the provided second-stage boot-

loader is genuine, based on the public key stored in one-time programmable fuses

(eFuses) [113]. The previous booting component recursively verifies the next boot

stages until the secure world is fully booted.

Proof of trust: WaTZ generates cryptographically signed reports, i.e., evidences, as-

serting that an executingWasm application is trustworthy and the device genuine, by

producing a hash of the Wasm AOT bytecode stored in the secure memory at launch

time. We offer an API toWasm applications to issue evidences and establish a secure

communication channel with a verifier. Then, the evidence is checked by the verifier

using the corresponding public key of the device and verifies the codemeasurements

to match with its reference values.

The evidence is created by interacting with the attestation service, implemented as

a kernel module in OP-TEE (shown in Figure 3.4). The evidence includes: i) an anchor,

which is a value defined by the transport layer to bind security parameters to a par-

ticular session (e.g., a public session key); ii) the version ofWaTZ, enabling the relying

party to exclude outdated systems; iii) the claim, i.e., the hash of the bytecode; iv) the

public key of the attestation service, for the verifier to determine if the device is en-

dorsed, and v) the digital signature of the evidence.

Security requirements: Our remote attestation protocol satisfies the following se-

curity requirements:

1. Mutual key establishment : A shared secret key is established for communica-

tion between the attester and the verifier, using the elliptic-curve Diffie–Hellman

ephemeral (ECDHE) key-agreement protocol.

2. Mutual entity authentication: The attester and the verifier are mutually authen-

ticated to prevent masquerading attacks. From the attester standpoint, the ver-

ifier’s public key must be hardcoded into the Wasm application. This, combined

with the application measurement, ensures that an attacker cannot change the

key so that the software can only communicate with the intended remote service.

3. Half trust assurance: The attester attests the Wasm application and the platform

integrity to the verifier. The verifier does not provide a similar proof to the at-

tester, and the attester assumes the entity authentication is sufficient.

4. Freshness : ECDHE (ephemeral) requires the key pairs to be fresh, hence preventing

replay attacks.

5. Forward secrecy : Compromised long-term secrets do not affect the security of

earlier or future exchanges. Similar to freshness, ECDHE achieves this goal, which

means the keys are renewed for every instance of remote attestation.

WaTZ protocol for remote attestation: The GP API defines an interface to es-

tablish a secure communication channel using TLS. However, OP-TEE [65, 94] lacks the

corresponding implementation. We extended and implemented the RA protocol of

Intel SGX [80] (in turn inspired by SIGMA [87]) to rely on TLS.We changed the protocol

compared to the original by various aspects: (i) removed the SGX specificities, such as
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the interaction with the quoting enclave, as the kernel module of WaTZ provides the

measurements, (ii)merged the two firstmessages to communicate from the client to

the server as they tightly relate, (iii) provided a fixed structure for the lastmessage to

seamlessly handle the confidential data, eliminating the burden of the hostedWasm

application from decrypting that content, (iv) omitted the Intel SGX Enhanced Pri-

vacy ID (EPID) for conciseness, and (v) removed the dependency on Intel’s PKI, since

the device’s key pair is emitted byWaTZ based on the embedded root of trust. Below,

we detail each protocol’s message and the required cryptographic operations.

(a) Message 0 (attester→ verifier): The attester generates a session key pair <
a,Ga > and sends the public partGa.

(b) Message 1 (attester← verifier): Upon reception of msg0, the verifier generates

a session keypair< v,Gv >. It computes the shared secret from thepublic session key

of the attester Ga and its private session key v, which gives Gav. This shared secret

is derived into a key derivation key (KDK), which is further derived into two shared

secrets: Km for calculating MACs and Ke to encrypt future messages in the session.

These derivations are the same as in Intel SGX [80]. A reply message is sent to the

attester, containingGv, the verifier’s ECDSApublic keyV (its identity), and a signature

of both public session keys. The message is appended with its MAC.

(c) Message 2 (attester→ verifier): The attester verifies the signature of the public

session keys: different session keys may reveal a masquerading or replay attack, and

verifies theMAC ofmsg1. It also checkswhether the service public key V matches the

hardcoded key in theWasm application. Doing so ensures the attester communicates

with the intended service and prevents an attacker from altering that key as it is part

of the code measurement. The attester computes the shared secret from the public

session key of the verifier Gv and the private session key a, which gives Gva that is

equal to Gav computed by the verifier. The key derivations follow the same process

as in msg1. The attester creates msg2 by concatenating its public session keyGa with

a newly generated evidence signed by the attesterA, where the anchor of the trans-
port layer is the hashed concatenation of the public session keys. Finally, it appends

a MAC.

(d) Message 3 (attester← verifier): The verifier checks the MAC of msg2 and ver-

ifies that Ga matches the one received in msg0. It also verifies whether the anchor

corresponds to the public session keys, revealing a masquerading or replay attack. It

extracts the evidence’s public attestation key and checks against its list of endorsed

public keys to determine whether this is a known device. If the key is found, the dig-

ital signature of the evidence is checked, which indicates whether the hardware is

genuine. Finally, to verify that the Wasm application is trustworthy, its code mea-

surement claim is comparedwith a list of possible reference values. If all verifications

pass, the protocol sends msg3 with the confidential data, encrypted with AES-GCM,

which requires iv (an initialisation vector).

We simplified the protocol by omitting the use of session identifiers. Such identifiers

areneeded for havingmultiple sessionswith concurrent remoteattestation requests.

We also reduced the complexity by keeping the evidence in clear. If the secrecy of this

structure is a concern, the protocol can be extended to protect the evidence using

AES-GCM.
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3.3.4 WaTZ Wrap-up

To the best of our knowledge, WaTZ is the first Wasm runtime running entirely in-

side Arm TrustZone with full support for remote attestation, optimised explicitly for

Wasm to establish trust on hosted applications. Our design was implemented us-

ing a standard development board found in the market, verified and tested. With

many different experiments, we measured the costs of using the specific mecha-

nisms needed by WaTZ. We were able to demonstrate that our implementation is

lightweight, achieving results comparablewithWasm runningwithout a trusted envi-

ronment. The complete results of our performance evaluation have been published

in the 42nd international conference on distributed computing systems conference

(ICDCS’22), including many design and implementation details from this deliverable,

a security analysis and a formal verification of the remote attestation protocol [107].

The code and experiments are available throughGitHub [105], opening the possibility

to freely reuse it in decentralised applications on edge and IoT devices.
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4 Embedded Trusted Execution Environments

This chapter is divided into two major sections describing our work on emerging

Trusted Execution Environments (TEE) Technologies: TrustZone-M, ARMTrustZone’s

security extension for resource-constrained devices and RISC-V, the emerging open-

source ISA. The work on state-of-the-art TEEs includes identifying serious vulnera-

bilities in TrustZone-M and proposing efficient solutions. Since TrustZone-M is now

available for the Cortex-M series (which is leading the networked embedded devices

market), this research improves the security for off-the-shelf IoT devices in the mar-

ket. The chapter is divided into three sections: the first section describes the work

done to establish a secure communication framework on TrustZone-M based IoT, the

second section discusses the proposedmechanism formitigating unauthorized activ-

ities within the secure world of TrustZone-M enabled devices and the last section of

the chapter discusses an early work on the RISC-V platform which is a novel proposal

intended to pave the ground for advancements in real-time operating systems and

open-source CPUs (RISC-V).

4.1 Utilizing Arm MPU for secure communication in TrustZone-M

The TrustZone technology is a security extension incorporated into Arm proces-

sors which is explained in detail in Chapter 3.TEEs in general are essential for

security-critical operations such as software/firmware update, remote attestation,

handling sensitive data-generating peripherals, etc. Although TrustZone-M provides

a hardware-based TEE, which effectively isolates security-critical operations from un-

trusted software components, it lacks mechanisms for secure communication be-

tween the TEE and the untrusted environment in an IoT device.

This section of the chapter describes a secure communication framework supported

from the TrustedFirmware-M implementation of TrustZone-M. The proposed frame-

work to build secure communication between the two worlds of TrustZone-M is a

lightweight message protection scheme using the Memory Protection Unit (MPU).

ShieLD is the first framework proposed to solve the issue of vulnerable inter-world

communication for TrustZone-M platform. We present a real-world use case of the

proposedmechanism alongwith an extensivemicro-benchmark performance evalua-

tion of it’s overhead on system operations. Major content of this section is extracted

from our publication ”ShieLD: Shielding Cross-zone Communication within Limited-

resourced IoT Devices running Vulnerable Software Stack” published in IEEE Transac-

tions on Dependable and Secure Computing [85]. The related literature and exten-

sive evaluation of the security attributes and functional overhead is presented in the

paper as well.

The following sections provide: (i) background, (ii) ShieLDmechanism, (iii) implemen-

tation and evaluation and (iv) future directions of this work.

4.1.1 Background Technologies

TrustZone-M is designed for Cortex-M, which are a series of microcontroller proces-

sors that are programmed either bare metal (without libraries) or linked with some

libraries that could provideOS-like features. Cortex-Mbased devices support the T32

instruction set,which is a subsetof theA32 instruction set. Theprocessordoesnotof-
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Figure 4.1. High-level architecture of ShieLD

fer complexmemorymanagement (noMemoryManagement Units), cache and often

no FPUs (Floating Point Unit) either. TrustZone-M provides similar hardware-based

isolation guarantees as conventional TrustZone for Cortex-A family (TrustZone-A)

but, unlike TrustZone-A, the context switch between the two worlds depends on the

setup of the memory map, without the need to enter the secure monitor mode. This

design feature makes TrustZone-M energy-efficient, hence suitable for low-powered

IoT devices. Saving and restoring the system context before and after the transition

is handled by the Secure world.

All Cortex-M processors except Cortex-M0 have aMemory Protection Unit, which is

a programmable block inside the processor that can be used to restrict access to a

memory region by dividing the entire memory space (including Flash, SRAM) into a

number of MPU regions and assigning access permissions to each region. The MPU

can be configured to support 8 or 16 regions by privileged software using a series

of 32-bit memory mapped registers. Privileged software such as an OS kernel, can

change the MPU region setting at run-time based on the process being executed.

4.1.2 ShieLD Mechanism

Figure 4.1 depicts the high level architecture of ShieLD, highlighting its components

and basic interactions. The Normal world runs the applications and a modified ver-

sion of an interrupt handler on top of a Real-Time Operating System (RTOS) kernel.

The Secure world runs the ShieLD components that are designed to implement se-

curity mechanisms. A small underlying secure kernel provides basic OS functions for

software running in that world e.g., process management, file access, and memory

management.

The secure monitor protects access to a protected memory region, i.e., MPU_Vault

for secure cross-world message transmission. The MPU_Vault setup is initiated by

the tasks in the Normal world. A task that needs access to a service in the Secure
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Figure 4.2. Execution time (in microseconds) of ShieLD-enabled communication compared to

crypto-based and plaintext cross-world communication

world, first allocates an optimal block of memory area in the Normal world, and then

sends a request to the securemonitor for itsMPU_Vault setup. When the securemon-

itor receives a request for MPU_Vault allocation from a task in the Normal world, it

verifies the legitimacy of the requesting task using an access control list (generated

by ShieLD) containing tasks and the secure services they are allowed to access. Af-

ter the authentication of the task, the secure monitor configures an MPU-protected

MPU_Vault associated with the request and sets access permission of that region to

Read/Write (RW). The address and region number of the MPU_Vault are then saved

for future reference and a flag is set, indicating an MPU_ Vault is currently enabled.

The MPU_Vault is protected throughout the lifecycle of the interacting applications.

In order to protect the contents of theMPU_Vault during system interrupts, wemod-

ify the Interrupt Service Routines entry and exit to redirect the control flow to se-

cure monitor. The secure monitor changes the access permission of the MPU_Vault

in use to be not readable and writable. It is also important to guarantee the integrity

of ShieLD components in the system. The integrity of kernel code which is part of

the static region of RTOS kernel, is protected during the secure boot. In TrustZone-

enabled systems, when the device boots up, the Secure world is booted first, which

later transfers control to the Normal world. Before passing the control to Normal

world, ShieLD verifies the integrity of the kernel and enables MPU protections for

its static region. Moreover, since the MPU is programmable by privileged software

(including the RTOS), the MPU_NS is set up to be only writable/programmable from

within the Secure world in ShieLD.

4.1.3 Implementation and Evaluation

We implemented a proof-of-concept of ShieLD building on TrustedFirmware-M (TF-

M) [37] in the secure side with CMSIS RTOS2 as Normal world OS. TF-M provides a

reference implementation of Secure world software for ARMv8-M [36]. It creates

the foundations of TEE by providing a set of secure run-time services such as secure

storage, cryptography, attestation etc. Additionally, secure boot in TF-M ensures in-

tegrity of run-time software.

The performance of ShieLD was evaluated on the Musca-A2 Test Chip Board by Arm

[38]. The Musca-A2 board implements the Arm CoreLink SSE-200 subsystem featur-

ing dual-core Cortex-M33 with CPU0 enabled at 50MHz [35]. We compare the com-

munication overhead of ShieLD with plaintext and a state-of-the-art crypto-based
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communication. This evaluation benchmarks the overhead of ShieLD on resource-

constrained IoT devices. Figure 4.2 shows the comparison between these three com-

municationmodes for differentmessage sizes. In the case of crypto-based communi-

cation, we see a visible escalation in total execution timewith the increase inmessage

size, this is due to the fact that time consumed by cryptographic operations is directly

proportional to the size of the message being encrypted. In contrast, the ShieLD-

protected communication has insignificant overhead with the increase of message

size. It is an important feature of MPU-based protections that the execution time

of setting up and protecting a region remains independent of the size of the mes-

sage/region.

4.1.4 Summary of ShieLD

This work is a novel use of MPU to enable a secure vault that is exclusively accessi-

ble to the legitimate application in the Normal world that wants to access and ex-

ecute security-critical operations in the Secure world. ShieLD provides similar secu-

rity services (authentication, confidentiality, and integrity) as provided by the con-

ventional crypto-based secure communication. We have implemented ShieLD in a

TrustZone-M enabled IoT device and evaluated its memory and execution time (that

translates to power/energy) overhead. Our empirical evaluation shows that ShieLD

is extremely efficient when compared with the crypto-based communication protec-

tion. Though ShieLD targets IoT devices featuring TrustZone-M, the techniques pro-

posed here could be extended to other TEEs.

4.2 Mitigation of Unauthorized Activity in TrustZone-M’s Secure

World

As mentioned previously in the chapter, Trusted Execution Environments (TEEs) like

Arm TrustZone [30], Intel SGX [22], KeyStone [90] provide a mechanism to partition

system resources and peripherals into secure and non-secure processing environ-

ments to enable isolation of critical components from the rest of the system. The

way TrustZone-M is configured, system components in the secure areas have access

to the entire system resources. The challenge here ariseswhen a secure application is

compromised (due to an undetected vulnerability), it becomes extremely challenging

to detect this compromise and deploy remedial actions. Several examples of stealthy

rootkits exploiting compromised TEEs [64, 110] exist. The fundamental problem is

that in a multi-vendor environment, the device users have to trust that software in

secure areas of the device is trustworthy and will not abuse the privileged access

to manipulate or exfiltrate data. Industrial espionage in case of conflict of interest

between vendors, illegal file sharing using compromised secure areas are some po-

tential ways TEE-enabled systems have previously been exploited. In case of conven-

tional IoT devices including smartphones, smart TVs, smart vehicles, the component

vendors and suppliers are fewer and well-known, and the security of the underlying

architecture and applications ismatured over years of research and development. On

the other hand, IoT device vendors are still emerging rapidly; resulting in spread of

unregulated IoT devices. Running conventional anti-virus systems to monitor the se-

cure application and the peripherals they access increases the code-base of secure

areas and is not recommended.

We present TEE-Watchdog, a framework to map user/vendor-defined policies to the

system memory, efficiently detect access violations and register policy-violating ap-
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plication’s behaviour. TEE-Watchdog ensures: (i) fine-grained access control over se-

cure system peripherals, (ii) immutability of proposed system components and (iii)

confidentiality and integrity of the associated policy files.

The relatedwork, details about the design and the elaborate evaluation of the proof-

of-concept implementation arepresented in ourmanuscript ”TEE-Watchdog: Mitigat-

ing unauthorized activities within Trusted Execution Environments in Arm-based low-

power IoT devices” published in Security and Communication Networks. The follow-

ing sections provide brief descriptions of the (i) Threat model and (ii) TEE-Watchdog

Mechanism.

4.2.1 Threat Model

We consider that our system runs on resource-constrained IoT devices that support

Arm TrustZone-M. Our security guarantees hold with the assumption that TrustZone

itself is implemented correctly and no intentional flaws and bugs are introduced in it.

We trust the privileged firmware and secure bootloader. We assume that Stack Limit

registers are used appropriately to prevent stack manipulation and the non-secure

Interrupt ServiceRoutines (ISR) cannot interrupt secure ISRs. Moreover correct usage

of Stack Limit registers ensures that secure ISRs are handled by privileged software.

Moreover, we assume there are no validation bugs in the secure software that can

lead to privilege escalation to the privileged firmware level.

Wedefine anddistinguish three classes of attackers in the threatmodel. First, a trust-

worthy vendor could run an insecure third-party’s piece of code/API in TEE unknow-

ingly; this could be due to leaving known vulnerabilities in the code from the begin-

ning, or code becoming vulnerable over a passage of time. This allows any attacker

(A1) to exploit the known vulnerabilities. Second, the vendor itself is semi-trusted

for being honest-but-curious and is able to access other applications data in the se-

cure world (A2). Third, a large number of IoT devices are now beingmanufactured by

unknown and untrusted vendors who also don’t have the mechanisms to maintain a

secure supply-chain 1; such untrusted IoT vendors and/or individual component sup-

pliers could behave maliciously to collect critical end-user data (A3).

Our attack model is based on the primary assumption that a service running in the

secure world has autonomous access and control over the entire system resources

(both normal and secure). So an attacker with access to the network stack can exfil-

trate data of another service over the internet. The goal of such an attacker could be

data leakage due to conflict of interest between manufacturing vendors (A2). Simi-

larly, other attackers, like A1 and A3, can exploit the privilege level of their code in

TEE which can access structures and functions.

4.2.2 TEE-Watchdog Mechanism

The systemarchitectureof an IoTdevicewithTEE-Watchdog is illustrated in Figure4.3

that depicts 3 entities: an IoT device, an IoT device peripheral and an external audit ser-

vice. We introduce TEE-Watchdog as a part of the secure kernel which is a privileged

secure software. The application/service vendors provide a software’s Manifest File

enlisting functional details about the software, its sub-modules and required access

to system peripherals. The software can be any user-level application or firmware of

a peripheral. ThisManifest File is converted to a memory-mapped Access Table at

1https://blog.checkpoint.com/2017/03/10/preinstalled-malware-targeting-mobile-users/
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Figure 4.3. An overview of TEE-Watchdog security mechanism and its interaction with existing

IoT system

system boot. The permitted peripherals are recorded in the Access Table where each

application is listed alongwith its set of permittedperipherals. All systemperipherals

besides those enlisted are not permitted by default.

Cortex M23 and Cortex M33 have upto two MPUs if TrustZone security extension is

enabled, we leverage the secureMPU toprotect system resources in the secureworld

including code, data, MMIO regions and other system structures. When a secure ser-

vice is invoked by a normal world application, it becomes the current active applica-

tion/service in the secure world. Based on this active service in the secure side, the

TEE-watchdog configures the entire secure memory space as per the Access Table.

The Audit Module is activated only when a service/application behaves outside its

specified permissions and attempts to access memory or peripherals beyond a per-

mitted list. Prior to this, the securememory is divided intoMPU protected regions by

the Sandboxing Module with permissions configured according to the Access Table.

During such a violation, the service making an illegal access to a secure peripheral

would trigger a MemManage Fault. As soon as the processor triggers the fault, it

populates the MemManage Fault Address Register (MMFAR) with the memory ad-

dress of the resource being accessed, sets the MMARVALID bit in the MemManage

Fault Status Register (MMFSR) indicating that MMFAR holds a valid fault address and

sets the bit (bit 0 to 7) in MMFSR corresponding to the type of access that generated

the fault. We modify the MemManage Fault Handler to introduce the Audit Module.

The AuditModule checks the LogFileExistsflag before continuing to investigate the

fault. If the MMARVALID bit is set, the Audit Module reads the address fromMMFAR

(as shown in Figure 4.4) and enters it to the Log File along with the details of the

violation and the application’s UniqueID. The Log File suffers the risk of being over-

populated since the devicememory is constrained. At any point, the Log File can only
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Figure 4.4. The Audit Module of the Security Manager performs behaviour logging of application

deviating from their intended resource access

maintain a limited number of violation records. In order to ensure that all records of

violation are stored, the Audit Module checks the number of existing log entries be-

fore making a new entry. If it is equal to maxEntries, the existing entries of Log File

are moved for further processing to an external audit service and new entries can be

stored on device. The SecurityManagermaintains a list of secure services and sets or

clears the isActiveflag based on the service that was invoked from the normal world

orby another secure service. This ensures the linkbetween theactive application that

caused the violation and the Log File entry. After the attempt is successfully logged,

the control flow returns to theMemManage Fault handler and the fault is handled as

per system settings.

4.2.3 Summary of TEE-Watchdog

TEE-Watchdog is a mechanism to restrict software access to secure system peripher-

als based on pre-defined security policies and permissions. TEE-Watchdog introduces

a compact CBOR-encoded manifest file template for device vendors/manufacturers

touse for specifyingaccesspolicies. TEE-Watchdogalsoenables efficientbehavioural

logging of misbehaving software. TEE-Watchdog leverages the Arm MPU to create

memory restrictions, uses the fault handlingmechanism to logmisbehaviour and uti-

lizes standard CBOR encoding and decodingmechanism to parse the compact CBOR-

encoded Manifest File. We have implemented TEE-Watchdog in a TrustZone-M en-

abled IoT device and evaluated its execution overhead and performance. Our micro-

benchmark evaluation of the proof-of-concept implementation shows that additional

operations introducedwith TEE-Watchdog are at par with normal system operations.

There is a 1.4% delay in latency of peripheral access due to TEE-Watchdog protec-

tions. Our proposed CBOR-encoded template for the policies has a 40% reduction

in size of the manifest file as compared to the standard JSON file format which is a

marginal gain considering the constrained nature of the IoT devices.

4.3 Memory Protection Unit for Open-source CPUs

The second part of this chapter discusses preliminary work and efforts on the novel

RISC-V architecture. We have previously presented an implementation of RISC-V’s

Physical Memory Protection (PMP) and optimization techniques which reduce the

LUT utilization of the RISC-V’s PMP hardware on Artix-7 FPGAs by 50% relative to

existing open-source alternatives (work done in M1-M8). We also demonstrated that

certain features in the PMP specification are not required by modern embedded op-

erating systems, and can be safely omitted for further efficiency gains. This was the

basis of our implementation of supervisor PMP, a proposed RISC-V ISA extension for
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Figure 4.5. Above: Thread isolation with PMP. Below: RTOS virtualization with secure enclaves

made possible by the sPMP extension

facilitating trusted execution on embedded devices. Our implementations and asso-

ciated documentation are free and open-source plugins for the VexRiscv CPU project

as mentioned in the previous deliverable. Our contributions have enabled secure en-

claves on embedded soft processors.

We continued the work on RISC-V in months 9-18. Our target use case for the work

was enabling userspace features in Zephyr RTOS on a soft CPU core. In our earlier

work, we collaborated on the implementation of Zephyr’s PMP driver in order to en-

able those features onRISC-Vplatforms. In theprocess, weobserved a curious incom-

patibility between Zephyr’s system call routine and a built-in RISC-V security feature,

which effectively renders one PMP region unusable.

In contrast to other similar architectures (e.g., AArch32, ARC, etc.), RISC-V does not

allow software to detect the current privilege level. Software can only determine

which privilege level triggered themost recent exception by reading themstatus CSR

(which can only be done in M-mode). In theory, if software must know its current

privilege level, it can make a system call to request that information from the kernel.

This prevents untrusted code from discovering its own permissions.

This security feature can make porting software originally designed for other archi-

tectures somewhat challenging. Zephyr has a unified system call API for both privi-

leged and unprivileged code. Every system call beginswith a call to is_user_context(),

which determineswhether themethod can be executed directly or if a context switch

into kernel mode (M-mode) is required. Without hardware support for determining

the current privilege level, we considered three workarounds to avoid significantly

restructuring Zephyr’s system call API:

1. Implement a dedicated system call. From the Interrupt Service Routine (ISR),

the kernel reads mstatus.MPP to see whether U- or M-mode made the call.

2. Attempt a restricted operation, such as reading an M-level CSR. If an exception

occurs, the CPU is in U-mode. If not, it is already in M-mode.

3. Reserve a single PMP region to protect a global read-only flag indicating the

current privilege level (see Figure 4.5). The kernel updates this flag on every

context switch.
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Option (3) is currently the best option for resource-constrained RISC-V devices, and is

now used in upstream Zephyr RTOS. The other options are unworkable because they

incur a full context switch just to check the privilege level, which requires about 5000

CPU cycles.

This discrepancy is by no means a critique of either the RISC-V ISA or Zephyr RTOS.

With some effort, Zephyr’s build system could be restructured to accommodate RISC-

V more appropriately by leveraging, for example, user-level interrupts to intercept

system calls from userspace. We raise this discussion here merely because it has a

real-world impact on the usability of PMP at the time of this writing, and because

other RTOSes will likely face similar compatibility challenges.

There are currently two approaches under consideration in the RISC-V TEE WG to

tackle the embedded enclave problem. The sPMP extension enables a memory hier-

archy illustrated in Figure 4.5, which provides a relatively straightforward program-

ming model for developers. One disadvantage to this approach is the need to repro-

gram the protection regions on every context switch between trusted and untrusted

software. This may incur unacceptably high latencies for some use cases.

The RISC-V Trusted Execution State (TES) extension we previously proposed (in D5.1

[115]) would, on the other hand, allow each PMP region to be tagged with a trusted

bit. These tags determinewhich execution state the region applies to, thereby negat-

ing any need to reprogram PMP on state transitions. TES has several other features

catered specifically to creating enclaves which may make it more suitable than S-

mode Physical Memory Protection (sPMP) for IoT applications. The future of this

work could be the implementation of TES on VexRiscv for an evidence-based com-

parison.
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5 Safety

Safety is the handling of all operations and events, within or outside of an industry, to

protect the employees and users of the industry equipment and products. The main

focus is on minimizing hazards, risks and accidents. In this chapter, we discuss safety

for AI/ML systems and focus on the safety requirements methods, safety verification

methods and safety runtimemethods. This chapter takes an automotive perspective

on the safety aspects of VEDLIoT because the automotive use case inVEDLIoT ismost

safety relevant of all the current use cases in the project.

5.1 Safety Standards

We begin our discussions from safety standards relevant to the use cases of the

VEDLIoT project. For Electric/Electronic (E/E) systems and components, the safety

standard IEC 61508 [52] may be used which covers the basic functional safety aiming

at two fundamental areas:

• Safety life cycle: an engineering process basedonbest practices to discover and

eliminate design errors.

• Failure analysis: a probabilistic approach to account for the safety impact of

system failures.

IEC 61508 has led to the conception of standards specific to different industries. For

example, safety for the automotive industry is managed by the ISO 26262 [81] stan-

dard. This standard is aiming at minimizing safety risks due to E/E faults. Another

standard applicable to the automotive industry is ISO 21488 which is focused on the

risk and accident mitigation with respect to the product’s intended function. Both

standards require a thorough analysis of the risks and hazards coupled to a devel-

opment process based on the requirements methods, as proposed in the VEDLIoT

project deliverable, D2.5 [138]. Work Package 2 is working on anArchitectural Frame-

work which guarantees a documented architecture and design description coupled

with a verification process at all levels of the product design.

5.1.1 Functional Safety for Automotive, ISO 26262

This standard defines vehicle safety as the absence of unreasonable risk due to mal-

functioning E/E components. An overview is illustrated in Figure 5.1. The standard

identifies Hazard Analysis and Risk Assessment (HARA) as a necessary tool to identify

the vehicle hazard levels. Based on this analysis the safety engineer will create safety

goals and functional safety requirements. This can be further decomposed into the

hardware and software development processes. Part 6 of ISO 26262 defines the V-

model for the software development process. The V-model enforces that the archi-

tectural design and the function verification tests fulfill the safety argumentation.

And that all the components, including input and output signals, at lower architec-

tural levels interact so that the individual results generate the correct level of safety

at the top level. ISO 26262 helps manage methods for fault detection and avoidance

to minimize the risks.
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Figure 5.1. Overview of ISO 262626 and ISO/PAS 21488

5.1.2 Safety of the Intended Function for Automotive, ISO/PAS 21488

ISO 26262 is not well adapted to higher levels of vehicle automation. It does not

manage faults occurring due to the inability of the sensors and similar component

to correctly understand the environment. The ISO/PAS 21448 or SOTIF (Safety Of

The Intended Function) [13] standard has divided the development process into four

major phases: (i) design specification, (ii) development, (iii) verification, (iv) valida-

tion. These phases are processed multiple times in an iterative manner. The SOTIF

standard assumes that there may be performance limitations of the processing com-

ponents. The standard also discusses the problemwith unsafe-unknown (no test and

verificationdata available) andunsafe-known scenarios (the system is just outsideop-

erational boundaries), again trying to minimize risks in the operational system. The

SOTIF standard also includes a dedicated HARA (Hazard Analysis and Risk Assess-

ment) to find unacceptable performance functionality, reduced situational aware-

ness, misuse and more.

5.1.3 Safety for AI/ML Systems

When we are using ML algorithms in the real-world domain, we need to consider

trustworthiness, safety, and fairness prerequisites. There is an urgent need for cor-

responding techniques and metrics in some high-stake domains (e.g. the automotive

domain). Although ISO 21488 does include argumentation for ML based systems,

there are some obvious gaps for these systemwhen it comes to safety. This has been

investigated by other teams [103].

Varshney et al. investigated safety for ML models and compared it with four main

engineering safety strategies in current industry [140]: (i) inherently safe design, (ii)

safety reserve, (iii) safe fail, (iv) procedural safeguards. Salay et al. studied ISO 26262

part-6 with respect to safety of ML models. They identified that the fulfillment of

safety methods for ML sofware compared to conventional software was reduced by

40% using the standard [122]. Amodei et al. identified five research problems that

could result in unintended and unsafe behavior of real-world AI systems [19]. In a

medium.comarticle, Ortega andMaini introduced three areas of technical AI safety as

specification, robustness, and assurance [114]. In [104] the researchers put together
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open challenges and following conclusions.

Design Specification: ML models learn the patterns in data to discriminate or gen-

erate their distribution for new unseen input and learn the target classes through

their training data (and regularization constraints) and not using a formal specifica-

tion. This may cause amismatch between “designer objectives” and “what themodel

actually learned” which could result in unintended functionality of the system. The

data-driven optimization makes it hard to define specific safety constraints. Seshia

et al. looked at formal specifications for DNNs to lay an initial foundation for for-

malizing and reasoning about properties of DNNs [130]. Another way to manage the

design specification problem is to break machine learning components into smaller

algorithms (with smaller tasks) to work in hierarchical structures. Dreossi et al. pre-

sented the VerifAI toolkit for formal design and analysis of AI-based systems [61].

Implementation: ISO 26262 requires traceability from requirements to design and

advanced ML models trained on high dimensional data are not transparent. Signifi-

cant research has been performed on interpretabilitymethods for DNN to provide in-

stance explanations of model prediction and DNN intermediate feature layers [149].

However, the completeness of interpretability methods to grant traceability is not

proven yet [16].

Testing and Verification: Significant verification of products are required for unit

testing to meet the ISO 26262 standard. Coming to DNNs, formally verifying their

correctness is challenging (provably NP-hard, see [130]) due to the high dimensional-

ity of the data. Therefore, reaching a complete validation and testing bound to the

operational design domain is difficult. As a result, researchers proposed new tech-

niques such as searching for unknowns [146], predictor-verifier training [71], neuron

coverage and fuzz testing [144].

Performance and Robustness: SOTIF standard treats the ML models as a black box

and suggests using methods to improve model performance and robustness. Gener-

alization error refers to the gap between model’s empirical error on its training and

test sets. On top of these, an operational error is referred to model’s error rate on

open-world deployment that could be higher than the test set error rate.

Run-time Monitoring Function: SOTIF and ISO 26262 standards suggest run-time

monitoring functions as software error detection solutions. Designing monitoring

functions to predict ML failure (e.g., false positive and false negative error) is dif-

ficult. ML models generate prediction probability for input instances but research

shows prediction probability does not guarantee failure prediction [74]. In fact, DNN

andmany other MLmodels could generate incorrect outputs with high confidence in

cases of distribution shift and adversarial attacks.

5.2 Safety Requirement Methods

To conduct a thorough analysis of the risks and hazards coupled to a development

process, we discuss the requirementsmethods entailing the architectural framework

introduced in Work Package 2.

5.2.1 Architectural Framework Safety Requirements

Deliverables 2.1 [139] and2.5 [138] outline the concept of an architectural framework

based on compositional thinking. The idea of a compositional architectural frame-
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work is that the system of interest is divided into different clusters of concerns. Each

cluster of concerns represents a specific aspect of the systematdifferent levels of ab-

stractions. A major group of concerns regard the different quality aspects of the sys-

tem. Safety is such a quality aspect, and the architectural framework for VEDLIoT can

encompass architectural views governing explicitly the safety aspects of the VEDLIoT

system. Figure 5.2 illustrates that, besides safety, the architectural framework for

VEDLIoT can also maintain clusters of concerns for security, ethics, and privacy. In

this section, we will concentrate on safety as a cluster of concern that interacts with

other aspects of the system, such as hardware configuration, communication and AI

modelling.
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Figure 5.2. Architectural cluster of concerns for quality aspects of a VEDLIoT system

5.2.2 Interaction of Safety Aspects with Other Cluster of Concerns

The full list of clusters represented in VEDLIoT’s architectural framework can be

found in Deliverable 2.5. Based on an example taken from the automotive use case,

we will demonstrate how safety aspects influence other cluster of concerns of the

VEDLIoT system.

Assume a system that shall trigger the brakeswhen a person is detected in the lane in

front of a vehicle. Assume further, that, through the Hazard Analysis (i.e., HARA), the

following safety goal has been identified: ”The system shall not trigger the emergency

brake unintentionally (ASIL1 B)”. An extract of the high-level system architecture, as

1Automotive Safety Integrity Level
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Figure 5.3. Safety decomposition in system architecture of automatic emergency brake system.

illustrated in Figure 5.3a consists of a sensing element (camera), a decision unit (ob-

ject detection algorithm on an embedded platform) and an actuator (brakes), which

constitutes the item in accordance to ISO 26262. While the brakes are designed to a

high safety integrity level, the camera and object detection algorithm might not be

able to achieve even ASIL B.

Therefore, a safety decomposition in the functional safety concept results in redun-

dancy in the sensing system, and a lower ASIL on each component: An additional lidar

sensor, together with a second object detection algorithm specifically designed for

detecting objects in lidar point clouds, allows for the reduction of the required safety

integrity level of all redundant components to ASIL A(B). The additional sensing sys-

tem however must be independent from the first object detection system. The final

high level systemarchitecture after safety decomposition is illustrated in Figure 5.3b.

Influence of Safety on AI Model Design and Data Selection: The independence

criteria between the two redundant systems creates requirements on the AI model

design. Each sensing systemmust have an independent algorithm capable of detect-

ing obstacles from the sensor data, without relying on the second sensing system.

Because of the independence criteria that was established in the functional safety

concept on the conceptual level of the system architecture, independence between

sensing systems is inherited to the cluster of concern governing the AI model design.

As a consequence, two independent AI models will be required, one for each of the

sensing systems. Furthermore, the data used for training, testing and validationmust

be independent. An example on how the independence of the data could be broken

is using joint data collection campaigns. If the joint data collection campaigns misses

to collect relevant datapoints (e.g., driving at high speeds), the fault will propagate

to both AI models.
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Figure 5.4. Interaction between different clusters of concern of the architecture, which represent

different aspects of the VEDLIoT system

Influence of Safety on Hardware Architecture and Logical Components: By intro-

ducing safety decomposition in the functional safety concept, correspondences (mor-

phisms) to the system hardware architecture view and the logical components view

were established in order to fulfil the required safety concerns. On the next level of

abstraction, the technical safety concept establishes a view on the overall system’s

architecture that allows the fulfilment of the functional safety concept. For example,

the technical safety concept provides a view on the system architecture that requires

the logical component ”Visual object detection” to be deployed on safety certified

hardware components. This creates a correspondence to the computing resource al-

location view; indicating that the object detection algorithm only works at daylight,

which creates a correspondence to the constraints/design domain view.

Amajor advantageof the compositional architectural framework is the ability to trace

links or correspondences between the different architectural views, as illustrated in

Figure 5.4. Let us assume that after years of service, the system’s hardware shall be

upgraded and one decides to replace the two independent processing units with a

more powerful single unit. Then, the link between the system hardware architecture

and the functional safety concept would remind the system designer of the safety

concern that triggered the original design decisions years ago to have separated and

independent processing units for the two independent object detection algorithms.
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5.3 Safety Verification Methods

Simulated scenarios will enable testing difficult or even hazardous events. The vari-

ation of scenarios may also be large and is only limited by the simulator processing

power. Simulations can be done at multiple levels involving more or less of the final

product and also the user:

• Model In the Loop (MIL). This is where the ML model for the intended function

or feature, at different levels of optimization, is tested.

• Software In the Loop (SIL). This includes testing basic software running on a pro-

cessor includingML algorithms, interface blocks and possibly operating system

components.

• Processor In the Loop (PIL). This is where the ML model is implemented on the

target processor hardware.

• Hardware In the Loop (HIL). This is where the algorithms are running on the

expected product hardware. This also includes sensors and communication in-

terfaces at different levels of real or virtual hardware.

• Vehicle In the Loop (VIL). The dynamic behaviour of a vehicle is included andmay

have an impact on system data input and the required output data. The vehicle

may be virtual or real.

• User In the Loop (UIL). Basically simulating the full systemwith algorithms, hard-

ware, vehicle and the driver activities. The assumption indirectly affects the

system input data.

• Human In the Loop (HITL). This in a way the same as UIL but in this case the we

are focusing on the actualMLmodels and the interaction between a human and

these models to solve the problem/function at hand.

We believe only a limited number of real-world field tests are necessary to verify sim-

ulated data which we will continue evaluating during the remainder of the project.

5.4 Safety Runtime Methods

As shown in both Figures 5.2 and 5.4, the VEDLIoT architectural framework explic-

itly supports a runtime level of abstraction at which runtime monitoring aspects can

be defined. Dependencies, between the quality concerns and other aspects of the

VEDLIoT system, concerning runtime, can also be created (similar to analytical, con-

ceptual, and design levels of abstraction). We discuss runtime monitoring, determin-

istic and rule based run-time checks for safety monitoring below.

5.4.1 An Architectural View on Runtime Monitoring

Commonsafety standards, suchas ISO26262 [81] emphasise the systemdesignphase

and less the runtime aspects of the system. However, systems containing some form

of machine learning are not comparable with rule-based systems in the sense that a

predetermined (safe) behaviour cannot be guaranteed through enforcing a correct

design of the system. The reason behind that is that machine learning bases on sta-

tistical inference, for which an absolute correct behaviour cannot be guaranteed at
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design phase. Therefore, the architectural framework contains the explicit architec-

tural view Safety monitoring and safety degradation. Safety monitoring can entail a

number ofmeasures to ensure the correct behaviour of the system. For example, the

data coming from the sensor modules used for inference through themachine learn-

ing model can be checked for having the correct quality aspects required to achieve

the desired behaviour and performance of the system.

A list of possible quality aspects on data can be found in Deliverable 2.5. Note that

the cluster of concern Information contains an explicit architectural view called data

monitoring. If the quality of data is deemed safety critical, a correspondence, or link,

between the safetymonitoring and the datamonitoring canbe created. Such a link be-

tween the safety aspectof the systemand the information /data aspectof the system

would emphasise the safety of the data at runtime. Besides runtime datamonitoring,

other links such as between safety monitoring and behaviour monitoring can exist.

An example is the recording of false positive braking, i.e., false detection of objects,

and disabling the system after a certain number of false positive detection events.

As VEDLIoT emphasises the usage of distributed computing systems (i.e., IoT), some

components of the safety critical system might be moved to a non-local processing

unit (e.g., an edge device located at a mobile network base-station). In these cases,

connectivity monitoring will be part of the safety case of the system.

5.4.2 Deterministic and Rule-based Runtime checks

Software: Theoperation of softwaremodulesmaybe checkedby looking at the cycle

time and amount ofmemory access. In some cases, softwaremay endup in a loopdue

to unexpected input signals. This will be identified by the cycle timemonitor. Slightly

longer cycle times than normal may indicate processor management problems like

increased number of system interrupts which could be due to a pending error.

Hardware: Most hardware modules, especially power supply units have the ability

to check e.g. that voltage levels are within the limits for the processing and control

hardware used in the different parts of the system. In some cases the actual current

may be measured but most units have over-current protection and warnings. These

supervision modules normally do not have any back-up or redundant hardware but

since the outputs signals are active, during normal operation, it may be possible to

identify an error in the monitoring function. Other hardware monitoring functions

are time-out detectors, sometimes referred to as watch-dogs. By regularly requiring

a trigger signal, it checks that other hardware units are running according to some

time schedule. More accurate timing supervisionmay be necessary for system clocks.

This can be achieved by comparing the clock cycles to a reference clock. The refer-

ence clock can be implemented as a dedicated hardware unit or as a combination of

system clocks. In the latter case, error correlation between the system clocks and

the reference, has to be recognized. If either a system clock or the reference gets

off specification, a warning will be issued. Temperature is also an indicator of correct

operation as hotspots in components could lead to failure. Even a slight increase in

relative temperature of the system could be a warning of possible failure or just of

higher environmental temperature.

Power consumption: As discussed above, voltage and current for individual hard-

ware modules are monitored to ensure correct functionality. It may also be inter-

esting to monitor the system power consumption either through software or by a
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dedicated hardware function. Both peak and average power are useful indicators of

a correctly functioning system.

5.5 Summarizing Safety

We have considered the existing Safety standards with respect to ML specification,

verification, inference and learning. We have identified gaps and we will propose

processing and standardizationmethods to enhance the safety level ofML based sys-

tems. We have identified the need of amonitoring solution capable of evaluating the

performance of AI/ML models, in- and output data quality, communication robust-

ness and capacity in real-time. We have also identified the need of a learning data

selection tool that guarantees the correct number of datasets and the distribution

of scenario variability over the datasets for each function/feature. We will continue

this work in Task 5.5 during the remaining part of the VEDLIoT project.
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6 Support for CFU Accelerators in Renode

This chapter presents our work in supporting CFU - Custom Function Units with Ren-

ode[24] - an open source simulation framework created by Antmicro. CFUs are AI

accelerators tightly integrated with RISC-V soft CPUs, prepared to improve perfor-

mance of operations frequent in a specific Machine Learning workflow.

The extendible nature of the RISC-V ISA[121] - its modularity, support for extensions

and a future-proof design, encourages system designers to introduce custom im-

provements, tailored specifically to improve their planned workflows. This customiz-

ability, while unprecedented in the world of popular ISAs, is very well embedded in

the RISC-V concept. The RISC-V ISA is, above all, modular. It’s up to the designer to

select which extensions, ratified as part of the standard or fully custom, will be sup-

ported by their CPU. Apart from the standard, “big” extensions, RISC-V ISA specifica-

tion reserves a space for custom instructions. These can be used to provide micro-

optimizations in the CPU architecture, expose specific features like accelerators or

hardware loops, allow for deviations from the ISA specification, etc. While this mod-

ularity brings a lot of freedom to the design process, it is not trivial to handle from

the software perspective. Software can either declare very specific requirements on

the extensions available in supported CPUs, or take measures to address the variety

of solutions in the RISC-V ecosystem. This latter approach is prevailing in generic,

widespread software like Linux - whenever a CPU is unable to handle certain instruc-

tions and raises an exception, firmware addresses it with software emulation of of-

fending instructions. While fairly robust, this flow requires a significant amount of

consideration and implementation to be made.

Handling customhardware can be evenmore challenging from the software perspec-

tive, if the hardware is being designed in parallel with the software - FPGA-friendly

RISC-V ISA makes this a very common scenario, calling for proper verification of the

software-hardware interoperability at all stages of development. As part of theWork

Package 4, VEDLIoT is developing an FPGA based accelerator for Machine Learning

payloads. Since this accelerator will be focused around the use of custom RISC-V in-

structions, proper testing will be set up with the Renode framework. Renode will be

used to ensure the fitness and robustness of the SoC, allowing for testing of each

iteration of software and FPGA payload without hardware in the loop.

6.1 Custom Function Units

A common approach to increase performance of Machine Learning processing is to

use an external ML accelerator - either in the form of a separate generic processing

unit that offloads parts of the computation from themain processor, or via dedicated

expansion modules, dedicated to perform well in specific contexts. To benefit from

the inherent configurability of the RISC-V ISA, and taking into account that Machine

Learning workflows rely on highly specific patterns of computation, the RISC-V com-

munity formed the RISC-V FPGA Soft Processor Working Group led by Google and

Antmicro and proposed a concept of Custom Function Units, or CFUs[23]. A CFU is a

highly specialized extension to the CPU, tailored to speed up very specific fragments

of processing, that would be otherwise expensive when executed on a generic pro-

cessing unit. CFUs are mainly discussed in the context of FPGA processing, where a
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Figure 6.1. Connection of a RISC-V core with a CFU accelerator
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Figure 6.2. Composition of multiple CFUs

custompiece of one-offhardware canbedefinedeasily, tested rapidly and, if needed,

disposed of in favor of a better implementation.

CFUs are accessed via a set of standardized custom instructions, and are connected

with the CPU via a well-defined interface (see 6.1). This interface is, typically, the

only connection between the core and the CFU - in most cases there is no direct link

with the memory, and even the internal state of the CPU (e.g. state of registers) is

not visible for the Custom Function Unit. The instruction format allows for multiple

CFUs to be used simultaneously, enabling composition of operations (see 6.2) for an

even greater performance gain. For amore detailed description of the CFU interface,

please see Deliverable 5.1[115].

6.2 Renode Simulation Framework and CFU Support

As stated before, Renode[24], an open source simulation framework, is the key com-

ponent to ensure the quality and robustness of the implementation of the accelera-

tor developed as part of the WP4.
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6.2.1 Introduction to Renode

Renode is a functional simulator - it allows users to execute code targeting one of the

supported ISAs (with RISC-V being one of the prominent examples) and accessing var-

ious peripherals. The simulation offers a high level of fidelity in resembling the real

life hardware - this enables running exactly the same software that one would run

on hardware. Peripherals are modeled on the register level, which means that their

observable behavior is similar to the actual hardware. Both the core and peripherals,

however, may differ from their real life counterparts with regard to timing, internal

state etc. This approach allows for a reasonable balance between fidelity and perfor-

mance of the simulation.

Renode is built with the concept of composable building blocks that constitute a sim-

ulation. A CPU can be accompanied by peripherals to compose an SoC (System-on-

Chip). An SoC can be connected to various sensors and ports, creating a board, or,

in Renode terminology, a machine. These machines can be connected with various

mechanisms, ranging from a simple serial port, through a CAN (Controller Area Net-

work) bus, to wireless BLE (Bluetooth Low Energy) connections. CPUs themselves

can also be considered as created from various blocks, especially when discussing the

RISC-V ISA [121]. A user would select appropriate instruction sets to be supported by

the CPU, size of a word and additional features, to best reflect the emulated core.

6.2.2 Custom Instructions Support

One of the outstanding features of Renode is its support for custom instructions,

which emerges from the need of the properties of the RISC-V ISA itself and which is

very well suited for supporting CFUs. Traditionally, Renode users could define cus-

tom instructions in two ways: either by describing them in C# or in Python. To add a

custom instruction in C#, the CPU would have to declare it in the following manner:

Listing 6.1. Custom instruction installation in C# code

I ns ta l lCustomInst ruct ion (

pattern : ”0100001RRRRRSSSSS000DDDDD0110011” ,

handler : opcode => MultiplyAccumulate ( opcode ) ,

name : ”p .mac rD , rs1 , rs2 ” ) ) ;

In the above example, the pattern is a string describing the format of the opcode

(machine-code representation of the registered instruction): 0s and 1s define its

static part, while other characters are traditionally used to denote opcode param-

eters (in the example: R, S and D). “Handler” is the actual implementation of the op-

code. “Name” is the user-facing description, used for logging purposes.

Python implementations are similar, but more often used for debugging or mocking

purposes. A sample instruction that only prints out a message when it’s called could

be defined in the example below. The first string in the example is the opcode and

the second one can be any Python code.

Listing 6.2. Custom instruction installation in Renode’s Monitor

sysbus . cpu Instal lCustomInstruct ionHandlerFromStr ing

”1011001110001111000011111011AAAA”

”cpu . DebugLog ( ’ custom ins t ruc t ion executed ! ’ ) ”
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6.2.3 Verilator Co-Simulation

Since the concept of CFUs is usually discussed in the context of their FPGA imple-

mentations, another Renode feature should bementioned: the ability to co-simulate

with “verilated” HDL code. “Verilation” is a process of recompilation of Verilog code

to C++, using the tool Verilator [142], the result being a cycle-accurate model of the

original IP. Renode uses the Verilator co-simulation primarily in the context of periph-

erals. It supports various bus types (AXI4, AXI4-Lite, Wishbone) and interrupt connec-

tions. This gives the system designers a tremendous benefit of not having to reim-

plement their accelerators as Renode models. This leads to fewer bugs and faster

turnarounds. The process of verilation leaves the user with C++ code. To connect it

to Renode, the user has to implement a small shim layer that handles connecting sig-

nals from the bus to the peripheral. A library of examples is available on GitHub [25].

Originally, to guarantee portability over different host operating systems, verilated

peripherals were connected to Renode via sockets. This solution comes with a per-

formance cost due to the protocol handling layer and the network stack involvement,

but is generic and acceptable for peripherals which are not accessed very often.

6.2.4 CFU Simulation

The performance cost of socket based connections is becomingmore apparent when

the communicationwith the verilated block is frequent. If this block represents a hot-

path instruction, the slow-down may be prohibitively large. One of the tasks under-

taken within the project was to implement an API-based communication mechanism

between Renode and verilated blocks. This effort consisted of the following steps:

• Preparationof abuildflowtobuild verilatedperipherals as shared libraries. One

of the goals was to retain the possibility of using the socket-based connections

without the need to duplicate logic in the connection layer.

• Implementation of the library-based interface on the Renode side.

• Preparation of the user-facingAPI to allow easy use of both connection options.

The resulting speed-up of the processing was significant and the API-based connec-

tion became the default in verilated peripherals. The next step was focused on im-

plementation of the CFU interface itself. The CFU specification is still under develop-

ment, so thefinal shapeof the interface is not yet known. However, currentdocumen-

tation and, what’s even more important, current users of CFU accelerators, provide

enough information to create a functional and useful implementation.

During the course of the project, an interface layer was implemented allowing users

to use CFUs conforming to feature levels 0 and 1, described by the current standard

as, respectively, “combinational” and “fixed latency, pipelined, no flow control”. To

create and use CFU extensions in Renode, the user has to follow the following steps:

• Implement the interface layer. To achieve that, the user has to use a library

provided by Renode and connect the CFU signals.

• Compile the interface and the Verilog CFU implementation with Verilator.

• Prepare a simulation that uses the created verilated CFU.
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While this flow has already been used in Renode to connect to verilated peripherals,

there are significant differences between Memory-Mapped I/O (MMIO) blocks and

custom verilated instructions, stemmingmainly from the performance requirements.

Clocking of CFU blocks: Verilated peripherals connected to Renode periodically re-

ceive information about time progression, in the formof the number of “ticks”, which

translate directly to changes of the clock signal of the peripheral. These inputs allow

the logic of the simulated block to move forward along with the simulation. Regard-

less of theperiodic timeprogression, verilatedperipherals are clockedwhenever they

are accessed by the CPU. These additional signals help us bridge the gap between

the worlds of the cycle-accurate Verilator simulation and the behavioral Renode sim-

ulation. CFU blocks, as defined in the specification and used in practice, do not re-

quire periodic clocking - they are not expected to perform any processing when not

prompted by CFU instructions. For this reason, the flow of interaction was changed.

When the CPU issues a CFU-triggering instruction, Renode starts the clock signal and

observes twoCFU signals: req_ready, indicating if theCFUblock is ready to accept the

request, and resp_valid, indicating that the response is ready and can be retrieved.

As soon as the resp_valid signal is asserted, the clock is stopped. This flow has two

important impacts: it reduces the load on the host (as the CFU model does not have

to be evaluated when not needed) but also decouples timing of the CFU process-

ing from the rest of the system. The latter is not considered to be a major issue, as

Renode does not differentiate between different instructions in terms of time of ex-

ecution.

Interface: CFUs are designed to shift the computational complexity from software

to FPGA. They are usually used in the hot paths of the processing, maximizing their

impact on the application’s performance. Frequent communication between Renode

and the CFU block using sockets, the original method of integration with verilated

blocks, would beprohibitively inefficient. Not onlywould it require the network stack

to be involved, it also would need to serialize and deserialize requests and responses.

For these reasonswedecided to support only the native, library-based interface. This

mechanism is already used by Renode to execute regular CPU instructions, which nat-

urally made it a good fit for CFU integration.

6.3 Renode CFU Support in Practice

Asmentioned above, Renode CFU support is based on both, a draft specification and

a practical implementation. This note-worthy use case of CFU is Google’s CFU Play-

ground [67], developedbyGoogle in cooperationwithAntmicro. TheCFUPlayground

provides an open source frameworkwhich offers amethodology for reasoning about

ML acceleration and developing Custom Function Units using FPGAs and simulation.

It offers a range of examples and plenty of supported soft SoCs and CPUs. Although

to use verilator for co-simulation purposes the code has to be written in Verilog, CFU

Playground uses Amaranth (formerly known as nMigen) [117], allowing developers to

create their accelerators in Python, subsequently translated toVerilog. Thanks to the

modularity of Renode, wewere able to autogenerate platformdescriptions fromCFU

Playground samples. With this capability we set up a Continuous Integration environ-

ment, testing every change to CFUs, underlying SoCs or theML software that runs on

them. At the moment the CI setup in CFU Playground runs more than 220 different

compilation targets in Renode, ensuring the robustness of implementation.
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7 SIRE - Trusted Verifier Service

In this chapter we will explain further SIRE (acronym for truSted verIfieR sErvice, pre-

viously called TMS - Trusted Membership Service), a replicated infrastructure that

supportsmultiple functionalities necessary to an IoT System. In Deliverable 5.1 [115],

we outlined the main features of SIRE on a conceptual level as well as some of the

challenges associated to its design (revisited in Section 7.1). In this deliverable, we

will give further insight on the system’s architecture and implementation details of

its features (coordination and attestation) as well as other challenges that came to

light as we developed it further.

As the interest in IoT grows, so does the need for well-rounded systems that can deal

with various issues inherent to the area, such as the dynamism of the system com-

position, ensuring the security requirements are met etc. With the intent of solving

this type of problems, we came upwith SIRE, a replicated system that will support re-

mote attestation, membership management, auditable integrity-protected storage

and coordination primitives.

7.1 Concepts

In Deliverable 5.1, we explained a few concepts that SIRE is built upon. In order to

recall them, we wrote a short summary of each:

Remote Attestation: Remote attestation is a method by which a node, the attester,

proves to another, the verifier, some properties of its hardware and software [44]. To

achieve this, the attester generates an evidence of its properties which the verifier

will evaluateusing apolicy - set of rules that specifywhichdevices can join the system.

Typically, this is done by using some secure hardware components such as a Trusted

Platform Module [136] or a processor-native trusted computing technology such as

Intel SGX [54] and Arm TrustZone [116], deployed on the attester.

Coordination Services: Coordination Services provide a consistent and highly avail-

able data store with enough synchronization power for client processes to execute

tasks such as mutual exclusion and leader election. Two examples of this kind of ser-

vices are ZooKeeper [76], a crash-tolerant coordination servicewith a node structure,

andDepSpace [41], a Byzantine fault-tolerant coordination servicewith a tuple space

structure. Furthermore, these services can be extensible, i.e., they can allow the in-

troduction of small pieces of code called extensions to be executed when certain op-

erations are called [59].

State Machine Replication: In the State Machine Replication approach [127], i.e.,

SMR, an arbitrary number of client processes send requests to a set of replicas. These

replicas implement a stateful service that receives these requests and updates its

state depending on the operation contained in the clients’ requests. Once enough

replicas send matching replies to the client, its invocation returns the result com-

puted by the service. The goal of this approach is to keep the service consistent, by

making the service state maintained by each replica evolve in the same way.

Blockchains: A blockchain [108] is an open database that maintains a distributed

ledger comprised by a growing list of records called blocks, each of them containing
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transactions executed by the system. This authenticated data structure [135] con-

sists of a sequence of blocks where each one contains the cryptographic hash of the

previous block in the chain.

BFT-SMaRt: BFT-SMaRt [43] is an open-source library that implements a modular

State Machine Replication (SMR) protocol [134], as well as features such as state

transfer and group reconfiguration. This SMR protocol grants BFT-SMaRt the char-

acteristics needed to achieve Byzantine-fault tolerance. We will use this library to

provide fault and intrusion tolerance for SIRE.

7.2 SIRE - System Architecture

SIRE is a replicated infrastructure that will support remote attestation, application

membership management, auditable integrity-protected storage and coordination

primitives. These features will be implemented on each of the replicas in three main

modules, as illustrated in Figure 7.1.

5

§ All devices have attestation capacity, no pre-configuration, and no synchronized clocks
§ Admins define endorsements, policies, and references on the TMS

TMS Assumptions and Features

Verifier
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Figure 7.1. Trusted Verifier Service (SIRE) main modules

The first module, Verifier, is used to support remote attestation, following the ideas

described in Section 7.1. This provides operations and functionalities for verifying

the evidence supplied by a device for attestation. To do this, the module must be

pre-configured with endorsements (e.g., devicemanufacturer keys), references (e.g.,

softwaremeasurements) and application-specific policies, defining the requirements

for each attested device to participate on a given application.

The second module is the Coordinator, which provides a key-value store interface en-

riched with an extensible coordination kernel with synchronization power. This data

will be kept in memory for enabling fast reads. This module can be used to store ap-

plication configuration and some soft coordination data, e.g., the topology of a data

aggregation tree composed by the application devices. It will also be responsible for

managing and executing extensions introduced by the application administrator.

The last module is a blockchain-like Trusted Log used for storing information in an

auditable data-structure. The information stored in this log will be persisted in sta-

ble storage for ensuring durability, even if all replicas crash (and later recover) [42].

Thismodulewill mostly be composed by the transaction ledger fromBFT-SMaRt [42],

adapted to SIRE’s needs.
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7.2.1 SIRE’s Architecture

The SIRE systemwill be composed of twomain entities: the SIRE Server and the SIRE

Proxy; and two main types of clients: Devices and App Administrators as shown in

Figure 7.2.

Figure 7.2. SIRE’s Architecture

SIRE Proxy: The SIRE Proxy will mainly be responsible for translating both types of

clients’ requests to the SIRE Server, providing a simple and standard API and sparing

the clients of interacting with BFT-SMaRT directly, which is fundamental to the rudi-

mentary nature of some IoT Devices’ hardware. The API will be composed of three

interfaces:

1. Management Interface (Table 7.1): Used by Application Administrators to man-

age and configure extensions and policies. The user can access it through aWeb

Client or REST calls. All the function calls made through this interface will re-

quire prior authentication of the Application Administrator.

2. Map Interface (Table 7.2): Zookeeper-like [76] interface used to access the

generic key-value store contained in the SIRE Server. This store will be used

to maintain application configurations, membership state and any other data

the user might need, hence the use of generic values. Any function in this inter-

face might trigger the execution of an extension, if defined by the Application

Administrator. Used by both the Application Administrators, through REST calls

or the Web Interface, and the Devices through RPC or REST calls. Application

Administrators will need to authenticate before calling any of these interface’s

functions.

3. Membership Interface (Table 7.3): Interface to be usedby the devices to perform

the attestation and coordination protocols. Any function in this interfacemight

trigger the execution of an extension, if defined by the Application Administra-

tor. Used only by the Devices through RPC or REST calls.
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Figure 7.3. SIRE Proxy Configuration Models

With this approach, a wider compatibility of IoT devices with SIRE can be much easily

achieved. Each server replica will have a proxy attributed to it, to a certain extent and

can be configured in the following ways:

• Detached Proxy Model: The Proxy is in a different machine and can be at the

edge or at the same location as the server. In this case, the proxy is not dedi-

cated to any device or server and should be the most common model.

• Attached to Server Proxy Model: The Proxy is in the same machine as the server

and only acts as a library for it. Can be useful when the server itself is close to

the devices.

• Attached to Device Proxy Model: The Proxy is at the same place as the device

and is dedicated to it. This model is particularly useful when we have a critical

device.

The different proxy configurationmodels are also illustrated in Figure 7.3. The Proxy

will also be responsible to send each message it receives to all the server replicas,

not only to the one attributed to it. The Proxy is assumed to be untrusted, containing

only soft state and will not have access to any sensitive data.

SIRE Server: The SIRE server will be implemented on top of BFT-SMaRT [43] and

will be composed by the three modules described before. This will grant SIRE fault

tolerance which is an essential property to coordination systems [59]. The leader-

generated timestamp and the total-order multicast will also be useful features for

the coordination module. The server will also be the one storing application states

and configurations (including extensions and policies).

Devices: SIRE will be able to support a multitude of devices, but we are more specif-

ically aiming for those with an Arm processor supporting the TrustZone TEE, since

that’s what will be used in the VEDLIoT project. Due to the rudimentary nature of

the TrustZone TEE, the devices will only be able to communicate with SIRE through
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Function Description

addExtension(appId, type, key, code) Adds extension for app associated to Proof of Identifica-
tion poif to be executed when an operation of given type
is calledwith the given key. The given type and key can be
null. The code will be stored associated to extensionKey
(appId + type + key, in this order).

removeExtension(appId, type, key) Removes extension associated with extensionKey (appId
+ type + key, in this order). The given type/key can be null.

getExtension(appId, type, key) Gets the codeof theextension associatedwith extension-
Key (appId + type + key). The given type/key can be null.

setPolicy(appId, policy) Sets policy from app with Application ID appId

deletePolicy(appId) Deletes policy from app with Application ID appId

getPolicy(appId) Gets policy from app with Proof of Identification poif

Table 7.1. Management Interface

Function Description

put(poif, key, value) Adds a new entry to storage

delete(poif, key) Deletes an entry from storage

getData(poif, key) Gets data associated with key from storage

getList(poif) Gets list of all entries

cas(poif, key, oldValue, newValue) If valueof key is equal tooldValue, replaces itwith newValue.

Table 7.2. Map Interface

sockets in raw bytes, but nonetheless, we intend to also support a REST interface

with Protocol Buffers [68] serialization for a wider compatibility. Protobuf is a data

format used to serialize structured data. It uses a very simple descriptive language to

define the structure of the data, which is then used to automatically generate code

for a variety of programming languages.

ApplicationAdministrators: TheAppAdministratorswill be able tomanageand con-

figure policies and extensions, as well as view the state of their application’s devices.

They will do this by communicating with the proxy, which will then forward the re-

quests to the server replicas. They will be able to do this either by a REST interface

or a Web Interface that we will develop using Swagger [133].

7.2.2 Implementation Details

While the SIRE system isn’t fully developed yet, it has been defined and planned, as

well as having a few parts of it implemented, which will be further detailed in this

section. SIRE will be developed in Java along with Groovy for extensions.

Attestation Protocol

The attestation protocol we are using is based on the WaTZ framework [107] but

adapted to be used with a distributed verifier. WaTZ is an efficient and secure run-

time environment for trusted execution of WebAssembly code in Arm’s TrustZone

TEE [116] with the purpose of performing remote attestation [107]. The WaTZ’s at-

testation protocol (Figure 7.4) can be reduced to basically four messages:

(a) Message 0 (attester→verifier): The attester generates a session key pair 〈 a,Ga〉
and sends the public partGa to the verifier.

(b) Message 1 (attester←verifier): When the verifier receives msg0, it generates a
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Function Description

join(deviceid, msg0) Join the system and start the attestation protocol

leave(poif) Leave the system

ping(poif) Assures the system that the device is still running

getView(poif) Get current membership of system from the app associated to poif

Table 7.3. Membership Interface

session key pair 〈 v,Gv 〉 and computes a shared secret from the public session key of

the attester Ga and its private session key v, which results in Gav. This shared secret

key is then derived into a Key Derivation Key (KDK), which in turn is further derived

into another two shared secrets: Km to calculateMACs andKe to encrypt subsequent

messages in this session. These derivations are the same as in the Intel SGX attesta-

tion protocol [54]. Message 1 is then composed byGv, the verifier’s ECDSA public key

V and a signature of both public session keysGv andGa. This is then signed withKm,

creating a MAC which is appended to the message.

(c) Message 2 (attester→verifier): The attester verifies the signature of the public

session keys to prevent the possibility of a masquerading or replay attack, and veri-

fies theMAC ofmsg1. It also checks whether the public key V matches the hardcoded

key in theWasm application, to ensure that it’s communicatingwith the intended ser-

vice, preventing possible malicious attackers from altering that key, since it is part of

the codemeasurement. The attester thenmakes the necessary computations to gen-

erate Gav in the same way the verifier did when processing message 0. The attester

then creates msg2 by concatenating its public session keyGa with a newly-generated

evidence signed by itself, where the anchor of the transport layer is the hashed con-

catenation of the public session keys. Finally, it appends a MAC.

(d) Message 3 (attester←verifier): The verifier checks the MAC of message 2 and

the verifies that Ga matches the one it has previously received. It also verifies if the

anchor matches the public session keys it has, to possibly reveal a masquerading or

replay attack. It extracts the evidence’s public attestation key and checks if it is con-

tained in its list of endorsed public keys to determine whether this is a known device.

If it is present in the list, the digital signature of the evidence will be checked, which

reveals if the hardware whether the hardware is genuine. Finally, the code measure-

ment claim is compared with a list of reference values to verify that the Wasm appli-

cation is trustworthy. If all verifications pass, the verifier sends msg3 with the confi-

dential data encrypted with AES-GCM, which requires iv (an initialisation vector).

Since WaTZ’s attestation protocol was designed for a centralized server, we had to

adapt it to the distributed nature of SIRE. For the device, it will be basically the same,

it will send two messages and receive another two, with only the signing method

being changed. The biggest difference will be the added steps between the proxy

and the servers:

• When processing message 0, the key derivations are done in the proxy which

then forwards theGa andGv to the server for it to sign using a distributed sign-

ing method. In this case, we opted for Schnorr signatures [128, 129].

• When processing message 3, the proxy will receive the evidence and its signa-

ture and forward it to the verifier to validate the evidence. Since the proxy is
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Figure 7.4. WaTZ Protocol [107]

Figure 7.5. Example Policy from Microsoft Azure Attestation [40]

untrusted, we need to make sure it can’t read the attestation result or tamper

with it. To achieve this, the verifier will encrypt the attestation results with the

attester’s public key, sign it with its public key and forward it to the proxy. The

proxy will in turn encrypt what it received from the verifier and send it to the

device along with the initialization vector iv.

Policy Definition

A policy is a rule that is applied over the evidence to produce the attestation result

[44]. There are two ways that policies can be implemented: (1) using scripts that are

populatedwith the values from the evidence (e.g. Intel SGXRemoteAttestation [79])

or (2) using logical expressions evaluated with the values from the evidence (e.g. Mi-

crosoft Azure Attestation [40]). We intend to implement it using the logical expres-

sion approach. An example policy can be seen in Figure 7.5.
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Extensions

Extensions are small pieces of custom code that will be executed, when certain cri-

teria are met, at the server side, making the coordination kernel more versatile and

efficient without sacrificing its simplicity [59]. The extensions will be implemented

in the form of Groovy classes [26]. We chose Groovy because it is already included

in JDK (Java Development Kit) and can be directly ran on the JVM (Java Virtual Ma-

chine). The extension is sent to SIRE by the app administrator in the form of a string

of text, which in turn is compiled by the extensionmanager present in the SIRE server

and instantiated.

The extensions will be run whenever an operation from the Membership (join, leave,

ping, getView ) or Map (put, get, getList, delete, cas) Interface is called. When the

extension is first introduced in the system it should be associated with a key, com-

posed by appId + extType + key, with the possibility of extType and key being null.

The extType parameter corresponds to the type of operation that will trigger the

execution of the extension and the key parameter the key associated with the op-

eration that will trigger the extension (e.g, an extension associated with applica-

tion app1, operation type extPut and key exampleKey will be executed whenever

put(app1, exampleKey, exampleV alue) is called). Since some parameters can be null,

the extension manager first checks for extensions matching appId + extType + key,
then for any matching appId + extType and lastly for appId.

Key-Value Store and Proof of Identification

The key-value store will have a similar interface to ZooKeeper [76], as explained in

Section 7.2.1, but it has a few differences that distinguish SIRE’s key-value store from

it. It is generic, allowing a client to store any kind of objects they might need. Due

to the serialization techniques used, it was necessary to store it in the format of byte

arrays since Google’s Protocol Buffers doesn’t support generic types and, in the case

of communication through sockets with raw bytes, no changes are needed. Since

SIRE runs on top of BFT-SMaRt, so does the key-value store which makes it tolerant

to Byzantine faults as opposed to crash faults in the case of ZooKeeper.

Besides this, SIRE will have multiple applications running alongside each other, while

ZooKeeper only assumes one, and so, there is a need to distinguish which devices

belong towhich applications, since they should only be able to access and change the

data of the one they belong to. This correspondence of device to application needs

to be authentic, otherwise a compromised device can pretend to belong to another

application and get unauthorized access to data from its victim. To prevent this, we

added another parameter, Proof of Identification (poif ), which consists of the device
ID, app ID and a nonce encrypted using the derived key Ke from the shared secret

Gav. If the device belongs to the application it claims to, the server will be able to

decrypt the nonce, check if it matches and verify the device’s identity. This noncewill

be incremented after every interaction between the device and the server to prevent

replay attacks. If a device belongs to more than one application in SIRE, it will need

to have a different ID for each application.

7.3 Wrapping-up SIRE

In this chapter, we presented SIRE and a few of its developed features. However, it

isn’t fully developed and we are proceeding as planned, having only a few deviations
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from the original idea, which were needed to deal with new-found challenges and

problems. In the future, we intend to develop SIRE further by improving the attesta-

tion protocol, since it is adapted from other VEDLIoT’s partners work. Since this was

one of the last features to be implemented there are still things to improve.

Furthermore, we will research on policy standards, depending on the needs of SIRE’s

users, e.g., the kind of properties they want to attest, the format of the properties,

etc. Another fundamental direction of this work is the testing of the system for its se-

curity and scalability andmake adequate changes if required. We also plan on shifting

frommock devices to a functional device client on a real IoT devices, to test it as close

to its core use scenario as possible. Along with major additions like the Trusted Log,

we will also continue to work on minor improvements like time-to-live for devices,

encryption, and serialization methods, in the remainder of the project.

60



D5.2 Version 20

8 Robustness

Currently, autonomous systems employ advanced machine learning (ML) models for

data analytic and decisionmaking based onplanning, control and other actions. Many

of these systems, such as self-driving cars and remote surgery are critical, operate

in a dynamic, uncertain and challenging environment and have strict requirements

(e.g., timings, resource constraints and mission context). Furthermore, the training

and testing data that are collected may contain noise (e.g. abnormal data, incorrect

labels and incomplete information) andadversarial examples [147]. This requires high

robustness of ML models to make reliable decisions for applications.

The VEDLIoT project aims to guarantee the security of a safety-critical distributed

system through an end-to-end trust mechanism, a communication based on mutual

attestation and secure execution of critical code. In addition, it aims to developmoni-

toring andadaptationmechanisms to increase the ability to control safety and robust-

ness in distributed AI systems. This work contributes to the realization of a solution

for the latter goal.

The following chapter is structured as follows: first, we illustrate the helpful litera-

ture for our work, then we explain the initial tests to improve the performance of a

model and finally, we expose our proposal to solve the problem.

8.1 Related Work and Relevant Concepts

InML, robustness is themodel’s capacity to generate correct output even in presence

of input corruption and/or faults. To improve the robustness of a MLmodel, it is pos-

sible to act in different ways. For example, hardware problems can lead to transient

faults, typicallymanifest as single bit-flips. This faults propagate along aDeepNeural

Networks (DNNs) and can result in failures with related safety violations. As show in

Figure 8.1 some techniques aim to prevent these phenomena [50].

Moreover, in recent years it has been realized that applied ML requires managing un-

certainty. There are many sources of uncertainty in a ML project, including variance

in the specific data values, the sample of data collected from the domain and in the

imperfect nature of any models developed from such data. It is clear that with in-

complete information reliable results cannot be given. To deal with that, tools and

techniques from probability were adopted. Model’s parameters are considered as

distributions insteadoffixedweights andwe learn theweights’ distribution [63]. This

is useful to face the robustness to distributional shift, one of the main safety issues in

ML, which discusses how to avoid having ML systems make bad decisions when given

inputs that are potentially very different thanwhatwas seenduring training [20]. Sta-

tistical distance measures can be considered as a method to measure distributional

shift [39]. ConventionalML algorithms often adapt poorly to domain shifts. Themod-

ern ML community has many different strategies to attempt to gain better domain

adaptation [97].

In addition to taking robustness into account, it is important to measure the perfor-

mance of our model. If any technique to improve robustness decreases the accuracy

of a model, then the technique should be reevaluated. An object detector was used

for our work and we measured its accuracy with themean average precision metric.
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Figure 8.1. Fault prevention from propagating and generating incorrect output

Object detectors predict the location of objects of a given class in an image with a

certain confidence score. Every detection is a set of three attributes: the object class

(i.e., person), the corresponding bounding box (i.e., [63, 52, 150, 50]) and the confi-

dence score (i.e., 0.583 or 58.3%). This score for each prediction box is computed as:

confidence score = conditional class probability × box confidence score (8.1)

So, it measures the confidence on both the classification and the localization. Box

confidence score reflects how likely the box contains an object (objectness) and how

accurate the boundary box is. To know this, we introduce the concept of Intersection

Over Union (IoU), which is equal to the area of the overlap (intersection) between

the predicted bounding box (red in Figure 8.2) and the ground-truth bounding box

(green) divided by the area of their union. The greater the IoU value, the better the

accuracy of the boundary box.

Figure 8.2. The intersection over union

Finally, the conditional class probability is the probability that the detected object

belongs to a particular class. Now we can complete the formula in this way:

box confidence score ≡ P (object) · IoU (8.2)

conditional class probability ≡ P (classi|object) (8.3)

confidence score ≡ P (classi) · IoU (8.4)

confidence score = conditional class probability × box confidence score (8.5)
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The mean average precision metric is based on the concepts of precision and recall.

The first tells us how many times it has made a correct prediction when it makes a

prediction (8.6), the second tells us whether it has made the correct prediction as

many times as it should have, or has lost some object (8.7).

Precision =
TruePositive

TruePositive+ FalsePositive
(8.6)

Recall =
TruePositive

TruePositive+ FalseNegative
(8.7)

The confidence score canbe considered as precision and recall calculations, by consid-

eringonly thosewhose confidence is larger thana confidence threshold tobepositive

detections.

Figure 8.3. We can see three different PR curves and they differ by the IoU threshold used in the

precision-recall calculation

Aswe can see in the Figure 8.3, the Precision-Recall (PR) curve is a plot of precision as

a function of recall, which shows the trade-off between the two metrics for varying

confidence values for the model detection. With AP@α we indicate the Area Under

of Precision-Recall Curve (AUC-PR), which means Average Precision (AP) at the IoU

threshold of α. Therefore AP@0.50 and AP@0.75 are the AP at IoU threshold of 50%

and 75% respectively. In the end, we calculate the meanAP as an average of all APs

for all classes. Since the AP corresponds to the area under the curve, it is obvious that

a loose IoU threshold results in a higher AP score than a strict IoU threshold.

8.2 Initial Experiments

In this section, we present the experimental setup and initial results to answer the

questions whether a model trained on a specific domain’s sub dataset performs bet-

ter than a model trained on the whole dataset.
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A. Experimental setup

Research Question. We evaluated the hypothesis of using a multi-layer machine

learning strategy to improve the performance of a model. In particular, evaluate the

idea of split a dataset into specific domains to train specificmodels for better perfor-

mance. We evaluate this idea by asking:

Does amodel trained on a specific domain’s sub dataset perform better than amodel

trained on the whole dataset?

MLModel. To carry out the experiments, YOLO version 4 was used, a real-time object

detector [47]. It resizes the input frames and passes them through a convolutional

neural network to predict class and position of objects as showed in Figure 8.4.

Hardware Setup. Our experiments were conducted on an Ubuntu Linux 20.04.3 LTS

system with, 2 Tesla T4 GPUs with 64GB RAM.

Figure 8.4. YOLOv4, object detector

Dataset and data preparation. The BDD100k driving dataset developed by the Uni-

versity of Berkeley, well known in the literature, was used [148]. It presents a total

of 100 thousand images, of which 70 thousand for training, like those shown in the

Figure 8.5, 10 thousand for validation and 20 thousand for testing.

Figure 8.5. Some images from BDD100k dataset

The dataset contains 10 classes for object detection (e.g., pedestrian, rider, car, etc.)

and all of them have been considered. The experiment consists in comparing the

performance of a machine learning model trained on daytime and night images with

the same model trained first only on daytime images and then only on night images.

So only daytime and night images were considered. The dataset presents json files

where there are various labels and annotations including the weather conditions,
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with which it was possible to discriminate between day and night images and all the

others. For a correct experiment, the same number of images was used for the train-

ing, except of course themonolithicmodel which instead uses the sumof the training

images of the other two more specific models. The same sub datasets are used for

testing. The different models were trained and tested as shown in Table 8.1.

Model Training Set Testing Set

Day 27,967 daytime images 3,929 daytime images

3,929 night images

Night 27,967 night images 3,929 night images

3,929 daytime images

Day and night 55,934 daytime + night images 7,858 daytime + night images

3,929 night images

3,929 daytime images

Random 27,967 random images 3,929 random images

3,929 night images

3,929 daytime images

Table 8.1. Datasets used for testing

B. Results

The results, in Table 8.2, showed no improvement in performance with more specific

models. Indeed, the monolithic model have better performance on all tests. An ex-

periment was also proposed by training a model with random images between day

and night, further demonstration that there is no improvement in performance by

training models on specific domains.

Results in meanAP@0.50

Model Day images Night images Dayandnight Random

Day 48.59% 41.75%

Night 39.59% 47.82%

Day and night 50.58% 49.90% 50.38%

Random 48.59% 47.28% 47.35%

Table 8.2. Experiments results

8.3 Proposed Approach

The main goal of this work is designing and implementing the local monitoring of a

device within a more complex framework that ensures the safety requirements of

autonomous systems during their run-time execution. In Figure 8.6 we have a global

vision of the framework architecture:

• Trusted Membership Service, a service located in the cloud, checks if a device

or a service belongs to the global system, therefore considered truthful.

• Software Service, a service located in the cloud, manages a repository contain-

ing the updates for device software. Therefore, newmodels are trained offline

and saved here.
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Figure 8.6. Robustness monitoring framework

• Device, the systemmay include several physical devices that containMLmodels

and their respective monitors.

• Robustness Service, a service located in the cloud, checks if the model in the

device is performing correctly or needs an update by the Software service.

Figure 8.7 illustrates how we imagine a possible method to implement the monitor.

Note that in this case we are focusing on a classifier implemented with a DNN. How-

ever, we believe that this approach can easily be extended to other types of machine

learning approach.

In the flowchart (Figure 8.7) we have a first phase off-linewhere we train the model

with a reliable starting dataset (top half of Figure 8.7). Once trained, we can apply a

technique tomake the classifier robust against hardware transient faults propagation

[50]. The performances of the model and the statistical distributions of each class

will be estimated and stored to be used for a future comparison in the second phase.

We now move on to an on-line phase in which the model comes into operation in

our system (bottom half of Figure 8.7). Here inputs and outputs are saved and once

stored sufficiently, we can carry out the calculation of the statistical distribution and

performances to compare with those made previously.

A large difference between the statistical distributions of training data and model

predictions, such that the system is receiving inputs for which it has not been trained,

means that the system is working in a context that we had not foreseen (e.g., dif-

ferent weather condition). If this difference is very low, but performances has de-

creased, also in this case, the system needs to be replaced or re-trained with new

(better) data that contains the new contexts. If not, we can be sure that our system

is working safely. In this context, the topic of unsupervised domain adaptation can

be an interesting improvement to allow the model to improve its performances on a

new statistical distribution not very different from the initial one.

8.4 Upcoming Work on Robustness

In this chapter, we have demonstrated the initial experiments, results and proposal

for local monitoring of devices in complex frameworks enabled with a robustness

service. The future of this work lies in the implementation of techniques in defence
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Figure 8.7. Flowchart of the proposed approach

against adversarial examples and noisy input, well known in the literature, to make

further contributions to the robustness service. Wewill continue and implement this

proposed architecture during the rest of the project.
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9 Overall Achievements and Future Work

We continued to work in Tasks 5.1, 5.2, 5.3 and 5.5 in this period. This deliverable

document is organized in 9 chapters including 6 chapters on technical progress. We

have explained the structure and per-task progress of the work packages in Chapter

2 (Introduction). Highlights and future plan of our work in different tasks to support

the VEDLIoT goals is discussed in the following paragraphs.

In Chapter 3, we presented the collective work of partners on implementing remote

attestation using Trusted Execution Environments in IoT devices. Our presented sur-

vey comparing state-of-the-art remote attestation schemes, leveraging hardware-

assisted TEEs, will prove helpful for deploying and running trusted applications in

VEDLIoT use cases. The survey has also shed some light on the limitations of state-

of-the-art TEEs and identifies promising directions for futurework. To the best of our

knowledge, wehave also implemented and evaluated thefirstWasm runtime running

entirely inside Arm TrustZone with full support for remote attestation, optimised ex-

plicitly for Wasm to establish trust on hosted applications. We are also designing an

automated remote attestation and certification scheme building on standards like

RATS for remote attestation to eliminate the TOCTOU problem in certificates.

The Chapter 4 explained our efforts on security support for execution of critical soft-

ware and communication. With the novel use of MPU, we have provided lightweight

solutions to critical problems in TEEs for constrained IoT devices (i.e., TrustZone-M).

The preliminary efforts and proposals for a memory protection unit for open-source

CPUs (RISC-V based) requires further investigations leading to potential implemen-

tation and evaluation.

We discussed initial and ongoing work on incorporating the aspect of safety stan-

dards in ML specification, verification, inference and learning in Chapter 5. We will

continue to work in identifying the need of a monitoring solution capable of evalu-

ating the performance of AI/ML models, in- and output data quality, communication

robustness and capacity in real-time. We also plan on working on learning data se-

lection tool that guarantees the correct number of datasets and the distribution of

scenario variability over the datasets for each function/feature.

In Chapter 6, we present our extensive work on the Renode simulator. Due to the

modularity of Renode, wewere able to autogenerate platformdescriptions fromCFU

Playground samples. With this capability we set up a Continuous Integration environ-

ment, testing every change to CFUs, underlying SoCs or theML software that runs on

them.

The architecture and implementation of our trusted verifier service, which is contin-

ued from the first 9 months of the project, is included in Chapter 7. In the future, we

intend to improve the features of the attestation protocol, adjust some finer details

like the time-to-live for devices and implement the Trusted Log beyond conceptual-

ization.

Our last technical chapter (Chapter 8) discusses the architecture and implementation

plan and some results of bringing robustness in the VEDLIoT platform. A concrete

next step for thiswork is the complete implementationof theproposedarchitecture.
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