

ICT-56-2020 — Next Generation Internet of Things

D 3.3
Evaluation of the DL accelerator

designs

Document information

Contract number 957197

Project website www.vedliot.eu

Dissemination Level PU

Nature R

Contractual Deadline 31.10.2022

Author Rene Griessl (UNIBI)

Contributors Karol Gugala (ANT), Grzegorz Latosinski (ANT), Daniel

Ödman (EmbeDL), Hans Salomonsson (EmbeDL), Mario

Porrmann (UOS), Marco Tassemeier (UOS), Pedro Trancoso

(CHALMERS), Fareed Mohammad Qararyah (CHALMERS),

Stavroula Zouzoula (CHALMERS), Kevin Mika (UNIBI),

Florian Porrmann (UNIBI), Jens Hagemeyer (UNIBI)

Reviewers Marcelo Parsin (UNINE), Pascal Felber (UNINE)

The VEDLIoT project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957197.

http://www.vedliot.eu/

D3.3 Version 1.1

2

Changelog

v0.1 2022-08-15 Initial draft derived from D3.1

v0.2 2022-09-19 Refined structure

v0.3 2022-10-06 Accuracy results added

v0.4 2022-10-10 Internal review

v1.0 2022-10-31 Finalization

v1.1 2023-10-25 Review of Hailo-8 results; added OrinNX results

D3.3 Version 1.1

3

Inhalt
Executive Summary .. 6

1 Introduction .. 7

2 Deep Learning Tool Sets ... 9

2.1 Deep Learning deployment stack ... 9

2.1.1 From training to deployment ... 9

2.1.2 Dataset preparation .. 9

2.1.3 Model preparation and training .. 10

2.1.4 Model optimization .. 10

2.1.5 Model compilation and deployment ... 11

2.2 Deep Learning Frameworks ... 12

2.2.1 TensorFlow .. 12

2.2.2 PyTorch .. 14

2.2.3 MXNet .. 16

2.3 Deep Learning Compilers ... 18

2.3.1 Apache TVM .. 18

2.3.2 TensorFlow Lite .. 21

2.3.3 OpenVINO ... 23

2.3.4 ONNX Runtime ... 24

2.3.5 ONNC .. 25

2.3.6 Glow .. 26

2.4 ONNX Compatibility .. 29

2.4.1 General information .. 29

2.4.2 ONNX conversion support grid .. 29

2.5 Deep Learning Models .. 31

2.5.1 VEDLIoT Model Zoo ... 31

3 Evaluation of DL Accelerators.. 35

3.1 Methodology ... 35

3.1.1 Metrics ... 35

3.1.2 Performance Measurements .. 40

3.1.3 Power Measurements ... 41

3.1.4 Accuracy ... 44

3.1.4.1 Classifier Accuracy .. 44

3.1.4.2 Object Detection Accuracy ... 44

3.1.5 Kenning .. 45

3.2 Deep Learning Platforms .. 57

D3.3 Version 1.1

4

3.2.1 Graphics Processing Unit .. 57

3.2.2 NVIDIA Jetson ... 57

3.2.3 Deep learning inference on CPUs .. 58

3.2.4 Dedicated AI Accelerators for Ultra-Low-Power .. 58

3.2.5 Dedicated AI Accelerators .. 69

3.2.6 IP-Cores for ML-Acceleration ... 81

3.2.7 Comparison of AI Accelerators .. 97

3.3 Accuracy Results ... 98

3.3.1 ResNet50 ... 98

3.3.2 MobileNetV3small ... 99

3.3.3 YoloV4 .. 99

3.4 Evaluation Results .. 102

3.4.1 x86 Baseline .. 102

3.4.2 Intel Myriad X .. 108

3.4.3 Google Coral TPU (M.2) ... 111

3.4.4 Google Coral TPU ... 112

3.4.5 Hailo.AI Hailo-8 ... 113

3.4.6 NXP i.MX8M Plus .. 115

3.4.7 NVIDIA Jetson AGX Orin ... 116

3.4.8 NVIDIA Jetson AGX Xavier .. 119

3.4.9 NVIDIA Jetson AGX Orin (TVM) ... 124

3.4.10 NVIDIA Jetson AGX Xavier (TVM) .. 128

3.4.11 NVIDIA Jetson Xavier NX .. 133

3.4.12 NVIDIA Jetson Orin NX ... 136

3.4.13 NVIDIA Jetson TX2 ... 139

3.4.14 NVIDIA Jetson Nano .. 142

3.4.15 NVIDIA GTX1660 .. 144

3.4.16 NVIDIA Tesla V100 ... 147

3.4.17 NVIDIA Tesla A100 ... 150

3.4.18 Xilinx Ultrascale FPGAs ... 153

3.4.19 Xilinx Versal AI Core Series ... 161

3.5 Comparison of DL Accelerators ... 165

3.5.1 ResNet50 ... 165

3.5.2 MobileNetV3 Small .. 166

3.5.3 YoloV4 .. 168

4 Conclusion ... 169

5 References .. 170

D3.3 Version 1.1

5

6 List of Figures ... 174

7 List of Tables ... 176

8 Abbreviations .. 179

D3.3 Version 1.1

6

Executive Summary

This deliverable contains joint work of WP6 and WP3, providing an overview of the current
state of the edge AI systems and how VEDLIoT can leverage and improve the existing
ecosystem. The content has been produced by Task 6.1 (Survey of Deep Learning Inference
Tools, Interfaces and Compilers) and Task 3.1 (Evaluation of existing architectures and
compilers for DL), as the two tasks are related, covering different aspects of edge AI
systems. A preliminary report focusing on tools and compilers has been submitted as D6.1
(Report on existing hardware/software interfaces for DL and compilers) before.

In D3.1 the current state of the art in edge AI processing was presented, it walks the reader
through the detailed description of the most popular deep learning frameworks, platforms,
and compilers. It covers prominent deep-learning models and in-depth discussion of novel
deep learning accelerator platforms, including their architectures and performance.

Deliverable D3.3 builds up on D3.1, it is the in-depth evaluation of available DL accelerator
platforms within VEDLIoT, comparing the performance and energy-efficiency of different
accelerators among each other’s and against a commonly accepted baseline. In comparison
to D3.1 the amount of evaluated platforms was extended and the accuracy for each platform
was measured to validate the consistency of the performance evaluation.

The Kenning platform presented in this report aims to provide an interface for switching
between various compilers depending on chosen hardware and models. Kenning provides
support for a wide range of available technology, offering automated benchmarking,
characterization, and deployment. In D3.3 Kenning was used for evaluation of open-source
DL compilers, the results are compared to vendor tools. In addition it generated gradient
graphs for direct comparison of different tool chains.

In summary, this report presents an in-depth overview of deep learning tools, models and
technology, combined with a sophisticated methodology for evaluation and benchmarking
new accelerators in a heterogenous hardware environment. Extensive benchmarking and
research have been performed, and results of vendor dependent DL compilers have been
validated by accuracy checks.

D3.3 Version 1.1

7

1 Introduction

This report is a survey of Deep Learning Inference Tools, Interfaces and Compilers, as well
as deep learning platforms and benchmarking, which incorporate either generic compute
devices like CPUs or GPUs, or specialized accelerators for deep learning in different AIoT
domains. Differences in vendor dependent toolchains have been analysed by calculation of
the accuracy for each platform. As shown in Figure 1, this deliverable focused on the work
which was performed in Task 6.1 (Survey of Deep Learning Inference Tools, Interfaces and
Compilers) as well as Task 3.1 (Evaluation of existing architectures and compilers for DL), as
the two tasks are closely related, covering different aspects of edge AI systems. This
deliverable was previously released in an intermediate version as D3.1, which does not
include the validation of the vendor specific toolchain by accuracy analysis.

Figure 1: VEDLIoT abstracted overview. Parts covered by this report appear in the middle part (WP6 and WP3)

Currently, there are many frameworks and libraries for model training. With the increasing
interest in deploying machine learning, and specifically deep learning models on IoT devices,
the deep learning compilers are developed.

Deep learning compilers optimize deep neural networks and create an efficient runtime for
a given target device. There are frameworks such as Apache TVM, Glow, TensorFlow Lite and
many others that generate optimized runtimes for various deep learning accelerators.

In addition, various vendors are releasing more and more hardware platforms that can be
used to run deep learning models – they differ in energy consumption, computational power
and inference speed.

The aim of this report is to:

• Elaborate on existing Deep Learning frameworks for training and inference, as well
as the involved compilers and models

• Provide an overview of the large spectrum of novel deep-learning hardware
platforms and accelerators

• Present comprehensive benchmarking results obtained on various hardware
platforms

D3.3 Version 1.1

8

• Present a tool for automated benchmarking and deployment, as well as the
integration into the VEDLIoT platform

• Comparison of vendor specific DL compiler vs. open-source available DL compiler

The report contains the following Chapters:

• Chapter 2 (Deep Learning Tool Sets)
o (Deep Learning deployment stack) describes the typical deep learning

application development flow from training to deployment on IoT devices.
o (Deep Learning Frameworks) lists the most popular and up-to-date deep

learning frameworks.
o (Deep Learning Compilers) lists the compilers for deep learning models from

one representation to another.
o (Deep Learning Models) introduces different commonly used models

collected in a VEDLIoT Model Zoo.
• Chapter 3 (Evaluation of DL Accelerators)

o (Methodology) defines a common methodology that is used during
measurements and benchmarking in the following chapters.

o (Deep Learning Platforms) discusses the architecture, performance and
energy efficiency of novel deep learning accelerator ASICs and IP Cores.

o (Accuracy Results) presents accuracy for DL compilers used in the Evaluation
o (Evaluation Results) focuses on the extensive benchmarking activities on the

different platforms.
o (Comparison of AI Accelerators) presents and discusses the result of the

benchmarking.

D3.3 Version 1.1

9

2 Deep Learning Tool Sets
2.1 Deep Learning deployment stack

This Chapter lists and describes typical actions performed on deep learning models before
deployment on target devices.

2.1.1 From training to deployment

A deep learning application deployed on IoT devices usually goes through the following
process:

• a dataset is prepared for a deep learning process,
• evaluation metrics are specified based on a given dataset and outputs,
• data in the dataset goes through analysis, data loaders that perform the pre-

processing are implemented,
• deep learning model is either designed from scratch or the baseline is selected from

a wide selection of existing pre-trained models for the given deep learning
application (classification, detection, semantic segmentation, instance
segmentation, etc.) and adjusted to a particular use case,

• a loss function and learning algorithm is specified along with a deep learning model,
• the model is trained, evaluated and improved,
• the model is compiled to a representation that is applicable to a given target,
• the model is executed on a target device.

2.1.2 Dataset preparation

If a model is not available or is trained for a different use case, the model must be trained or
re-trained.

Each model requires a dataset — a set of sample inputs (audio signals, images, video
sequences, OCT images, other sensors) and usually also outputs (association to class or
classes, object location, object mask, input description). The dataset is usually subdivided
into:

• training dataset — the largest subset that is used to train the model,

• validation dataset — the relatively small set that is used to verify the model
performance after each training epoch (the metrics and loss function values
demonstrate if there is any overfitting during the training process),

• test dataset — the subset that acts as the final evaluation of a trained model.

It is required that the test dataset is mutually exclusive with the training dataset so that the
evaluation results are not biased in any way.

Datasets can be either designed from scratch or found for instance in:

• Kaggle datasets,

https://www.kaggle.com/

D3.3 Version 1.1

10

• Google Dataset Search,
• Dataset list,
• Universities’ pages,
• Open Images Dataset,
• Common Voice Dataset.

2.1.3 Model preparation and training

Currently, the most popular approach is to find an existing model that fits a given problem
and performs transfer learning to adapt the model to the requirements. In transfer learning
the existing model is slightly modified in its final layers to adapt to a new problem, and the
last layers of the model are trained using a training dataset. Finally, some additional layers
are unfreezed and the training is performed on a larger number of parameters at a very small
learning rate — this process is called fine-tuning.

Transfer learning gives a better starting point for the training process, allows us to train a
correctly performing model with smaller datasets and reduces the time required to train the
model. The intuition behind this is that there are lots of common features between various
objects in real-life environments, and the features learned in one deep learning scenario can
be reused in another scenario.

Once the model is selected, adequate data inputs pre-processing needs to be provided in
order to perform valid training. The input data should be normalized and resized to fit input
tensor requirements. In case of the training dataset, especially if it is quite small, applying
reasonable data augmentations, like random brightness, contrast, cropping, jitters,
rotations can significantly improve the training process and prevent the network from
overfitting.

In the end, a proper training procedure needs to be specified. This step includes:

• specifying loss function for the model. Some weights regularizations can be
specified, along with the loss function, to reduce the chance of overfitting

• specifying optimizers (like Adam, Adagrad). This includes setting hyperparameters
properly or adding schedules and automated routines to set those hyperparameters
(i.e., scheduling the learning rate value, or using LR-Finder to set the proper learning
rate for the scenario)

• specifying or scheduling the number of epochs, i.e., early stopping can be introduced

• providing some routines for quality metrics measurements

• providing some routines for saving an intermediate model during training
(periodically, or the best model according to some quality measure)

2.1.4 Model optimization

https://datasetsearch.research.google.com/
https://datasetlist.com/
https://storage.googleapis.com/openimages/web/index.html
https://commonvoice.mozilla.org/en

D3.3 Version 1.1

11

A successfully trained model may require some optimizations in order to run on a given IoT
hardware. The optimizations may regard the precision of weights, or the computational
representation, or the model structure.

Models are usually trained in FP32 precision or mixed precision (FP32 + FP16, depending on
the operator). Some targets, on the other hand, may significantly benefit from changing the
FP32 precision to FP16, INT8 or INT4 precision. The optimizations here are straightforward
for the FP16 precision, but the integer-based quantization require calibration datasets to
reduce the precision without a significant loss of the models’ quality.

Other optimizations change the computational representation of the model by, e.g., layer
fusion, specialized operators for convolutions of a particular shape, and other.

In the end, there are algorithmic optimizations that change the whole model structure, like
weight’s pruning, conditional computation, model distillation (the current model acts as a
teacher that is supposed to improve the quality of a much smaller model).

If the model optimizations are applied, the optimized models should be evaluated using the
same metrics as the original model. This is required in order to find any quality drops.

2.1.5 Model compilation and deployment

Deep learning compilers can transform model representation to:

• a source code for a different programming language, e.g., Halide, C, C++, Java that
can be later used on a given target,

• a machine code utilizing available hardware accelerators with supporting libraries,
e.g., OpenGL, OpenCL, CUDA, TensorRT, ROCm,

• FPGA bitstream,

• other targets.

Those compiled models are optimized to perform as efficiently as possible on a given target
hardware. In the final step, the models are deployed on a hardware device.

https://halide-lang.org/

D3.3 Version 1.1

12

2.2 Deep Learning Frameworks

This Chapter describes the most popular deep learning frameworks for model training and
development.

Figure 2: Popularity of frameworks over time (based on Google Trends), between 2016-06 till 2021-06. The popularity
is normalized to range between 0 and 100, where 100 means the highest popularity in a given period of time.

2.2.1 TensorFlow

2.2.1.1 General information

• Homepage: https://www.tensorflow.org/
• License: Apache-2.0
• Repository: https://github.com/tensorflow/tensorflow
• Documentation: TensorFlow documentation
• Analyzed release: 2.5.0
• Supported languages:

o C++
o Python
o C (TFLite)
o JavaScript (TensorFlow.JS)

• Partially supported languages:
o C#
o Go
o Haskell
o Java
o JavaSript
o Julia
o R
o Ruby

https://www.tensorflow.org/
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/api_docs/python/tf

D3.3 Version 1.1

13

o Scala
o Swift

2.2.1.2 Description

TensorFlow is a library for machine learning algorithms development. The API is available in
Python, but it is possible to use models in C++, C (using TFLite), JavaScript (using
TensorFlow.JS) and other languages above.

It allows training models on CPU, GPUs, TPUs and in distributed environments consisting of
GPU/TPU clusters. It provides the Datasets (tf.data) API for easy data loading, pre-
processing and distribution across training hardware. The models can be either designed
using low-level TensorFlow API, or using Keras blocks to keep the code simpler.

TensorFlow comes with a Tensorboard application that allows a user to track the
performance metrics, quality metrics, training progress and custom data from the browser.
Tensorboard allows us to analyse the model structure, plot metrics’ changes during training,
plot weights’ values distribution to make sure that the training process is progressing
correctly.

TensorFlow 1.x operated in a session mode — this means the model graph was first
constructed, along with training and data processing functions, and then all functions were
executed in a session. During inference, the session also needed to be constructed. This
disallowed the user to customize the inference or training process using native Python.

Since TensorFlow 2.x, the eager execution of inference and training became available, so it
is possible to run TensorFlow functions outside of a session and get immediate results. Still,
the seemingly most efficient way to train the model is to use TensorFlow APIs for data pre-
processing and training loop creation. Those require the user to use the TensorFlow
functions only, in order to form optimized training flow (utilizing multi-threading pre-
processing, parallel training and data fetching, and other optimizations).

2.2.1.3 TensorFlow children frameworks and enhancements

2.2.1.3.1 Keras

Keras wraps up low-level TensorFlow calls and provides a simplified API for designing deep
learning models.

Keras provides high-level APIs for layers, models, data pre-processing, optimizers, metrics
and losses that can be used to create new models with relatively small amount of code. It
comes with a long list of ready-to-use models for image classification, which can be used in
transfer learning, or they also can be used directly.

It is also integrated with the TensorFlow 2.x releases.

D3.3 Version 1.1

14

2.2.1.3.2 Sonnet
As Keras, Sonnet provides a high-level API for layers and modules wrapping up the low-level
TensorFlow calls. It is designed, built and by researchers at Deep Mind.

2.2.1.3.3 TensorFlow Lite
TensorFlow Lite is a deep learning model compiler for running models on mobile and IoT
devices. It can be described more in-depth in Deep Learning Compilers.

2.2.1.3.4 TensorFlow.JS
TensorFlow.JS contains an API for converting and deploying deep learning models in
JavaScript. It supports both Keras and TensorFlow saved models.

2.2.1.3.5 TensorFlow Addons
TensorFlow Addons is an optional library providing additional layers, callbacks, activations,
metrics, data pre-processing routines and more that haven't been added yet to the
TensorFlow library.

2.2.1.3.6 TensorFlow Model Garden
TensorFlow Model Garden is a repository with a large base of various state-of-the-art deep
learning models, including official, community and research models.

2.2.1.3.7 TensorFlow Model Optimization Toolkit
TensorFlow Model Optimization Toolkit is a set of tools for model compression —
quantization, weights pruning and clustering. It is used in TensorFlow Lite for various
hardware-specific model optimizations.

2.2.1.3.8 ONNX conversions
TensorFlow does not have built-in routines for ONNX conversions. The tensorflow-onnx and
onnx-tensorflow projects can be used for converting the models to and from the ONNX.
These projects allow exporting models from TensorFlow and importing models to
TensorFlow. Both repositories are maintained by the ONNX community. Check the tf2onnx
and onnx_tf support status pages for supported ONNX operators.

2.2.2 PyTorch

2.2.2.1 General information
• Homepage: https://pytorch.org/
• License: BSD-3
• Repository: https://github.com/pytorch/pytorch
• Documentation: PyTorch documentation
• Analyzed release: 1.7.1
• Supported languages:

o C++
o Java
o Python

2.2.2.2 Description

https://github.com/deepmind/sonnet
http://index.html/#document-dl-compilers
https://github.com/tensorflow/addons
https://github.com/tensorflow/models
https://github.com/tensorflow/model-optimization
http://index.html/#tflite-framework
https://github.com/onnx/tensorflow-onnx
https://github.com/onnx/onnx-tensorflow
https://github.com/onnx/tensorflow-onnx/blob/master/support_status.md
https://github.com/onnx/onnx-tensorflow/blob/master/doc/support_status.md
https://pytorch.org/
https://github.com/pytorch/pytorch
https://pytorch.org/docs/stable/index.html

D3.3 Version 1.1

15

PyTorch is a Python package for Tensor computation with strong GPU acceleration and
training deep neural networks. It is deeply integrated into Python, is imperative and can
cooperate seamlessly with the Python code. This allows to highly customize the training,
inference and processing flow.

The library consists of both low-level and high-level API for model designing. It provides an
extensive API for data pre-processing and efficient data fetching.

PyTorch allows the user to run and train the models on CPUs, GPUs and in distributed
systems. Thanks to PyTorch XLA it is also possible to train the model on Cloud TPUs.

The library provides JIT compilation to create very efficient deep learning flows.

While it does not provide a dedicated tool for visualizing learning data (like loss or metrics),
it can work with TensorBoard.

2.2.2.3 PyTorch children frameworks and enhancements

2.2.2.3.1 Distiller
IntelLabs/distiller project is a Python package for neural network compression. It provides:

• Pruning — weights pruning, structured pruning,
• Regularizations — they ease the further process of pruning and quantization,
• Quantization algorithms — conversion to INT8 networks,
• Knowledge distillation — training smaller networks by utilizing knowledge from

larger networks trained for the same problem,
• Conditional computation,
• Other optimization techniques.

It supports converting the compressed models to ONNX.

2.2.2.3.2 PyTorch Mobile
PyTorch Mobile provides API for running PyTorch models on iOS, Android and Linux. It
supports 8-bit kernels, per-channel quantization, dynamic quantizations and more. PyTorch
Mobile supports GPU, DSP and NPUs accelerators.

2.2.2.3.3 PyTorch Vision and Audio
torchvision is a package that consists of popular vision datasets, vision model architectures
and image transformations. torchaudio is a package for PyTorch in the audio domain — it
provides methods for loading and processing audio data.

2.2.2.3.4 Detectron2
Detectron2 is a library built on top of PyTorch for computer vision algorithms, especially
object detection, instance and semantic segmentation and pose estimation. It provides
methods for training models for above-mentioned tasks, and an impressive list of pre-
trained models.

2.2.2.4 ONNX conversions

PyTorch has native support for converting its models to ONNX. The documentation contains
the list of supported operators.

https://github.com/pytorch/xla
https://github.com/IntelLabs/distiller
https://github.com/pytorch/vision
https://github.com/pytorch/audio
https://github.com/facebookresearch/detectron2
https://pytorch.org/docs/stable/onnx.html#supported-operators

D3.3 Version 1.1

16

There is no official support for importing the ONNX models to PyTorch — this topic is
discussed in the ONNX import feature request in PyTorch Github issue tracker. The
ToriML/onnx2pytorch and fumihwh/onnx-pytorch project projects work on adding ONNX
import support to PyTorch. The former creates a nn.Module object from the ONNX file, while
the latter generates Python code with model definition from the ONNX file.

2.2.3 MXNet

• Homepage: https://mxnet.apache.org
• License: Apache-2.0
• Repository: https://github.com/apache/incubator-mxnet
• Documentation: MXNet documentation
• Analyzed release: 1.8.0
• Supported languages:

o C++
o Clojure
o Java
o Julia
o Perl
o Python
o R
o Scala

2.2.3.1 Description

Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It
allows mixing symbolic and imperative programming — MXNet contains a dynamic
dependency scheduler that automatically parallelizes both symbolic and imperative
operations on the fly.

Similarly to PyTorch, MXNet provides a NumPy-like programming interface. As TensorFlow
and PyTorch, MXNet is supported in various deep learning projects for model deployment
and optimization, like TVM, TensorRT or OpenVINO.

2.2.3.2 MXNet children frameworks and enhancements

2.2.3.2.1 GluonCV
Gluon CV Toolkit provides an impressive and up-to-date collection of the state-of-the-art
deep learning models for computer vision tasks, like classification, object detection,
segmentation, pose estimation, action recognition and depth prediction. It also provides
ready to use models for PyTorch.

https://github.com/pytorch/pytorch/issues/21683
https://github.com/ToriML/onnx2pytorch
https://github.com/fumihwh/onnx-pytorch
https://mxnet.apache.org/
https://github.com/apache/incubator-mxnet
https://mxnet.apache.org/versions/1.8.0/api
https://github.com/dmlc/gluon-cv

D3.3 Version 1.1

17

2.2.3.2.2 GluonNLP
Gluon NLP Toolkit provides methods for loading and processing text data and training NLP
models. It also provides models’ galleries for NLP problems, like text generation, machine
translation, and question answering.

2.2.3.2.3 MXBoard
MXBoard provides an API for visualizing MXNet data in TensorBoard.

2.2.3.3 Other deep learning frameworks
Other deep learning frameworks that are worth mentioning are listed below:

Darknet framework is a C/C++-based deep learning framework, in which next releases of
state-of-the-art object detection algorithms, called YOLO were created. It provides heavy
CUDA/CUDNN optimizations, allowing it to run those architectures in FP32, FP16 and even
INT8 precision.

Chainer is a Python-based solution using CuPy to communicate between Python and
CUDA/CUDNN.

CNTK is a Microsoft Cognitive Toolkit framework, currently discontinued.

DL4J is a deep learning framework for Java.

https://github.com/dmlc/gluon-nlp/
https://github.com/awslabs/mxboard
https://github.com/AlexeyAB/darknet
https://github.com/chainer/chainer
https://github.com/microsoft/CNTK
https://github.com/eclipse/deeplearning4j

D3.3 Version 1.1

18

2.3 Deep Learning Compilers

This Chapter lists selected Deep Learning Compilers that convert the Deep Learning
applications to optimized runtimes for Deep Learning Targets.

2.3.1 Apache TVM

2.3.1.1 General information
• Homepage: https://tvm.apache.org/
• License: Apache-2.0
• Repository: https://github.com/apache/tvm
• Documentation: TVM documentation
• Analyzed release: 0.7.0

2.3.1.2 Description
Tensor Virtual Machine (TVM) is a hierarchical multi-tier compiler stack and runtime system
for deep learning models [1]. The aim of the TVM project is to provide a minimum deployable
module for a diverse list of targets. It supports exporting models from:

• TensorFlow,
• PyTorch,
• MXNet,
• ONNX,
• Keras,
• CoreML,
• Caffe2,
• Darknet.

For each of the above frameworks there is an import frontend that converts the model to
the Intermediate Representation (IR) in Relay.

2.3.1.2.1 Relay Intermediate Representation language
As described in [1] machine learning, and especially deep learning in various deep learning
frameworks are represented in a form of graphs. The model representations present in the
Deep Learning Frameworks are usually graph-based, very domain-specific, and lacking
higher-level language features, like functions, recursions, or control flow.

Relay is a purely functional, statistically-typed programming language for differentiable
computations expressing machine learning models [1]. It is the second generation of the
NNVM compiler framework, which was used in MXNet. The model is represented as a set of
functions in an imperative manner rather than a graph. Apart from functions representing
typical machine learning operations, Relay also provides other features, like flow control, let
bindings, recursion or scopes.

Models from various frameworks, where the representation of architecture vary heavily, are
converted to this intermediate representation. Relay representation of the model is later

http://index.html/#document-dl-targets
https://tvm.apache.org/
https://github.com/apache/tvm
https://tvm.apache.org/docs/
http://index.html/#tensorflow-framework
http://index.html/#pytorch-framework
http://index.html/#mxnet-framework
http://index.html/#document-dl-frameworks
http://index.html/#mxnet-framework

D3.3 Version 1.1

19

used during model optimization and compilation to the optimized hardware
implementation.

2.3.1.2.2 Compilation flow

Figure 3: The TVM compilation flow

Figure 3 shows the compilation flow of the TVM framework, based on [2]

First, the machine learning model is converted to the IRModule using one of the import
frontends. The created IRModule consists of Relay functions relay.Function that describe
the computations in the model at a high level.

Secondly, the IRModule is subjected to transformation passes. There are three types of
transformations:

• Relay transformation passes — they replace one or many operations in the IRModule
with the optimized, functionally equivalent relay.Function. Those transformations
usually involve constant folding, dead-code elimination, tensor layout
transformation, fusions (i.e., creating conv2d-relu optimized blocks).

Note: The transformed IRModule can be approximately equivalent to the original
IRModule, for example if weights quantizations are applied [30].

• Lowering, also called TIR (Tensor Intermediate Representation) transformation
passes — they replace the relay.Function high-level functions with the target-specific
conversions and implementations. The lowering optimizations perform such
operations, as flattening, target-specific function replacements or wrapping. Also,

D3.3 Version 1.1

20

some general transformations, similar to Relay transformation passes, like dead-
code elimination at a lower level, are applied.

• The lowering does not perform low-level optimizations that can be handled by the
compilers, like LLVM or NVCC. The lowering transformations convert the
relay.Function objects to tir.PrimFunc objects.

• Search-space and learning-based transformations — such kind of transformations
are used during model fine-tuning on a target device. The target-specific
optimizations may consist of several hyperparameters that can be tuned empirically
on device to achieve the best performance.

• For example, in the case of CUDA there are parameters for tiles dimensionality,
cooperative fetching that can be adjusted to maximize data locality and optimize
memory accesses. In CPU targets tile factor, vectorization, unrolling optimizations
and other techniques are applied with different parameters to increase cache hit rate
of memory access and to encourage the compiler (LLVM) to utilize SIMD instructions
to greatly improve performance.

• After defining the search space consisting of compilation and optimization
parameters, the cost function is minimized using such algorithms as XGBoost or
Genetic Algorithms to find the good solution efficiently.

The Relay and lowering transformation passes are applied based on rules — they are
deterministic. The transformations can be either applied globally (Module passes), or they
can affect particular functions, based on defined rules (Function passes). The search-space
and learning-based transformations are based on benchmarks on target hardware.

After Relay transformation passes and lowering the IRModule consists of tir.PrimFunc
objects that contain elements including loop-nest choices, multi-dimensional load and store
operations, threading, and tensor instructions [2].

The final step in the compilation process is the translation of the IRModule contents to the
target-specific executable format that is possibly lightweight and minimal. The generated
Module consists of PackedFunc functions that define the work of the model. Those functions
interface with the accelerators via Device API. The Device API provides functions for
activating the device (SetDevice), allocating and freeing data space (AllocDataSpace,
FreeDataSpace), copying data (CopyDataFromTo) from target host to target device, and
other. In this scenario, the target host can be the CPU, and the target device can be CUDA
device, or TPU.

2.3.1.2.3 Running the model
The model is compiled to library files (.so, .o object files) that can be loaded and run using
the TVM Runtime. The TVM Runtime can be accessed using Java, JavaScript, Python or C++.

2.3.1.3 Features
• High-level optimizations, like operator fusion and layout change,
• Memory reuse at the graph and operators level,
• Tensorized computations,
• Latency hiding,
• On-target fine-tuning using RPC server,
• Customizable transformation passes,
• Customizable translators,

D3.3 Version 1.1

21

• Weights’ quantization,
• Large support of input model types — TensorFlow, Keras, PyTorch, MXNet, ONNX,

darknet and other,
• Can cooperate with TensorFlow Lite to compile models for Edge TPUs.

2.3.1.4 Supported targets and acceleration libraries
• ARM Mali GPU (also Bifrost architecture)
• ARM Ethos-N
• CPUs supported by LLVM
• CUDA, CUDNN, CUBLAS, TensorRT-GPUs, Jetson platforms,
• FPGA using VTA accelerator
• Google Coral
• Hexagon
• Intel Graphics
• Microcontrollers (using microTVM)
• OpenCL
• ROCM
• SDAccel
• Intel FPGA SDK for OpenCL (AOCL)
• Metal runtime library
• Vulkan
• OpenGL
• NNPack
• TensorFlow Lite-TPU
• VITIS-AI

2.3.2 TensorFlow Lite
2.3.2.1 General information

• Homepage: https://www.tensorflow.org/lite
• License: Apache-2.0
• Repository: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
• Documentation: TensorFlow Lite documentation
• Analyzed release: 2.5.0

2.3.2.2 Description
TensorFlow Lite is a set of tools that enables on-device inference of machine learning
models on mobile, embedded and IoT devices. It provides:

• TFLite Model Converter for TensorFlow models (from Keras HDF5 format, concrete
functions and saved model) that converts them to TFLite FlatBuffers,

• TFLite Interpreter and inference, which runs the TensorFlow Lite model on-device.

8It allows only converting TensorFlow models, so in order to use models from other
frameworks, the conversion to ONNX, and later to TensorFlow using onnx-tensorflow
described in TensorFlow Model Optimization Toolkit would be necessary.

2.3.2.2.1 TFLite FlatBuffers
FlatBuffers is an efficient cross platform serialization library that can be used in C++, C#, C,
Go, Java, Kotlin, JavaScript, Lobster, Lua, TypeScript, PHP, Python, Rust and Swift [3]. The
reasons FlatBuffers are used in TensorFlow Lite are:

https://www.tensorflow.org/lite
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://www.tensorflow.org/lite/guide
http://index.html/#tensorflow-framework-onnxconversion

D3.3 Version 1.1

22

• Access to serialized data without any parsing or unpacking — unlike ProtoBuffers
present in TensorFlow, data in FlatBuffers can be accessed directly without
unpacking data or parsing it to some intermediate representation.

• High memory efficiency — after loading a TFLite file, all the data is available without
any additional allocations.

• High speed — the FlatBuffers access and manipulation performance is close to raw
C/C++ structures.

• Flexibility — FlatBuffers allow adding optional fields, which makes them easy to
adapt and open to new additions. It also eases backward compatibility for the TFLite
models.

• Strong typing — strong typing allows detecting any type inconsistencies at compile
time, removing the need for type and consistency checks

• Tiny code footprint, high portability — the generated code is minimal, there are no
additional dependencies required for the FlatBuffers library, and it easily supports
cross platform building.

The above features make FlatBuffers an excellent choice for low-power devices with
memory and computational power limitations.

2.3.2.2.2 TFLite Model Converter
Apart from changing model representation to TFLite FlatBuffers, TFLite model converter
provides algorithms for optimizing the model and adapting it to target accelerators.

The TFLite model converter can perform following optimizations [4]:

• Quantization — it provides methods for post-training FP16, dynamic range, 8-bit and
16-bit integer quantizations. TFLite performs quantization using calibration dataset.
To reduce the prediction qualities even further, TensorFlow and TensorFlow Lite
allow performing quantization-aware training. In quantization-aware training, the
model is quantized in forward passes, the loss of the quantized model is computed
and added to overall loss. This leads to creating a model that is more robust to the
final quantization.

• Pruning — TFLite and TensorFlow provide an algorithm for magnitude-based weights
pruning. This creates sparse deep learning models — in such models some of the
connections are removed (meaning the weights of those connections are zeroed).

• Clustering [HMD16] — clustering reduces the number of unique weight values in a
model. For each layer, the K-Means algorithm is used to subdivide weight values into
K clusters. For each cluster, the centroid is computed and treated as a weight value
for all weights present in a cluster. The actual weight values are replaced with
centroid ID, so each layer in the model consists of K floating-point centroids, and
kernel matrices with i.e., 2-bit centroid ID values.

Depending on the accelerator type, one or more of the above-mentioned optimizations can
be applied to the model to significantly reduce model size, and processing time.

2.3.2.2.3 TFLite Interpreter and inference
The TFLite library first needs to load the model from the .tflite file and pass it through the
Interpreter. The Interpreter allocates tensors and prepares the model for inference.

http://index.html/#id6

D3.3 Version 1.1

23

By default, TFLite uses CPU kernels that are optimized for the ARM Neon instruction set
[32]. If the target device has an accelerator for some of the deep learning operations, like
matrix multiplications, those computations can be delegated to the accelerator using
Delegates.

Delegates enable hardware acceleration of TensorFlow Lite models by leveraging on-device
accelerators [32], such as:

• GPU,
• TPU,
• Qualcomm Hexagon DSP,
• NPU.

During the compilation process, the delegates need to be registered so the Interpreter can
use them to form a final TFLite computational graph. If there is a part of the graph (single
operation, or multiple operations) that can be handled by the accelerator, and the format of
input data and output data of such a graph block is compliant with the rest of the graph,
then the TFLite replaces this part of the graph with the appropriate delegate
implementation.

Depending on the operator's support in the delegate, the whole graph’s execution can be
moved to the accelerator, or it can run some unsupported parts on the CPU.

TFLite, apart from graph construction and delegate support, provides an API for pre-
processing inputs and post-processing outputs. Some of the accelerators, like TPUs present
in Google Coral, support only INT8 inference. TFLite provides functions for converting the
inputs and outputs.

2.3.2.3 Features
• Very small binary size — ~1MB with all supported operators (32-bit ARM builds), and

less than 300kB when using only operators required by the common image classifiers
[32],

• Small model size, thanks to TFLite FlatBuffers,
• Weights quantization,
• Connections pruning,
• Clustering,
• Customizable delegates.

2.3.2.4 Supported targets
• ARM CPUs
• DSPs
• GPUs (via OpenCL and OpenGL ES)
• Hexagon
• Microcontrollers
• NPUs
• TPUs

2.3.3 OpenVINO
2.3.3.1 General information

• Homepage: https://docs.openvinotoolkit.org/latest/index.html
• License: Apache-2.0
• Repository: https://github.com/openvinotoolkit/openvino

https://docs.openvinotoolkit.org/latest/index.html
https://github.com/openvinotoolkit/openvino

D3.3 Version 1.1

24

• Documentation: OpenVINO documentation
• Analyzed release: 2021.3

2.3.3.2 Description
OpenVINO provides a necessary toolset and optimized runtime dedicated to the efficient
execution of neural networks on Intel CPUs, FPGAs and specialized accelerators [5]

It supports the following formats:

• Caffe,
• TensorFlow,
• MXNet,
• ONNX.

OpenVINO performs the following model optimizations:

• 8-bit quantizations,
• convolutions conversion to Winograd-compliant format for faster inference on CPUs

with Vector Extensions 512 (AVX-512) instruction set.

2.3.3.3 Supported targets
• Intel CPUs
• Intel Integrated Graphics,
• Intel Arria 10 FPGA GX
• Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA
• VPUs — Intel Movidius Myriad X VPUs and Intel Neural Compute Stick 2

2.3.4 ONNX Runtime
2.3.4.1 General information

• Homepage: https://www.onnxruntime.ai/
• License: MIT
• Repository: https://github.com/microsoft/onnxruntime
• Documentation: ONNX Runtime documentation
• Analyzed release: v1.8.0

2.3.4.2 Description
ONNX Runtime is a cross-platform inference and training machine-learning framework. It
can be used to accelerate both inference and learning on target hardware.

The aim of the project is to allow running any ONNX model on a given platform.

On its own, ONNX Runtime does not introduce many new optimizations in comparison to
other compilers — after loading the model to the memory it performs:

• constant folding,
• optional cast transformations between float32 and float16,
• redundant node eliminations,
• node fusions,
• data layout optimizations — conversion from NCHW to NCHWc layout for better

vectorization and cache reuse.

Beside above-mentioned optimizations, ONNX Runtime performs graph partitioning. Given
the available deep learning accelerators, ONNX Runtime partitions the graph into the

https://docs.openvinotoolkit.org/latest/index.html
http://index.html/#tensorflow-framework
http://index.html/#mxnet-framework
http://index.html/#document-onnx-support
https://www.onnxruntime.ai/
https://github.com/microsoft/onnxruntime
https://www.onnxruntime.ai/docs/

D3.3 Version 1.1

25

largest possible subgraphs that can be executed on available accelerators. This means that
ONNX Runtime will try to accelerate as many parts of the model as possible.

In order to support completeness of the Runtime, the ONNX Runtime has default CPU and
CUDA execution providers. In case the available accelerators do not support some parts of
the model graph, the Runtime will fall back to those default providers.

2.3.4.3 Features
• Full support for any ONNX model,
• Basic model optimizations,
• Multiple threads can invoke inference on the same inference session object — all

kernels are constant and stateless [dev21].
• Support for various execution providers — libraries and accelerators.

2.3.4.4 Supported targets and acceleration libraries
• CUDA, CUDNN, TensorRT-GPUs, Jetson platforms
• OpenVINO
• Apache TVM — used as NUPHAR execution provider
• NNAPI
• Vitis AI
• Direct ML
• Intel oneDNN

2.3.5 ONNC
2.3.5.1 General information

• Homepage: https://onnc.ai/
• License: BSD-3
• Repository: https://github.com/ONNC/onnc
• Documentation: ONNC documentation
• Analyzed release: 1.3.0

2.3.5.2 Description
ONNC (Open Neural Network Compiler) is a collection of open source, modular, reusable
compiler algorithms and toolchains targeted on deep learning accelerators — it translates
ONNX models to the proprietary DLA code [6]. ONNC has its own intermediate
representation design that supports both fine-grained operators such as multiplier-
accumulator and coarse-grained operators such as convolution, which simplifies the efforts
in writing conversions for new DLAs. ONNC has an interactive compiler that is able to retry
from the intermediate pass automatically upon compilation failures [6]. It also has a flexible
pass manager that allows adding new optimization passes easily.

ONNC is integrated with the LLVM bit code runtime and backend. Any accelerator that
already has the LLVM support can be integrated seamlessly with the ONNC [6].

ONNC aims towards providing easy to adapt deep learning compilers that can be used for
DLAs with fine- and coarse-grained operators.

ONNC supports most of the ONNX operators.

ONNC is also the first open-source deep learning compiler supporting NVDLA [7]It creates
an NVDLA loadable that was formerly generated only by the proprietary TensorRT library.

http://index.html/#id8
https://onnc.ai/
https://github.com/ONNC/onnc
https://github.com/ONNC/onnc/tree/master/docs

D3.3 Version 1.1

26

The loadable generation was documented based on the TensorRT library — the ONNC is said
to support more deep learning models than the proprietary alternative [7].

2.3.5.3 Supported targets
• NVDLA
• Sophon BM168X

2.3.6 Glow
2.3.6.1 General information

• Homepage: https://ai.facebook.com/tools/glow/
• License: Apache-2.0
• Repository: https://github.com/pytorch/glow
• Documentation: Glow documentation
• Analyzed release: not versioned

2.3.6.2 Description
Glow stands for Graph-Lowering and is a deep learning compiler created within the PyTorch
environment.

2.3.6.2.1 Compilation flow
As described in [8] Glow introduces two levels of Intermediate Representations (IR) — High-
level IR and Low-level IR.

High-level IR is a strongly typed graph that uses high-level operations to describe the
computations in the model, i.e., convolutions, pooling and activation layers. It consists of:

• constants — values that are constant during model inference, i.e., weights and
biases,

• placeholders — symbolic nodes that are not backed by a concrete tensor at the
compilation time, i.e., input and output tensors with an unknown shape,

• functions — nodes representing high-level deep learning operations, such as
convolutions, batch normalization, pooling or activation functions,

• predicates — nodes representing functions that can be disabled according to the
boolean flag (it can be used to avoid some unnecessary computations, especially in
Recurrent Neural Networks, where the inputs vary in length),

Glow applies basic transformations like operator node replacements or unnecessary node
removal. In addition, Glow can perform optimizations on constant nodes, like quantization,
transposition and other adaptations.

After performing some high-level transformations, Glow performs node lowering. Node
lowering breaks the high-level operators into low-level linear algebra operator nodes [8],
such as matrix multiplication and broadcasted add instead of fully connected layer. All
computations in the graph that are not necessary for the inference case (i.e., gradient
computations) are removed from the graph. At the end of the node lowering process, the
graph consists of very simple operations that are subjected to additional optimizations, both
target independent and target specific.

Once node lowering is finished, Glow performs the IRGen (IR generation) step converting
the graph to low-level IR. Low-level IR is an instruction-based representation that operates
on tensors referenced by address [8]. This allows the compiler to perform low-level memory
optimizations (both hardware-independent and hardware-specific) that are not possible at
the higher level of model abstraction, like:

https://ai.facebook.com/tools/glow/
https://github.com/pytorch/glow
https://github.com/pytorch/glow/tree/master/docs

D3.3 Version 1.1

27

• in-place element-wise arithmetic,
• asynchronous DMA operations.

Low-level IR optimizations hide the latency of memory operations to help utilize the
execution units of the hardware effectively. They also minimize the overall memory usage.

In the end, low-level operations are compiled using appropriate target backend. Thanks to
converting the computation graph to the very low-level representation consisting of basic
calculations, it is possible to easily compile the model for a given target without
implementing many compute kernels representing high-level deep learning functions.

2.3.6.2.2 Model optimizations
The model optimizations in Glow can be divided into [8]:

• Graph-level optimizations:
o “dead” code elimination
o node transposing and sinking of transpose — this transposes both tensors and

function calculations to minimize the amount of matrix transpositions
throughout the graph,

o regression nodes simplification,
o pooling and post-pooling operations optimizations,
o converting multiple concatenation nodes into single concatenation node.

• Profile-guided quantization to INT8 format.
• IR-level optimizations:

o peephole optimizations — small, local optimizations that replace sequences of
instructions with more efficient instruction of sequence of instructions,

o dead store elimination — removes stores into weights or allocations if these
stores are not going to be used,

o allocation sinking — moves buffer allocations right before the first use of the
buffer to reduce the lifetime of the buffer and improve memory consumption,

o data-parallel operations stacking — replaces the sequential implementation of
kernel operations to parallel implementation wherever possible,

o other minor optimizations.

2.3.6.2.3 Running the model
Glow provides a runtime that is capable of partitioning models, queuing requests and
executing models across multiple devices [8]. Glow runtime consists of:

• partitioner — responsible for splitting the network into sub-networks that can be run
on multiple devices. The network is divided into multiple devices based on memory
constraints, estimated time cost and communication cost between devices. This
allows Glow to minimize the inference time.

• provisioner — responsible for assigning sub-graphs to specific devices and calling
backend and Device Manager to compile and load each subgraph to the appropriate
device.

• device manager — handles network loading, memory transfers, execution on devices
and tracks hardware state.

• executor — handles the execution of a network, tracks execution state and
propagates inputs and outputs of sub-graphs. It asynchronously handles inference
requests and returns the collated results.

D3.3 Version 1.1

28

2.3.6.3 Features
• Model representation lowering to very simple operations, easy for adaptation to new

hardware (no need to support lots of deep learning operations, only basic linear
algebra),

• Memory-wise optimizations,
• Latency hiding,
• Weights’ quantization,
• Multi-accelerator inference.

2.3.6.4 Supported targets
• OpenCL
• ARM
• Intel CPUs

D3.3 Version 1.1

29

2.4 ONNX Compatibility

Open Neural Network Exchange is an open standard for representing machine learning
models. It is actively developed, and more and more deep learning operators are supported
with next operator releases. The ONNX format is backward compatible, meaning the models
exported to earlier releases of Operator sets (opsets) should be supported by new ONNX
releases.

Most of the current deep learning frameworks support exporting its models to the ONNX
representation and importing models from the ONNX representation.

This format is widely used for transferring the model from one framework to another. It is
also used by deep learning compilers to read models from deep learning frameworks that
are not natively supported.

2.4.1 General information
• Homepage: https://onnx.ai/

• License: Apache-2.0

• Repository: https://github.com/onnx/onnx

• Documentation: ONNX documentation

• Analyzed release: 1.9.0

2.4.2 ONNX conversion support grid

Model Name mxnet (ver. 1.8.0)
pytorch (ver.
1.8.1+cu111)

tensorflow (ver.
2.4.1)

DenseNet201 supported /
supported

supported /
unsupported

supported /
supported

MobileNetV2 supported /
supported

supported /
unsupported

supported /
supported

ResNet50 supported /
supported

supported /
unsupported

supported /
supported

VGG16 supported /
supported

supported /
unsupported

supported /
supported

DeepLabV3
ResNet50

ERROR / unverified supported /
unsupported

Not provided / Not
provided

Faster R-CNN
ResNet50 FPN

ERROR / unverified supported /
unsupported

Not provided / Not
provided

https://onnx.ai/
https://github.com/onnx/onnx
https://github.com/onnx/onnx/tree/master/docs

D3.3 Version 1.1

30

Mask R-CNN ERROR / unverified supported /
unsupported

Not provided / Not
provided

While ONNX is actively developed so the newest state-of-the-art deep learning models can
be supported by this format, the importing/exporting routines of deep learning frameworks
may have a different support for various operations.

Table 1 shows the ONNX conversion support for some of the popular models across various
deep learning frameworks. Each row represents a different deep learning model. Each
column represents a different deep learning framework. Each cell shows export to ONNX
and import from ONNX support for a given model and framework.

First of all, the model is downloaded for a given framework. Secondly, the model is
converted to ONNX. In the end, the ONNX model is converted back to the framework’s
format.

The values in cells are in <export support> / <import support> format.

The possible values are:

• supported if export or import succeeded,

• unsupported if export or import is not implemented for a given framework,

• ERROR if export or import ended up with error for a given framework,

• unverified if import could not be tested due to lack of support for export or error
during export.

• Not provided if the model was not provided for the framework.

Currently, MXNet, PyTorch and TensorFlow support the most popular deep learning models
for image classification problem. While TensorFlow and MXNet support both import and
export of ONNX models, the PyTorch currently allows only model exporting, which disallows
using models developed in other frameworks to be used and altered in PyTorch.

The object detection and instance segmentation models pose more problems to the
exporting routines. While PyTorch is able to export the models, the MXNet fails with
unsupported operators.

D3.3 Version 1.1

31

2.5 Deep Learning Models

2.5.1 VEDLIoT Model Zoo
Throughout this project, we focus on 9 state-of-the-art (SOTA) and commonly used models
(17 model configurations in total), which make up the VEDLIoT model set. VEDLIoT model
set was created to have a common set of models across partners for obtaining comparable
benchmarks and for development.

In the model set, we span a wide range of different domains including image classification,
object detection, instance segmentation, semantic segmentation and natural language
processing (NLP). Furthermore, we cover a broad spectrum of computational requirements,
such as models suited for mobile devices and models that are too demanding for edge
devices. Over the course of this project, effort will be put into compressing the larger
models to fit on the edge.

There exist benchmark suites such as MLPerf [9], aimed to create comparable benchmarks
across models and hardware platforms. We opt to use the model set rather than MLPerf
mainly because we want to explore a larger set of models both with diverse workloads and
applications pertaining to the use cases in WP7. Additionally, we want more control over the
models that we experiment on.

For the model set, we mostly acquired the models from Tensorflow Keras applications API
which contain several of the most popular deep neural networks. The remaining models
were found on TFHub and publicly available github repositories. We then compiled the
models in both onnx and tensorflow protobuf (.pb) versions.

2.5.1.1 Bert
Transformers have quickly risen in popularity in the field of natural language processing
(NLP). The transformer introduces the self-attention layer, which has proven to be a key
advance in NLP models. Bert is a special kind of transformer that consists of a stack of
bidirectional self-attention encoders [10] (see Figure 5.1).

Figure 4 : Bert: (From [10]) An illustration of the difference between BERT, GPT and ELMo

2.5.1.2 ResNet
ResNet is one of the most well-known and used deep neural networks [11] for image
classification. It popularized the use of skip connections, which made it possible to build
much deeper models. They also note that when the model is expanded, the memory and
computation can cause a problem. Thus, the bottleneck version of the residual block is
introduced. The bottleneck residual block consists of a 1x1 convolution that decreases the
number of filters (see Figure 5). This is then followed by the compute intensive 3x3
convolution and then another 1x1 convolution that increases the filter size back again
before lastly applying the skip connection. This way the computation that is required is

D3.3 Version 1.1

32

decreased, because most of the computation is located in 3x3 convolution. We use three
different configurations of this model, ResNet50, ResNet101 and ResNet152.

Figure 5: ResNet: An example of a residual bottleneck block introduced in [11] (Figure 5 from [11])

2.5.1.3 DeeplabV3+
DeepLabV3+ leverages atrous convolutions (see Figure 6) to increase the resolution in the
context of pixelwise semantic segmentation while still keeping the same receptive field. It
also incorporates a spatial pyramid pooling for increased multi scale context capture [12].

Figure 6: DeepLab: (From [12]) Subfigure (c) shows an atrous depthwise convolution

2.5.1.4 YoloV4
The Yolo model family is the most popular in the one-stage object detection category,
predicting bounding boxes end-to-end without intermediate proposal steps. Improvements
in later versions of Yolo compared to YoloV1 include the introduction of anchor boxes, the
introduction of a neck that combines features from different layers of the backbone, and
improved training. The YoloV4 network consists of a CSPDarkNet53 backbone with a SPP-
PAN neck and YoloV3 head. The YoloV4 training introduces new augmentations such as the
Mosaic augmentation, in which four different images are combined into one. [13]

2.5.1.5 Mask R-CNN
Mask R-CNN on the other hand is a two-stage detector [14]. First a backbone processes the
image, then a Region of Interest pooling layer generates candidate regions for objects that
the last part of the network makes the predictions on. Mask R-CNN covers not only object
detection but also instance segmentation. While Mask R-CNN is considered very powerful in
terms of accuracy, it is also notoriously slow due to the two-stage structure.

D3.3 Version 1.1

33

2.5.1.6 MobileNetV3
MobileNetV3 is a lightweight image classification model aiming to minimize the latency on
mobile CPUs. The architecture uses the inverted residual bottleneck introduced in
MobileNetV2, which aims to keep the dimensions in the skip connection minimized and
instead expands the amount of filters before the convolution (see Figure 7).

Figure 7: MobNet: Inverted residual bottleneck. (Figure 3 from [15])

It also uses operations such as depthwise separable convolutions, hard-swish activations and
squeeze-and-excite modules to increase the performance per latency [15]. MobileNet
architectures typically have a scaling factor that is set to trade off computation and accuracy.
We keep it constant at 1.0 throughout this project.

2.5.1.7 EfficientNet
The base model (designed for image classification), EfficientNet-B0, is the product of a
neural architecture search that optimizes for floating point operations and accuracy [16].
The model is very similar to a MobileNet with minor differences. It applies a compound
scaling to the model width, depth and image size to increase the models’ performance. The
result is a family of models B0 to B7 ranging from 0.39 billion ops to 37 billion ops. We opt
to use B0, B3 and B7 in order to cover the full range of computational demand.

2.5.1.8 EfficientDet
This is the object detection adaptation of EfficientNet. EfficientDet is composed of an
EfficientNet with a novel bidirectional feature pyramid (see Figure 8), creating a new family
that follows the same notation as EfficientNet, D0-D7. Here we use the subset D0, D3 and
D7.

D3.3 Version 1.1

34

Figure 8: EDet: (from [17]) The bidirectional feature pyramid

2.5.1.9 ShuffleNetV2
The main contribution of ShuffleNetV2 is the redesign of the shufflenet block [18]. The old
shufflenet block is yet another implementation on the residual block, but with some tricks
to decrease computational complexity. Firstly, the 1x1 convolutions are grouped and the
3x3 convolution is replaced with a depthwise convolution. The consequence of this is that
some filter channels are completely decoupled, which could be harmful to the accuracy. In
order to address the decoupling, the paper describes a channel shuffle operation.

The new shufflenet block design uses channel split for more efficient data usage and later
employs a channel shuffle after the split data paths are recombined. This is illustrated in
Figure 5.6.

Figure 9: ShNet: (Figure 3 from [18]) (a) and (b) shows the ShuffleNetV1 block and (c) and (d) shows the

ShuffleNetV2 block

D3.3 Version 1.1

35

3 Evaluation of DL Accelerators
3.1 Methodology
This report is the evaluation of ML accelerators in the VEDLIoT project, were all accelerators
that could be acquired are going to be tested. For this evaluation, metrics are defined
concerning performance, efficiency and accuracy. Furthermore, measurements are
described regarding performance, power and accuracy evaluation.

3.1.1 Metrics
Within the scope of this project and considering both the hardware development and the
use-cases requirements, the different partners have agreed on a set of metrics that is
relevant for the evaluation of the different systems evaluated and developed within this
project. The set of metrics is divided into four different categories: system metrics
(platform and I/O); performance metrics (applications); quality metrics; and efficiency
metrics. The different metrics, their definitions and units are presented in the tables below.

In addition to the metrics, we also include other definitions that are relevant for the
evaluation such as: benchmark setup characterization, hardware platform characterization,
and hardware platform versatility.

For this first evaluation of existing hardware we use a subset of these metrics for most of
the hardware since certain metrics are specific to certain types of hardware (e.g., hardware
resources which is mostly relevant to the FPGA-based accelerators to be developed in the
future in the project). While there was an effort to have a set of metrics that could be used
across most of the devices, in certain cases it is not possible to collect the values for the
proposed metric. All exceptions are clearly justified in the evaluation section, when
presenting the results for the different hardware devices.

System Metrics (Platform and I/O)

Peak performance
[GOPS]

Theoretical value determined by the analysis of the available hardware and

operating frequency. This value is collected from the vendors as it is usually

reported in the spec sheets for the different devices. This value is reported

in Giga (109) Operations Per Second (GOPS). As before, an operation is a

multiplication or an addition (a MAC instruction accounts for 2 operations).

Memory capacity [B] Total internal (on-chip) memory capacity. Whenever possible, breakdown of

the capacity for different internal memory buffers (e.g., activation or weight

buffer). This value is reported in Bytes or its multiple KB (210), MB (220), GB

(230).

Memory bandwith
[MB/s]

Bandwidth for off-chip (and off-accelerator) memory accesses. This is the

theoretical value reported by the vendors for the off-chip memory

bandwidth, reported in Megabyte (220) per second (MB/s).

D3.3 Version 1.1

36

Memory latency [s] Latency for off-chip (and off-accelerator) memory accesses. This is the

theoretical value reported by the vendors for the off-chip memory latency,

reported seconds (s) or one of its multiples ms (10-3), µs (10-6), ns (10-9).

I/O bandwidth [bps] Bandwidth for data transfers between the accelerator to the "outside" world

for uploads and downloads (models, weights, configurations, etc.). This is

the theoretical value reported by the vendors for the off-chip I/O bandwidth,

reported in bit-per-second (bps).

I/O latency [s] Latency for data transfers between the accelerator to the "outside" world for

uploads and downloads (models, weights, configurations, etc.). This is the

theoretical value reported by the vendors for the off-chip I/O latency,

reported in second (s).

Idle power [W] Power value measured after the system/accelerator has booted or it is on

but not executing any inference at the time. The value is reported in Watt

(W).

Reconfiguration time
[s]

Dead time from starting the update process till system is running again. This

value is reported in seconds and it is only relevant for reconfigurable

accelerators (CGRA or FPGA).

Cost [$] Mix of hardware costs and service costs (edge IoT); basic service costs

(e.g., infrastructure) and AI service costs (e.g., consistency check). For the

sake of comparison with other international works, this metric value is

reported in US dollars ($).

Performance Metrics (Application)

Inference time [s] Inference time for the completion of the inference operation. This time does

not include any data pre- or post-processing times. Also in same cases

where multiple inferences are part of the same execution (batch > 1), this

time accounts for the execution of all inferences in the request. A batch of 1

is used to report the lowest inference time while a batch>1 is used to report

highest inference throughput.

Latency [s] Total Inference Time for a request including both data pre- and post-

processing times.

Number of
operations [Ops]

Total number of Multiply and Accumulate operations required to determine

an inference result. This number is determined by analysing the number of

D3.3 Version 1.1

37

static MAC instructions in the DL models. A merged multiply-add (or

multiply-accumulate) corresponds to two operations.

Number of
instructions [Ins]

Total number of instructions required to determine an inference result. This

metric is only valid for certain hardware devices and it is also not

comparable between hardware devices that support different Instruction Set

Architectures (ISAs).

Achieved
performance [GOPS]
[IPS]

In contrast to peak performance this is the performance that is achieved for

the execution of a specific DL model. This value can be reported in GOPS

(as described in the previous table) or/and in Inferences Per Second (IPS).

In all cases that the input to the inference is an image, this value is the same

as what is reported in other studies as Frames Per Second (FPS).

Performance ratio [
%]

This value represents the ratio between the achieved performance and the

peak performance as a percentage value. This metric is interesting to

determine how effectively the hardware is being used for the inference

operation.

Memory utilization
[B]

This value represents the maximum memory utilized for the execution of the

inference operation. This value is reported in Bytes (B) and its multiple KB,

MB, GB, etc.

Memory requests Total number of requests to main memory (requests that are not satisfied

in the internal memory resources of the accelerator) that occur during the

inference operation. Whenever possible, the number of misses that occur

in the different internal memory buffers should be reported. This is not

possible to collect for all hardware devices. It is important to note the size

in Byte of each request.

Achieved memory
bandwith [MB/s]

In contrast to the device’s memory bandwidth this is the performance that

is achieved for the execution of a specific DL model. This value is reported

Megabyte (220) per second (MB/s).

Achieved I/O
bandwidth [bps]

In contrast to the device’s I/O bandwidth this is the performance that is

achieved for the execution of a specific DL model. This value is reported in

bits-per-second (bps).

Resources utilized
[number of LUTs,
registers, etc.]

This value represents the hardware resources utilized for the execution of

the inference operation on a particular reconfigurable device (FPGA).

Power [W] Average of sample measurements of the total power of the system

measured doing the execution of the inference operation. This value is

reported in Watt (W). Whenever possible the detailed power breakdown

D3.3 Version 1.1

38

between different internal components (e.g., core and uncore). The power

for the inference only can be obtained by deducting the “Idle power” from

this Power value.

Inference energy [J] Energy consumed to perform the inference operation. Note that if batch >

1 this will be the energy for all the inference requests to complete. This

value is computed from the Inference time and the Power values and is

reported in Joule (J).

Total energy [J] Energy consumed to execute the complete request including the data pre-

and post-processing in addition to the inference. Note that if batch > 1 this

will include the energy for all the inference requests to complete. This

value is computed from the Latency and the Power values and is reported

in Joule (J).

Quality Metrics

Accuracy Definition is depending on the used algorithm. The relevant metric(s)

need to be defined together with the together with the benchmark. (e.g.,

Classification Metrics: accuracy, precision, recall, F1-score, ...;

Statistical Metrics: Correlation; ...)

A minimum/target quality should be defined for each benchmark (we

then need to define if/how to reward quality that is higher than the target)

Efficiency Metrics

Power efficiency
[GOPS/W]

Combined metric that measures the power efficiency of the execution of

the inference operation on a particular architecture. This metric is a

combination of the Achieved performance and Power and is reported

in Giga Operations Per Second (GOPS) per Watt (W).

Area efficiency
[GOPS/mm2]

Combined metric that reports how efficient is the area utilization for

Achieved performance and is reported in Giga Operations Per Second

(GOPS) per square millimetre (mm2).

Cost efficiency
[GOPS/$]

Combined metric that shows the efficiency of the hardware for a certain

execution in terms of its Achieved Performance when considering its

D3.3 Version 1.1

39

Cost. This value is reported in Giga Operations Per Second (GOPS) per

US dollar ($).

Benchmark Setup Characterization

Benchmark Benchmark model, data set, and required characteristics used for the

evaluation (cf. Table VEDLIoT Benchmark Models).

Toolchain Toolchain used to obtain the measured results.

Numerical Format Numerical format used for the benchmark implementation on the

accelerator (e.g., FP32, BF16, INT8)

Hardware Platform Characterization

Technology Process for silicon implementations (e.g., TSMC 7nm); FPGA

architecture for reconfigurable platforms (e.g., Xilinx Zynq UltraScale+

ZU9EG-1)

Accelerator Device Used hardware accelerator SoC/ASIC

System Architecture Architecture of the system used for benchmarking, e.g., COM

(formfactor) / Evaluation board

System Integration Integration of the accelerator into a system environment for

benchmarking, e.g., PCIe card in the RECS system; evaluation board

with Ethernet connection

Availability Availability of the platform (samples/general availability)

Reliability/Dependability Characterization of specific hardware platform support to enhance

reliability or dependability

Hardware Platform Versatility

Supported Toolchains List of toolchains that are supported by the hardware accelerator (e.g.,

Caffe, MXNet, ONNX, Pytorch, TensorFlow/TF-Lite)

Supported Benchmarks List of DL architectures that are supported by the hardware accelerator

(e.g., ResNet, YOLOv4, …)

D3.3 Version 1.1

40

Supported Data Formats Data formats supported by the hardware accelerator (e.g., FP32, BF,

TF, INT8)

3.1.2 Performance Measurements
The performance measurements will be done with a subset of the Model Zoo presented in
Chapter 5. Three relevant models were chosen and their corresponding operations per
inference were calculated to determine the achieved performance. As a reference the
theoretical maximum performance was investigated from either manufactures references
or calculated from clock frequency and amount of execution unit. Finally for reproducibility
the tool flow used for the measurements was noted.

3.1.2.1 Models
In the interest of time, the benchmarking has for the most part been focused on a subset of
models. These models are ResNet50, MobileNetV3 Small and YoloV4. ResNet50 is a mid-
sized model with basic operations that are expected to be supported on most hardware.
MobileNetV3 targets smaller devices in terms of computational demand but introduces
some more modern operations such as HardSwish [15] that might not be supported. Lastly,
YoloV4 is not only more demanding in terms of computations, but it also utilizes the Mish
activation [19] that might not be supported by hardware.

The Multiply-add operations are counted using a tool developed by EmbeDL and then
converted to operations denoted as Ops (1 Mul-Adds = 2 Ops). These numbers are then
verified by comparing to the numbers reported in the papers. The ResNet could be directly
compared to the paper without modifications, but there is a discrepancy. The flops stated in
the paper, corresponds to our measured Mul-Adds. For MobileNetV3 Small only the
backbone part of the model is reported. This is verified by only measuring over the
backbone, but the numbers reported in this table accounts for both backbone and
classification head. YoloV4 also only reports backbone numbers and for other input sizes. In
order to verify these numbers, we measured only the backbone and resized the input to the
size used in the paper. The determined operations per inference a noted in Table 1.

Table 1: OPs and Multiply-Adds of model subset

Model Operations / Inference

MobileNetV3 Small 0.178 GOps (89 million Mul-Adds)

ResNet50 7.78 GOps (3.89 billion Mul-Adds)

YoloV4 60.4 GOps (30.2 billion Mul-Adds)

3.1.2.2 Performance
In ML applications the performance isn’t a direct metric. The return value of the inference
tools is “Inference Time” which needs to be calculated to GOPS. Therefore, the operations
per inference were calculated in the last paragraph to be multiplied with Inferences per
second:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑝𝑝𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼𝑠𝑠 =
1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼

D3.3 Version 1.1

41

𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼𝑇𝑇𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼 =
1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼
∗ 𝑀𝑀𝑠𝑠𝑠𝑠𝐼𝐼𝑀𝑀 𝑂𝑂𝑝𝑝𝐼𝐼𝐼𝐼𝑃𝑃𝑂𝑂𝑇𝑇𝑠𝑠𝐼𝐼𝐼𝐼 𝑝𝑝𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

As reference the theoretical maximum performance of each architecture was investigated.
For some accelerators these values could be found on the manufacture’s web presence or
corresponding datasheets. In other cases the values needed to be calculated, e.g., x86
processors where the AVX2 unit process 32 FP32 operations per second. Multiplying this
with the number of cores and the frequency, the theoretical maximum could be determent.

3.1.2.3 Toolflow
Each hardware is optimized for a certain toolflow, e.g., NVIDIA hardware works best with
TensorRT or Intel hardware works best on OpenVINO. From a benchmark point of view it
would be nice to have a single toolflow to be used with every hardware, but that would be
an advantage for the one hardware optimized for this flow.

The approach for this evaluation was using the corresponding hardware-software
combination and feet the models from the VEDLIoT Model Zoo. Unfortunately, it turned out,
that some vendor specific software doesn’t support 3rd party models. This leaded to using
the models that are recommended from the vendor. In the end the accuracy for each DL
toolchain was measured to ensure that the models are comparable. For IoT workloads batch
size = 1 was examined for lowest latency. For Cloud workloads the batch size was tuned to
get the maximum performance from the device, e.g., Intel Myriad batch size = 4 or NVIDIA
Xavier NX batch size = 8.

3.1.3 Power Measurements
There are various ways to measure power and in VEDLIoT we need to have multiple
possibilities due to the variety of hardware. Here we basically differ between manual
operated measurements where the data needs to be read from an external meter and
integrated measurements where the management system directly feeds the data to the
application.

For integrated power measurements we want to introduce the perspective of integrating
the RECS REST interface into the Kenning profiler for direct generation of statistics.

3.1.3.1 Manual
There are two basic ways to physically measure power. The first is the resistive way where a
resistor is placed in series with the design under test (see Figure 10). The voltage over this
resistor needs to be measured by an oscilloscope or a multimeter. The current can then be
calculated by ohm’s law:

Current =
Voltage

𝑅𝑅𝐼𝐼𝐼𝐼𝑇𝑇𝐼𝐼𝑂𝑂𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼

D3.3 Version 1.1

42

+

-

Figure 10: Resistive Measurement

For high-speed measurements an oscilloscope is required. The advantage of high-speed
measurements is not only higher accuracy but also showing more details of the application
running on the device. Figure 11 shows a shot during inference on one of the accelerators.
On the X-axis each division is 400 ms, there is a small drop every ~550 ms which correlates
with the inference time. In addition, the oscilloscope measures the mean voltages between
the cursors given a very accurate power measurement.

Figure 11: Oscilloscope based high-speed measurement of supply current

The second way to measure power is the inductive way. An inductive probe is clamped on
the cable from the power source. This probe measures the electric field induced by the
current flowing through the cable, it is also connected to an oscilloscope. The results are
close to the resistive way using an oscilloscope, but the advantage is that it can be directly
used with most of the evaluation boards without modifying the hardware.

D3.3 Version 1.1

43

+

-

Figure 12: Inductive Measurements

3.1.3.2 Integrated
The main interface for managing the RECS server is the WebGUI that can be used in a regular
web browser. It allows navigation to every Microserver in the system. The management
allows remote control over on/off/reset, serial console, KVM etc. and monitoring of certain
important sensor values can be accessed.

Figure 13: Node selection screen of the RECS_Master WebGUI

The primary task of the WebGUI is to monitor system health. A low-speed power
measurement with an interval of one per second is available directly as graph in the GUI or
remotely via REST interface.

One of the possible future improvements of the test system is enabling the Kenning
framework to deliver the data in a form required by the WebGUI. To do so, a few extensions
have to be implemented in the Kenning framework:

D3.3 Version 1.1

44

• Addition of new readouts from sensors regarding performance in the threads
responsible for measurements collection

• Addition of a data-provider capable of reading the sensors’ data for the model
inference

• Addition of a backend presenting the data in a REST format required by the WebGUI

Kenning’s modular nature makes the above changes relatively easy to integrate. Due to the
fact that Kenning is an open-source framework, it can be easily adjusted to work with
WebGUI.

3.1.4 Accuracy
The three models, which were used for the evaluation, are initially trained on either the
ImageNet dataset (ResNet50 and MobileNetV3small) or the COCO dataset (YoloV4).
Furthermore, while ResNet50 and MobileNetV3small are classification networks, YoloV4 is an
object detector. Therefore, for the accuracy evaluation, we employed two different metrics.
We calculated the Top1 and Top5 accuracy for the classifiers, while for YoloV4, the mean
average precision (mAP) was determined using the COCO-API.

3.1.4.1 Classifier Accuracy
The classifier networks that were used for the measurements were trained on the 1000-
classes of the ImageNet dataset [20]. Therefore, the output of each inference is a list
containing the probability of the respective class. We used the IDs of the five classes with
the highest probability for our accuracy measurements. The original ImageNet 2012
validation dataset, consisting of 50.000 images, was used to evaluate the networks properly.
The accuracy was then calculated using the ground truth IDs for each image, provided
together with the dataset and the network outputs. For each image, it was first checked if
the five IDs the network calculated contained the respective ground truth ID; if so, the top5
counter was incremented and checked if the first ID, i.e., the one with the highest
probability, matches the ID, in that case, the top1 counter was also incremented. This was
done for each of the 50.000 images, and at the end, the accuracies were calculated as follows
(where 𝑇𝑇𝑇𝑇𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 is 50.000):

𝑂𝑂𝑠𝑠𝑝𝑝1% =
𝑂𝑂𝑠𝑠𝑝𝑝1𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐

∗ 100

𝑂𝑂𝑠𝑠𝑝𝑝5% =
𝑂𝑂𝑠𝑠𝑝𝑝5𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐

∗ 100

3.1.4.2 Object Detection Accuracy
The YoloV4 model derived from the original darknet model, which was trained on the 80-
classes of the COCO 2017 dataset [21] was used. The output of an inference consists of
numerous detections found in the input image. Each detection consists of the following
elements: the class ID of the object detected, the network's confidence that this detection
is correct, and the object's bounding box in the form of x-, y-coordinates, width and height.
For each image in the validation dataset, this information is stored together with the name
of the input image. The COCO 2017 validation dataset was used consisting of 5.000 images
to determine the accuracy. After all images were processed, the output containing all
detections was processed using the COCO-API [22], provided alongside the dataset, to
calculate the mean average precision (mAP) based on the COCO 2017 ground truth

D3.3 Version 1.1

45

annotations. Although the COCO-API calculates several mAP values, we only report
𝒎𝒎𝒎𝒎𝑷𝑷𝑰𝑰𝑰𝑰𝑰𝑰(.𝟓𝟓𝟓𝟓) and 𝒎𝒎𝒎𝒎𝑷𝑷𝑰𝑰𝑰𝑰𝑰𝑰(.𝟓𝟓𝟓𝟓:.𝟗𝟗𝟓𝟓) here. IoU stands for Intersection over Union and indicates the
overlap of two bounding boxes, i.e., the overlap between the bounding box of the detection
and the ground truth. In this context, 𝑇𝑇𝑚𝑚𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼(.50) means that detections with an 𝐼𝐼𝑠𝑠𝐼𝐼 ≥ 0.5
are considered as correct. On the other hand, 𝑇𝑇𝑚𝑚𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼(.50:.95) is calculated as the average AP
over a range of minimum IoUs, in this case from 0.5 to 0.95, with a step size of 0.05. Meaning
that 10 AP values are calculated (𝐼𝐼𝑠𝑠𝐼𝐼 ≥ 0.5, 𝐼𝐼𝑠𝑠𝐼𝐼 ≥ 0.55, 𝐼𝐼𝑠𝑠𝐼𝐼 ≥ 0.6, … , 𝐼𝐼𝑠𝑠𝐼𝐼 ≥ 0.95), and
𝑇𝑇𝑚𝑚𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼(.50:.95) is then defined as the average over these 10 APs.

3.1.5 Kenning

Kenning is an open-source project developed by Antmicro for implementing and testing
pipelines for deploying deep learning models on edge devices.

3.1.5.1 Deployment flow

Deploying deep learning models on edge devices usually involves the following steps:

• Preparation and analysis of the dataset, preparation of data pre-processing and
output post-processing routines,

• Model training (usually transfer learning), if necessary,

• Evaluation and improvement of the model until its quality is satisfactory,

• Model optimization, usually hardware-specific optimizations (e.g., operator fusion,
quantization, neuron-wise or connection-wise pruning),

• Model compilation to a given target,

• Model execution on a given target.

There are different frameworks for most of the above steps (training, optimization,
compilation and runtime). The cooperation between those frameworks differs and may
provide different results.

This framework introduces interfaces for those above-mentioned steps that can be
implemented using specific deep learning frameworks.

Based on the implemented interfaces, the framework can measure the inference duration
and quality on a given target. It also verifies the compatibility between various training,
compilation and optimization frameworks.

3.1.5.2 Kenning structure

The kenning module consists of the following submodules:

D3.3 Version 1.1

46

• core — provides interface APIs for datasets, models, compilers, runtimes and
runtime protocols,

• datasets — provides implementations for datasets,

• modelwrappers — provides implementations for models for various problems
implemented in various frameworks,

• compilers — provides implementations for compilers of deep learning models,

• runtimes — provides implementations of runtime on target devices,

• runtimeprotocols — provides implementations for communication protocols
between host and tested target,

• onnxconverters — provides ONNX conversions for a given framework along with a
list of models to test the conversion on,

• resources — contains project’s resources, like RST templates, or trained models,

• scenarios — contains executable scripts for running training, inference, benchmarks
and other tests on target devices.

3.1.5.3 Model preparation

3.1.5.3.1 The kenning.core.dataset.Dataset classes

Classes that implement the methods from kenning.core.dataset.Dataset are responsible for:

• preparing the dataset, including the download routines (use --download-dataset flag
to download the dataset data),

• pre-processing the inputs into the format expected by most of the models for a given
task,

• post-processing the outputs for the evaluation process,

• evaluating a given model based on its predictions,

• subdividing the samples into training and validation datasets.

Based on the above methods, the Dataset class provides data to the model wrappers,
compilers and runtimes to train and test the models.

The datasets are included in the kenning.datasets submodule. Check out the Pet Dataset
wrapper for an example of Dataset class implementation.

3.1.5.3.2 The kenning.core.model.ModelWrapper classes

The ModelWrapper class requires implementing methods for:

• model preparation,

https://github.com/antmicro/kenning/blob/master/kenning/datasets/pet_dataset.py
https://github.com/antmicro/kenning/blob/master/kenning/datasets/pet_dataset.py

D3.3 Version 1.1

47

• model saving and loading,

• model saving to the ONNX format,

• model-specific pre-processing of inputs and post-processing of outputs, if necessary,

• model inference,

• providing metadata (framework name and version),

• model training,

• input format specification,

• conversion of model inputs and outputs to bytes for the
kenning.core.runtimeprotocol.RuntimeProtocol objects.

The ModelWrapper provides methods for running the inference in a loop from data from the
dataset and measures both the quality and inference performance of the model.

The kenning.modelwrappers.frameworks submodule contains framework-wise
specifications of ModelWrapper class — they implement all methods that are common for
all the models implemented in this framework.

For the Pet Dataset wrapper object there is an example classifier implemented in
TensorFlow 2.x called TensorFlowPetDatasetMobileNetV2.

3.1.5.3.3 The kenning.core.compiler.ModelCompiler classes

Objects of this class implement compilation and optional hardware-specific optimization.
For the latter, the ModelCompiler may require a dataset, for example to perform
quantization or pruning.

The implementations for compiler wrappers are in kenning.compilers. For example,
TFLiteCompiler class wraps the TensorFlow Lite routines for compiling the model to a
specified target.

3.1.5.4 Model deployment and benchmarking on target devices

Benchmarks of compiled models are performed in a client-server manner, where the target
device acts as a server that accepts the compiled model and waits for the input data to infer,
and the host device sends the input data and waits for the outputs to evaluate the quality
of models.

3.1.5.4.1 The general communication protocol

The communication protocol is message-based. There are:

• OK messages — indicate success, and may come with additional information,

https://github.com/antmicro/kenning/blob/master/kenning/datasets/pet_dataset.py
https://github.com/antmicro/kenning/blob/master/kenning/modelwrappers/classification/tensorflow_pet_dataset.py
https://github.com/antmicro/kenning/blob/master/kenning/compilers/tflite.py

D3.3 Version 1.1

48

• ERROR messages — indicate failure,

• DATA messages — provide input data for inference,

• MODEL messages — provide model to load for inference,

• PROCESS messages — request processing inputs delivered in DATA message,

• OUTPUT messages — request results of processing,

• STATS messages — request statistics from the target device.

The message types and enclosed data are encoded in format implemented in the
kenning.core.runtimeprotocol.RuntimeProtocol-based class.

The communication during inference benchmark session is as follows:

• The client (host) connects to the server (target),

• The client sends the MODEL request along with the compiled model,

• The server loads the model from request, prepares everything for running the model
and sends the OK response,

• After receiving the OK response from the server, the client starts reading input
samples from the dataset, preprocesses the inputs, and sends DATA request with the
preprocessed input,

• Upon receiving the DATA request, the server stores the input for inference, and
sends the OK message,

• Upon receiving confirmation, the client sends the PROCESS request,

• Just after receiving the PROCESS request, the server should send the OK message to
confirm that it starts the inference, and just after finishing the inference the server
should send another OK message to confirm that the inference is finished,

• After receiving the first OK message, the client starts measuring inference time until
the second OK response is received,

• The client sends the OUTPUT request in order to receive the outputs from the server,

• The server sends the OK message along with the output data,

• The client parses the output and evaluates model performance,

• The client sends STATS request to obtain additional statistics (inference time,
CPU/GPU/Memory utilization) from the server,

• If the server provides any statistics, it sends the OK message with the data,

• The same process applies to the rest of input samples.

The way of determining the message type and sending data between the server and the
client depends on the implementation of the
kenning.core.runtimeprotocol.RuntimeProtocol class. The implementation of running
inference on the given target is implemented in the kenning.core.runtime.Runtime class.

D3.3 Version 1.1

49

3.1.5.4.2 The kenning.core.runtimeprotocol.RuntimeProtocol classes

The RuntimeProtocol class conducts the communication between the client (host) and the
server (target).

The RuntimeProtocol class requires implementing methods for:

• initializing the server and the client (communication-wise),

• waiting for the incoming data,

• sending the data,

• receiving the data,

• uploading the model inputs to the server,

• uploading the model to the server,

• requesting the inference on target,

• downloading the outputs from the server,

• (optionally) downloading the statistics from the server (i.e., performance speed,
CPU/GPU utilization, power consumption),

• notifying of success or failure by the server,

• parsing messages.

Based on the above-mentioned methods, the kenning.core.runtime.Runtime connects the
host with the target.

Look at the TCP runtime protocol for an example.

3.1.5.4.3 The kenning.core.runtime.Runtime classes

The Runtime objects provide an API for the host and (optionally) the target device. If the
target device does not support Python, the runtime needs to be implemented in a different
language, and the host API needs to support it.

The client (host) side of the Runtime class utilizes the methods from Dataset, ModelWrapper
and RuntimeProtocol classes to run inference on the target device. The server (target) side
of the Runtime class requires implementing methods for:

• loading model delivered by the client,

• preparing inputs delivered by the client,

• running inference,

• preparing outputs to be delivered to the client,

• (optionally) sending inference statistics.

https://github.com/antmicro/kenning/blob/master/kenning/runtimeprotocols/network.py

D3.3 Version 1.1

50

Look at the TVM runtime for an example.

3.1.5.5 ONNX conversion

Most of the frameworks for training, compiling and optimizing deep learning algorithms
support ONNX format. It allows conversion of models from one representation to another.

The ONNX API and format is constantly evolving, and there are more and more operators in
new state-of-the-art models that need to be supported.

The kenning.core.onnxconversion.ONNXConversion class provides an API for writing
compatibility tests between ONNX and deep learning frameworks.

It requires implementing:

• method for importing ONNX model for a given framework,

• method for exporting ONNX model from a given framework,

• list of models implemented in a given framework, where each model will be exported
to ONNX, and then imported back to the framework.

The ONNXConversion class implements a method for converting the models. It catches
exceptions and any issues in the import/export methods, and provides the report on
conversion status per model.

Look at the TensorFlowONNXConversion class for an example of API usage.

3.1.5.6 Running the benchmarks
All executable Python scripts are available in the kenning.scenarios submodule.

3.1.5.6.1 Running model training on host
The kenning.scenarios.model_training script is run as follows:

python -m kenning.scenarios.model_training \

kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMob
ileNetV2 \
 kenning.datasets.pet_dataset.PetDataset \
 --logdir build/logs \
 --dataset-root build/pet-dataset \
 --model-path build/trained-model.h5 \
 --batch-size 32 \
 --learning-rate 0.0001 \
 --num-epochs 50

By default, kenning.scenarios.model_training script requires two classes:

• ModelWrapper-based class that describes model architecture and provides training
routines,

• Dataset-based class that provides training data for the model.

https://github.com/antmicro/kenning/blob/master/kenning/runtimes/tvm.py
https://github.com/antmicro/kenning/blob/master/kenning/onnxconverters/tensorflow.py

D3.3 Version 1.1

51

The remaining arguments are provided by the form_argparse class methods in each class,
and may be different based on the selected dataset and model. In order to get full help for
the training scenario for the above case, run:

python -m kenning.scenarios.model_training \

kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMob
ileNetV2 \
 kenning.datasets.pet_dataset.PetDataset \
 -h

This will load all the available arguments for a given model and dataset.

The arguments in the above command are:

• --logdir — path to the directory where logs will be stored (this directory may be an
argument for the TensorBoard software),

• --dataset-root — path to the dataset directory, required by the Dataset-based class,

• --model-path — path where the trained model will be saved,

• --batch-size — training batch size,

• --learning-rate — training learning rate,

• --num-epochs — number of epochs.

If the dataset files are not present, use --download-dataset flag in order to let the Dataset
API download the data.

3.1.5.6.2 Benchmarking trained model on host

The kenning.scenarios.inference_performance script runs the model using the deep learning
framework used for training on a host device. It runs the inference on a given dataset,
computes model quality metrics and performance metrics. The results from the script can
be used as a reference point for benchmarking of the compiled models on target devices.

The example usage of the script is as follows:

python -m kenning.scenarios.inference_performance \

kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMob
ileNetV2 \
 kenning.datasets.pet_dataset.PetDataset \
 build/result.json \
 --model-path
kenning/resources/models/classification/tensorflow_pet_dataset_mobilenetv2.h5 \
 --dataset-root build/pet-dataset

The obligatory arguments for the script are:

D3.3 Version 1.1

52

• ModelWrapper-based class that implements the model loading, I/O processing and
inference method,

• Dataset-based class that implements fetching of data samples and evaluation of the
model,

• build/result.json, which is the path to the output JSON file with benchmark results.

The remaining parameters are specific to the ModelWrapper-based class and Dataset-based
class.

3.1.5.6.3 Testing ONNX conversions
The kenning.scenarios.onnx_conversion runs as follows:

python -m kenning.scenarios.onnx_conversion \
 build/models-directory \
 build/onnx-support.rst \
 --converters-list \
 kenning.onnxconverters.pytorch.PyTorchONNXConversion \
 kenning.onnxconverters.tensorflow.TensorFlowONNXConversion \
 kenning.onnxconverters.mxnet.MXNetONNXConversion

The first argument is the directory, where the generated ONNX models will be stored. The
second argument is the RST file with import/export support table for each model for each
framework. The third argument is the list of ONNXConversion classes implementing list of
models, import method and export method.

3.1.5.6.4 Running compilation and deployment of models on target hardware

There are two scripts — kenning.scenarios.inference_tester and
kenning.scenarios.inference_server.

The example call for the first script is following:

python -m kenning.scenarios.inference_tester \

kenning.modelwrappers.classification.tensorflow_pet_dataset.TensorFlowPetDatasetMob
ileNetV2 \
 kenning.compilers.tflite.TFLiteCompiler \
 kenning.runtimes.tflite.TFLiteRuntime \
 kenning.datasets.pet_dataset.PetDataset \
 ./build/google-coral-devboard-tflite-tensorflow.json \
 --protocol-cls kenning.runtimeprotocols.network.NetworkProtocol \
 --model-path
./kenning/resources/models/classification/tensorflow_pet_dataset_mobilenetv2.h5 \
 --model-framework keras \
 --target "edgetpu" \
 --compiled-model-path build/compiled-model.tflite \
 --inference-input-type int8 \

D3.3 Version 1.1

53

 --inference-output-type int8 \
 --host 192.168.188.35 \
 --port 12345 \
 --packet-size 32768 \
 --save-model-path /home/mendel/compiled-model.tflite \
 --dataset-root build/pet-dataset \
 --inference-batch-size 1 \
 --verbosity INFO

The script requires:

• ModelWrapper-based class that implements model loading, I/O processing and
optionally model conversion to ONNX format,

• ModelCompiler-based class for compiling the model for a given target,

• Runtime-based class that implements data processing and the inference method for
the compiled model on the target hardware,

• Dataset-based class that implements fetching of data samples and evaluation of the
model,

• ./build/google-coral-devboard-tflite-tensorflow.json, which is the path to the output
JSON file with performance and quality metrics.

In case of running inference on a remote edge device, the --protocol-cls RuntimeProtocol
also needs to be provided in order to provide communication protocol between the host and
the target. If --protocol-cls is not provided, the inference_tester will run inference on the
host machine (which is useful for testing and comparison).

The remaining arguments come from the above-mentioned classes. Their meaning is
following:

• --model-path (TensorFlowPetDatasetMobileNetV2 argument) is the path to the
trained model that will be compiled and executed on the target hardware,

• --model-framework (TFLiteCompiler argument) tells the compiler what is the format
of the file with the saved model (it tells which backend to use for parsing the model
by the compiler),

• --target (TFLiteCompiler argument) is the name of the target hardware for which the
compiler generates optimized binaries,

• --compiled-model-path (TFLiteCompiler argument) is the path where the compiled
model will be stored on host,

• --inference-input-type (TFLiteCompiler argument) tells TFLite compiler what will be
the type of the input tensors,

• --inference-output-type (TFLiteCompiler argument) tells TFLite compiler what will be
the type of the output tensors,

• --host tells the NetworkProtocol what is the IP address of the target device,

• --port tells the NetworkProtocol on what port the server application is listening,

D3.3 Version 1.1

54

• --packet-size tells the NetworkProtocol what the packet size during communication
should be,

• --save-model-path (TFLiteRuntime argument) is the path where the compiled model
will be stored on the target device,

• --dataset-root (PetDataset argument) is the path to the dataset files,

• --inference-batch-size is the batch size for the inference on the target hardware,

• --verbosity is the verbosity of logs.

The example call for the second script is as follows:

python -m kenning.scenarios.inference_server \
 kenning.runtimeprotocols.network.NetworkProtocol \
 kenning.runtimes.tflite.TFLiteRuntime \
 --host 0.0.0.0 \
 --port 12345 \
 --packet-size 32768 \
 --save-model-path /home/mendel/compiled-model.tflite \
 --delegates-list libedgetpu.so.1 \
 --verbosity INFO

This script only requires Runtime-based class and RuntimeProtocol-based class. It waits for
a client using a given protocol, and later runs inference based on the implementation from
the Runtime class.

The additional arguments are as follows:

• --host (NetworkProtocol argument) is the address where the server will listen,

• --port (NetworkProtocol argument) is the port on which the server will listen,

• --packet-size (NetworkProtocol argument) is the size of the packet,

• --save-model-path is the path where the received model will be saved,

• --delegates-list (TFLiteRuntime argument) is a TFLite-specific list of libraries for
delegating the inference to deep learning accelerators (libedgetpu.so.1 is the
delegate for Google Coral TPUs).

First, the client compiles the model and sends it to the server using the runtime protocol.
Then, it sends the next batches of data to process to the server. In the end, it collects the
benchmark metrics and saves them to a JSON file. In addition, it generates plots with
performance changes over time.

3.1.5.6.4.1 Render report from benchmarks

The kenning.scenarios.inference_performance and kenning.scenarios.inference_tester
create JSON files that contain:

• command string that was used to generate the JSON file,

D3.3 Version 1.1

55

• frameworks along with their versions used to train the model and compile the model,

• performance metrics, including:

o CPU usage over time,

o RAM usage over time,

o GPU usage over time,

o GPU memory usage over time,

• predictions and ground truth to compute quality metrics, i.e., in form of confusion
matrix and top-5 accuracy for classification tasks.

The kenning.scenarios.render_report renders the report RST file along with plots for metrics
for a given JSON file based on selected templates.

For example, for the file ./build/google-coral-devboard-tflite-tensorflow.json created in
Running compilation and deployment of models on target hardware the report can be
rendered as follows:

python -m kenning.scenarios.render_report \
 build/google-coral-devboard-tflite-tensorflow.json \
 "Pet Dataset classification using TFLite-compiled TensorFlow model" \
 docs/source/generated/google-coral-devboard-tpu-tflite-tensorflow-classification.rst \
 --img-dir docs/source/generated/img/ \
 --root-dir docs/source/ \
 --report-types \
 performance \
 classification

Where:

• build/google-coral-devboard-tflite-tensorflow.json is the input JSON file with
benchmark results

• "Pet Dataset classification using TFLite-compiled TensorFlow model" is the report
name that will be used as title in generated plots,

• docs/source/generated/google-coral-devboard-tpu-tflite-tensorflow-
classification.rst is the path to the output RST file,

• --img-dir docs/source/generated/img/ is the path to the directory where generated
plots will be stored,

• --root-dir docs/source is the root directory for documentation sources (it will be used
to compute relative paths in the RST file),

• --report-types performance classification is the list of report types that will form the
final RST file.

The performance type provides report sections for performance metrics, i.e.:

• Inference time changes over time,

• Mean CPU usage over time,

D3.3 Version 1.1

56

• RAM usage over time,

• GPU usage over time,

• GPU memory usage over time.

It also computes mean, standard deviation and median values for the above time series.

The classification type provides report section regarding quality metrics for classification
task:

• Confusion matrix,

• Per-class precision,

• Per-class sensitivity,

• Accuracy,

• Top-5 accuracy,

• Mean precision,

• Mean sensitivity,

• G-Mean.

The above metrics can be used to determine any quality losses resulting from optimizations
(i.e., pruning or quantization).

3.1.5.7 Adding new implementations
Dataset, ModelWrapper, ModelCompiler, RuntimeProtocol, Runtime and other classes from
the kenning.core module have dedicated directories for their implementations. Each
method in base classes that requires implementation raises NotImplementedError
exceptions. Implemented methods can be also overridden, if necessary.

Most of the base classes implement form_argparse and from_argparse methods. The first
one creates an argument parser and a group of arguments specific to the base class. The
second one creates an object of the class based on the arguments from the argument parser.

Inheriting classes can modify form_argparse and from_argparse methods to provide better
control over their processing, but they should always be based on the results of their base
implementations.

D3.3 Version 1.1

57

3.2 Deep Learning Platforms

This Chapter lists various IoT Deep Learning Platforms on which the deep learning
applications can be deployed.

3.2.1 Graphics Processing Unit

GPUs are known to be the most popular choice when it comes to running and training deep
neural networks — they have a large number of cores, and they have a huge memory
bandwidth. Deep learning models do not usually have any conditional code, they consist of
massive numbers of simple operations on tensors making GPUs a very good inference
accelerator.

There are lots of libraries that can be used to accelerate deep learning models on GPUs of
various vendors:

• CUDA, CUDNN, TensorRT — NVIDIA libraries that are used to run deep learning,
computer vision and other computationally demanding algorithms that can make use
of GPU,

• OpenGL — originally a Graphics library, due to its support on a large variety of GPU
platforms it can be also used to accelerate deep learning applications,

• OpenGL ES — similarly to OpenGL, it supports various GPUs, but for Embedded
Systems, i.e., ARM Mali GPU,

• OpenCL — a cross-platform GPU computation library,
• ROCm — a development platform that can be used for deep learning applications on

AMD platforms.

3.2.2 NVIDIA Jetson

NVIDIA Jetson devices are edge-AI SoCs based on ARM CPUs and with NVIDIA GPUs in a
single chip. Such a solution allows to run deep learning models with real-time performance
in small, energy efficient devices. One of the advantages of Jetson platforms is shared
(unified) memory for CPU and GPU, meaning that there is no need to transfer data from RAM
to VRAM, which significantly reduces time spent on data transfers.

Available Jetson releases:

• Jetson Xavier AGX — 8-core ARM v8.2, 512-core Volta GPU with 64 Tensor Cores, 2x
NVDLA engines, 32GB unified CPU-GPU memory,

• Jetson Xavier NX — 6-core NVIDIA Carmel ARM v8.2, 384-core Volta GPU with 48
Tensor Cores, 2x NVDLA engines, 8GB unified CPU-GPU memory,

• Jetson Nano — 4-core ARM A57, 128-core Maxwell GPU, 4GB unified CPU-GPU
memory,

• Older releases — Jetson TK1, Jetson TX1, Jetson TX2.

D3.3 Version 1.1

58

3.2.3 Deep learning inference on CPUs

It is possible to run deep learning models inference on CPUs, however it requires heavy
optimizations to run efficiently. Newer CPUs provide support for vector SIMD operations,
i.e., RISC-V Vector extensions, or Intel and AMD Advanced Vector Extensions. The extensions
can accelerate the inference process significantly if the in-model operations are
implemented in a way AVX or RVV can be used. Other ways to accelerate deep learning
models on CPUs is to use Winograd convolutions, sparse models and quantization.

3.2.4 Dedicated AI Accelerators for Ultra-Low-Power

3.2.4.1 MAXIM MAX78000

The MAX78000 [Jan21a] is the first DLA augmented microcontroller by Maxim, it targets
object-detection and audio processing at very high efficiency enabling battery powered
designs. Its main processing core is a 32-bit ARM Cortex-M4F microprocessor that has a 32-
bit RISC-V co-processor and an additional accelerator for AI workloads. The RISC-V is used
for low-power sensor reading while the ARM is calculating the application tasks and controls
the DLA. The two processors share 128 KB of ECC protected SRAM and 512 KB of flash
memory. A security unit provides hardware accelerated 256 bit AES encryption. A power
management unit can decide between 7 power states to put the whole device into the most
efficient mode. [23]

Figure 14: Block diagram of the MAX78000 [23]

The DLA has a total of 442KB local SRAM in the 64 AI cores for holding up to 3.45 million
binary weights. Normally this is too small to hold models for object-detection, but the Maxim
software reduces the weights for the middle layers. This reduces the accuracy but enables
ultra-low-power object-detection. Each AI core has 16 convolution units that can perform

D3.3 Version 1.1

59

one 8bit MAC operation per clock cycle. They can be grouped to a 4x4 matrix to optimize 2D
convolutions. In addition, the AI cores have a Pooling and an Activation Unit to further
increase energy efficiency. [23]

Figure 15 : Block diagram of one AI core [23]

The I/O capabilities of the MAX78000 are similar to a small microcontroller. There is a 12bit
wide parallel camera interface, a I2S digital audio interface and 52 general-purpose I/O pins.

The 28mW low-power consumption at 56 GOPS leads to an efficiency of 2 TOPS/W. This
makes the MAX78000 a highly efficient DLA that is already available.

Regarding the software side, the MAX78000 supports the convolutional toolsets PyTorch
and TensorFlow. A dedicated Maxim software converts the trained networks to executable
code for the microcontroller.

Main Processing Unit:

• Arm Cortex-M4F (32 bit) @ 100 MHz
• RISC-V (32 bit) @ 60 MHz
• 128KB SRAM
• 512KB Flash

Accelerator:

• 64 AI Cores @ 50 MHz
• 16x Convolution Units (1x1) grouped (4x4) Pooling Unit, Activation Unit, Absolute-

Value and ReLU
• 442K 8-bit Weight Capacity (SRAM)

Interfaces:

• 52 GPIOs (UART, I2C, I2S, SPI), 12-bit Parallel Camera IF

Software:

• PyTorch
• TensorFlow

D3.3 Version 1.1

60

Performance:

• 56 GOPS @ 28 mW;
• 2 TOPS/W

Availability:

• In production, available at various distributors

3.2.4.2 Ambient GPX-10

The GPX-10 [Jan20a] from the US company Ambient Scientific is an SoC supporting on-device
inference and retraining, targeting speech recognition, image processing, sensor fusion and
industrial applications. The SoC combines an Arm Cortex-M4F CPU with ten AI cores and a
wide variety of analogue and digital interfaces. As for most AI accelerators, MAC units are
the key part of the architecture. For the GPX-10, Ambient Scientific has developed a new
approach, combining analogue and digital components to perform the MAC operations.
Custom SRAM cells are used to store operands and weights. After digital to analogue
conversion, the multiply-accumulate step is performed in analogue processing. Finally, the
sums are converted back to digital. The analogue compute engine can process operand with
a precision of up to 16 bits. [Jan20]

Figure 16: Architecture of the GPX-10 SoC [Jan20]

The ten AI cores are evenly distributed between an always-on block and the processor
subsystem, which is powered down whenever possible to minimize power consumption. In
addition to the embedded CPU and AI engines, a dedicated hardware security module is
integrated for offloading AES encryption.

D3.3 Version 1.1

61

Figure 17: Compute engine of the GPX-10, combining digital storage and analog processing [Jan20]

Ambient Scientific’s software development kit supports AI algorithm and model
development using popular AI frameworks such as Tensor Flow, Pytorch, Café, etc.

Main Processing Unit:

• Arm Cortex-M4F (100 MHz)
• 320 kB SRAM
• 512 kB Flash

Communication:

• 1x QSPI, 1x I2S Master, 2x SPI, 3x I2C, 2x UART, 16x GPIOx16
• 8 channel 16-bit ADC

Mixed-Signal Accelerator:

• SRAM based analog MACs
• DLA Speed 150 MHz
• Always-On Block can wake-up the processor

Performance:

• 512 GOPS @ 120mW
• 4.25 TOPS/W

3.2.4.3 Kneron KL520/KL720

Kneron KL520 [24] is an AI SoC for smart-home and IoT segment applications mainly in the
image processing domain (e.g., smart locks, security cameras, drones, smart home
appliances, and robotics). The SoC contains an AI co-processor (Kneron NPU core) to

D3.3 Version 1.1

62

accelerate neural network processing, which is designed to accelerate the computing layers
of a convolutional neural network (CNN).

One of the KL520 key features is being ready for the integration with an image sensor
making it easy for the development of solutions for the applications mentioned above.

A newer version (KL720) is available with double efficiency [25].

Figure 18: Kneron KL520 block diagram

 The key specification points for the KL520 and KL720 are presented below.

 Processor:

• 2x ARM Cortex-M4@200MHz (KL520)
• ARM Cortex-M4@400MHz (KL720)

 Memory:

• Up to 64MB RAM (96 KB internal) (128MB for the KL720)
• Up to 64MB SPI NOR Flash (96 KB internal) (128MB for the KL720)

 NPU Accelerator:

• 64x Convolution Units (3x3) @300 Mhz achieving 346 GOPS for 8-bit int (1st gen in
KL520)

• Maximum Frequency @ 696 MHz; Peak Throughput of 8-bit mode: 1425 GOPS;
1024MAC/cycle (2nd gen in KL720)

 Communication:

• CSI / DSI
• DVP
• I2C
• SPI

D3.3 Version 1.1

63

• UART
• USB
• For KL720 also: USB 3.0 device interface; USB 2.0 host interface; PWM; GPIO; SDIO;

SDCARD

 Power:

• KL520: 692 GOPS/Watt (500 mW)
• KL720: 1.725W@Yolov3_608

 Software frameworks:

• ONNX, TensorFlow, Keras, Caffe

 Availability:

• KL520: now (M.2 / mPCI Module)

3.2.4.4 XMOS Xcore.ai

The XMOS Xcore.ai is a microcontroller offering flexible I/Os, DSP and neural network
acceleration capabilities, mainly targeting intelligent IoT devices for smart home and
industrial deployment. It includes two cores based on the XMOS Xcore architecture, each
running at 800MHz and handling up to eight threads. In contrast to previous XMOS chips,
each core includes a 256-bit vector processing unit. The VPU supports different data types
including 32-, 16- and 8-bit integers, complex integers and single-bit values. Additionally, it
offers instructions for multiply and accumulate operations with a performance of 51.2GOPS
for 8-bit values. For external connection the chip offers a USB PHY and a two-lane MIPI
interface. Additional interfaces can be emulated thanks to the real-time capabilities of the
cores. The cores are capable of running real-time operating systems such as FreeRTOS. [26]

Figure 19: Architecture overview of the Xcore CPU [26]

For software development, XMOS provides libraries for DSP and neural-network functions
as well as an LLVM compiler and additional programming tools. To deploy a neural networks
model on the chip the models have to be converted to TensorFlow Lite. The model can then
be converted to a run-time model using the XCOM converter. [26]

D3.3 Version 1.1

64

Figure 20: Block diagram of the Xcore.ai [26]

The Xcore.ai can either be used as a standalone SoC running an operating system or as an
accelerator for external host CPUs. In the standalone case, a whole core will be running the
operating system. When running as an external accelerator, a part of one core has to be used
for the communication with the host CPU. [26]

Features

● 2x Xcore at 800MHz with eight threads each
● 512KB SRAM per core
● 64 I/Os per core
● connected over a 25Gbps switch

● 16-bit 200MHz LPDDR1 interface
● USB and 2-lane-MIPI interface (connecting to the internal switch)

Package

● 14mm BGA-265
● 7mm QFN-60 (with less I/Os)

Software

● TensorFlow Lite

Performance

● One Core at 500mW (typical)
◦ AI (INT8) 51GOPS
◦ Binary Networks 408 GOPS
◦ DSP (FSP32) 0.8Gflop/s

D3.3 Version 1.1

65

3.2.4.5 GreenWaves Technologies GAP8 and GAP9

GAP8 [27] and GAP9 [28] are two generations of ultra-low power GAP processors based on
RISC-V architecture and highly optimized for audio and image processing applications. GAP
processors bring together the low power benefits of a microprocessor with the flexibility of
programmable RISC-V cores as a compute cluster. The compute engine benefits from an
extended RISC-V instruction set architecture that can support single-instruction-multiple-
data operations and bit manipulations targeted for convolutional neural networks.

GAP8 consists of 9 32-bit RI5CY cores in total, one high-performance micro-controller core
and 8 cores for compute-intensive instructions combined with a convolutional neural
network accelerator (HWCE). GAP9 has an extra core in its compute engine, for a total of 10
RISC-V cores. GAP9 processing cores can run on a higher clock speed of 400MHz whereas the
controller core of GAP8 runs up to 250MHz and other cores run with 175MHz clock speed.

Regarding the communication capabilities of GAP9 and GAP8, both include HyperBus, SPI,
Camera parallel interface and general purpose input/outputs interfaces.

GAP processors can be used with GAP software development kit which supports tflite and
onnx frameworks for deep neural networks. [27]

Figure 21: Block diagram of the GAP8 processor [27]

Regarding the performance, GAP9 can reach up to 160.8 GOPS consuming 50mW which
results in a 3.2 TOPS/W efficiency while GAP8 reaches 22.65 GOPS at 96 mW which yields a
0.236 TOPS/W performance.

3.2.4.6 Kendryte K210

The K210 [29] is optimized for real-time vision, to match this task it comes with two RISC-V
CPUs based on the open-source Rocket design and implementing a RV64 G instruction set.
The nominal speed of 400MHz at 0.9V saves power and provides enough performance for

D3.3 Version 1.1

66

simple applications like QVGA video processing. For applications like VGA processing it can
be overclocked to 800MHz at 1.0V. Out of the reason that the core does not support a
Memory Management Unit, typically one CPU runs an operating system and the other a
neural network performing for example image recognition. The heavy convolution layers are
offloaded to the KPU, which is Kendrytes AI engine that is processing INT16 weights instead
of INT32 and therefore needs less power. An additional power saving measure is a rather
slow operating rate reached by the MAC units producing only one result every four cycles.
The KPU includes two prefetch engines, one is fetching weights and the other one
activations. Both designs are optimized for convolution layers but there is no specific logic
for normalization, activation functions or pooling. These functions must be executed on the
CPU which becomes the bottleneck. [30]

Figure 22: Block diagram of the Kendryte K210 SoC [30]

The whole chip has 8 MB SRAM, where two are dedicated for the KPU [31]. The other 6 MB
are intended for a neural network, the RTOS and application code. The neural network could
be the Tiny YOLOv2 real-time object detection neural network containing 5.1 MB of
parameters. To perform larger neural networks the chip has 256MB external flash memory,
which could be reached through a serial port. Using the external flash memory will reduce
performance to less than 10 fps.

Additionally, the chip offers a DSP core having up to eight audio channels. It functions as an
audio processor and can determine the location of particular sounds by analysing signals
from a microphone array.

The chip connects to a single camera module using standard parallel interface and can also
link to a small display (VGA) to provide a local video output. Although it lacks analogue I/O a
motor can be controlled by PWM outputs.

Regarding the software side, the chip supports FreeRTOS and Kendryte provides a tool for
converting a pre-trained neural network to run on the K210. Therefore, developers can use
TensorFlow, Keras and Darknet to build and train their neural network.

Main Processing Unit:

• 2x RISC-V RV64G (64 bit)

D3.3 Version 1.1

67

o 800 MHz
o 6 MB SRAM
o 245 MB flash

Accelerator:

• 64x MAC (576 bit)
o 18 INT16 @ 400MHz
o 2 MB SRAM

Interfaces:

• Parallel Camera IF
• GPIOs / PWM / I2S

Software:

• FreeRTOS
• Tensorflow/Keras/Darknet

Performance:

• 460 GOPS @ 1 W
• 0.460 TOPS/W

Availability:

• In production, available at various distributors

3.2.4.7 NDP120
The NDP120 [32], which is optimized for speech recognition, is the successor of the NDP10x.
The ultra-low-power edge AI processor owns an Arm Cortex-M0 having 1.4 MB SRAM. To
save power while supporting auditory wake-up events like the typical magic words it has an
always-on mode with a CPU frequency of 20MHz. The normal frequency is 100 MHz at 1.1 V.
In this mode more sophisticated AI and DSP algorithms can analyse the stored audio. To
store the audio the chip provides a separate SRAM buffer which can hold up to 10 seconds
of audio. The audio is received by four microphones connected to a Pulse-density-
modulation (PDM) with up to 48 kHz sampling. The chip also has a Hifi 3 DSP providing simple
audio-filter tasks like beam forming, near- and far field processing. The PDM is also
reconfigurable as an I2S/TDM interface. Over the I2C several low frequency sensor data from
the accelerometer and infrared detectors can be received and fused by the NDP120, which
is additionally described as a multipurpose graph processor. [31]

D3.3 Version 1.1

68

Figure 23: Block diagram of the NDP120 SoC [31]

Taking a look at the neural networks the chip supports convolutional neural networks, gated
recurrent units and long/short-term-memory. Up to 896 KB of neural-network parameters
could be stored. When the network size is bigger, mixed-precision models with INT8, INT4,
INT2 and binary parameters could be used. For example, in binary mode more than seven
million parameters may be saved. For high-precision tasks also INT16 activations could be
used.

Regarding the software side developers can implement their network with a Tensorflow or
Python based interface provided by a software-development kit. Both directly compile pre-
trained models for the NDP120. Additionally, the company offers a training development kit
that let customers target the chips hardware.

Main Processing Unit:

• Arm Cortex-M0
o Always-on 20 MHz
o Boost 100 MHz
o 1.4 MB SRAM

Accelerator:

• Streaming 16-bit word Input
• 4-bits weights, 8-bits activation
• Fully connected Layers
• 896 KB of neural network parameters

D3.3 Version 1.1

69

Communication:

• 3x I2S Input, QSPI, I2C, GPIO

Software:

• Tensorflow, Python

Performance:

• 1900 GOPS @ < 500 mW
• 3.8 TOPS/W

Availability:

Volume production starts in Q3 2021

3.2.5 Dedicated AI Accelerators

3.2.5.1 Tensor Cores

Tensor Cores are specialized processing units that perform 4x4 FP16 matrix multiplications,
and can add a third FP16 or FP32 matrix to the currently processed matrix to compute a final
FP32 result. Such operations are one of the most common operations in deep neural
networks inference. Tensor Cores significantly improve the performance of convolutions
and other operations involving matrix multiplication.

Tensor Cores are present in NVIDIA GPUs starting from Volta architecture.

Tensor Cores are also present in NVIDIA Jetson Xavier edge-AI devices.

3.2.5.2 Google Coral

Google launched the first Tensor Processing Unit (TPU) in 2015. It is an accelerator that is
specially optimized for neural network machine learning. Google has developed its own
software for the accelerator TensorFlow. Google itself uses the TPU for Google Street View
processing, but also in the projects AlphaGo and AlphaZero.

To support especially small neural networks in the area of edge processing, Google has
brought out a smaller version of the TPU, the Edge TPU or Google Coral. The chip comes
from the manufacturer embedded in a variety of form factors with different communication
options, including M.2, mini-PCIe, and USB.

The exact structure of the Google Edge TPU is not known, but like its bigger brother works
exclusively with INT8. However, networks that use other data types can be transformed. A
microprocessor report wrote about the original TPU made by Google in 2015. The basic
structure of the Pes could be similar, but since the performance is so different, it cannot be
used as a reference. The TPUv3 has an output of 90 TOPS and consumes 450 W, which means
0.2 TOPS/W, whereas the Edge TPU has a performance of 4 TOPS at a power consumption
of 2 W. Instead of TensorFlow, which results in an efficiency of 2 TOPS/W, 10 times the

D3.3 Version 1.1

70

efficiency of the TPUv3. Unlink the big TPUs the Edge TPU is programmed in TensorFlow
Lite.

3.2.5.3 Intel Myriad X

Intel Movidius Myriad X [33] is a vector processing unit that encapsulates the Neural
Compute Engine (NCE), as a deep learning accelerator. Thanks to its 16 Streaming Hybrid
Architecture Vector Engine (SHAVE) cores, the NCE, high-throughput memory and filtering,
sharpening and gamma correction hardware accelerators, Myriad is highly optimized for
computer vision, video processing applications and deep learning inference.

Myriad includes 2 SPARC-compatible LEON CPUs that run at 700 MHz and act as managing
cores, as well as 16 programmable vector processors with 256 KB of L2 cache storage which
are based on VLIW SHAVE microarchitecture. The SHAVE cores are capable of executing
deep neural network activation functions such as ReLU and Tanh, while the NCE is
responsible for doing the heavy-lifting for convolutional and pooling layers. Myriad uses a
2.5 MB on-chip SRAM as well as a 32-bit LPDDR4.

As for Myriad’s I/O capabilities, there are 16 MIPI lanes that can be used to connect up to 8
cameras directly to the device. USB 3.1, PCIe Gen3 interface and 10 GbE are also included.

Myriad is capable of achieving 0.5 trillion operations per second (TOPS) by performing
1242 GOPS while consuming only 2.5 W of power.

Regarding the software support, Myriad includes a software development kit with a custom
deep learning compiler that supports Caffe and Tensorflow models. [33]

Main Processing Unit:

• 2x SPARC-compatible Leon CPU (700 MHz)

Figure 24: Block diagram of the Myriad X [30]

D3.3 Version 1.1

71

• 16x Shave Cores VLIW (700 MHz)
o Scalar unit 64 bit
o Vector unit 256 bit

• L2 256 KB SRAM
• 2.5 MB SRAM in Connection Matrix (CMX)
• LPDDR4 32 bit

Accelerator:

• Neural Compute Engine
• H.265, H.264, AES
• Hardware Accelerators: debayering, gamma correction, filtering, and sharpening

Interfaces:

• PCIe Gen3 x1, 10GbE, USB3, 8x MIPI

Software:

• Tensorflow
• Caffe

Performance:

• 1242 GOPS @ 2.5 W
• 0.5 TOPS/W

3.2.5.4 Coherent Logix HX40416
Coherent Logix has served the military and aerospace sectors for 15 years with software-
defined radios and other niche applications. With this expertise, they are now entering the
commercial market and aim to establish themselves in the field of Edge-AI with their
configurable processor HyperX. The first available variant of this processor will be the
HX40416 [34], but a whole range of devices will follow. The HX40416 is suitable for a wide
range of applications, including 3G/4G receivers, GPS receivers, and sensor and video
processing. To make all this possible, the processor is equipped with various function blocks,
a general-purpose processor, a DSP and a neural accelerator.

Coherent Logix describes the structure of the processor to be similar to an FPGA; there is an
array of processing elements (Pes) and a programmable interconnection structure through
data memory routers (DMRs). An example of an arrangement of functions in this array of
Pes and DMRs is depicted in Figure 25. However, in contrast to an FPGA, this processor does
not require RTL development, place and route, or timing optimizations, because the
compiler handles everything.

D3.3 Version 1.1

72

Figure 25: Function blocks inside the PE and DMR Array [34]

Figure 26: Detailed view of the Accelerator structure [34]

Figure 26 shows a detailed view of the accelerator. It is shown that each PE is connected to
the DMR matrix via four lines. A DMR thus has eight configurable communication ports; each

D3.3 Version 1.1

73

port has 4x16-bit channels. DMRs have instruction memory (8Kx16-bit) and data memory
(16Kx16-bit). There is a total of 20 MB of memory on the chip. Another interconnect not
shown in the graphic, is a message fabric, which allows dynamic processor configuration by
loading new instructions from external memory. The DMRs also implement a pass-through
mode to transfer data through the fabric quickly.

The HX40416 is manufactured using the 14 nm FinFET process, and samples should be
available from 3Q21. The accelerator has 416 Pes interconnected in a 16x26 matrix and 459
DMRs. A high-level operating system like Linux can run on the integrated SiFive U54 CPU.
The performance is estimated to be 1.664 INT16 MAC operations per cycle, resulting in a
performance of 6.6 trillion operations per second (TOPS) at a clock speed of 2 GHz.

The chip will Integrate DDR DRAM and Coherent plans to integrate the rest of the IOs via a
chiplet design similar to the current Ryzen CPUs from AMD. A wide variety of interfaces can
then be provided, including CAN, Ethernet, HDMI, PCIe, and USB.

The HX40416 can be programmed with the included software library, which provides ready-
to-use blocks, e.g., for computer vision, deep learning, image processing, video encoding, or
wireless communications. For classical neural networks, the Caffe and Tensorflow
frameworks are supported. Additionally, the Coherent Logix SDK contains tools that allow
programmers to convert Python code, containing OpenCV graph API calls, into a
computational graph based on HyperX library functions.

Main Processing Unit:

• 4x RISC-V SiFive U54 (2 GHz)
• 4x 32-bit DDR4-1600 (25.6 GB/s)
• 20 MB SRAM

Accelerators:

• 16x26 Processing Elements (416 PEs)
• 64-bit SIMD DSP (2 GHz)
• 17x27 Data Memory Routes (459 DMRs)
• 8Kx16-bit Instruction storage
• 16Kx16-bit Data storage

Communication:

• PCIe, GbE, USB, MIPI, HDMI, Interlaken

Performance:

• 1600 GOPS @ 8 W
• 1.6 TOPS/W (INT8)

Availability:

• Q3 2021, the Chip could be integrated into a SMARC Module

D3.3 Version 1.1

74

3.2.5.5 Hailo-8
Hailo is a small company (50 employees) from Israel. It has been on the market for two years
and Claims that its new chip, Hailo-8 [35], can run the entire ResNet-50 in internal SRAM
while consuming only 1.7 W. The network, working on images with a resolution of 224x224
px, achieves a performance of 672 FPS. This corresponds to 395 FPS/W, making the chip over
20x more energy efficient than an NVIDIA Jetson AGX Xavier.

The chip is manufactured in 16 nm and has an integrated ARM Cortex-M4 CPU, which
controls the inference operations in standalone mode, in this mode no Host System is
needed to provide Data or Control to the Chip. Furthermore, the chip can work as a co-
processor; for this, it contains different communication interfaces, including Ethernet, MIPI,
and PCIe. A unique feature of the accelerator is that it does not use external DDR memory
and works solely on the internal SRAM. If the neuronal Network exceeds the on Chip SRAM
capacity, multiple of these chips can be connected via Ethernet or PCIe to work in parallel.
[35]

Figure 27: Visualization of the DNN layers on the chip [35]

In contrast to many other architectures, e.g., the Google Coral TPU, the accelerator does not
work with a single set of function blocks such as pooling activation or convolution. Instead,
it relies on an approach, where several small blocks of these units exist, and can be combined
to form larger units. However, it still follows a data-flow architecture. Figure 27 shows the
configurable architecture of the Hailo-8. It can be seen that each layer of the neural network
is mapped onto the chip in such a way that it has access to the exact number of units it
requires. There will always be a control unit with a different number of memory and compute
blocks, depending on the requirements of the neural networks. The manufacturer states
that this type of architecture can achieve better hardware utilization. [35]

D3.3 Version 1.1

75

Figure 28: Hailo-8 Bus Structure [35]

Figure 28 depicts the bus structure, in terms of the control and data bus, of the Hailo-8.
Furthermore, it can be seen that one control unit can serve multiple compute and memory
units. The primary processing elements are INT8-based, but four INT8 multipliers can be
combined to handle INT16 operations. It is not known how many MAC units a PE combines.

 The performance of the Hailo-8 is reported to be 26 TOPS, similar to an NVIDIA Jetson AGX
Xavier autonomous driving processor. It should be noted that it does not support many of
the features the NVIDIA chip possesses. However, raw computing power is not the most
significant advantage of the Hailo-8 that is its power efficiency, i.e., 335 FPS/W with a
ResNet-50. As mentioned above, the manufacturer specifies Ethernet, MIPI, or PCIe as IO. At
the moment, only Tensor Flow is mentioned as a supported framework for machine-learning.

Main Processing Unit:

• Cortex M4
• 32 MB SRAM (estimated by MPR)

Accelerators:

• Coarse-grained Array of PE, MEM and Control
• Configurable during runtime

Communication:

• PCIe Gen.3 x4, GbE, MIPI

Performance:

• 26 TOPS @ 9 W
• 2.8 TOPS/W

Availability:

• M.2 PCIe, mPCIe

D3.3 Version 1.1

76

3.2.5.6 Sophon BM1880
 The Sophon family developed by Bitmain consists of low-power neural processors. In 2015
the company Bitmain, which had until then been mainly active in the crypto mining sector,
started developing a neural processor. So far, they have released two neural accelerator
chips for the edge computing market. The current and third variant is the BM1880 [30]
manufactured in 7nm. Figure 29 depicts the block diagram of the BM1880; it shows the two
CPUs next to the accelerator. On the one hand, a dual-core ARM A53 CPU and, on the other
hand, a single-core RISC-V CPU, responsible for all real-time operations, is implemented.
Additionally, there is a video subsystem present, which implements a variety of functions
such as en- or decoding, cropping, scaling or colour-space conversions. The accelerator itself
has 2 MB of SRAM and achieves a performance of 1 TOPS when using INT8 data.
Furthermore, the figure also shows the very extensive IO blocks, which offer a multiplicity
of interfaces. Especially noteworthy are the DDR4 interface, USB, and Ethernet. PCIe is
unfortunately not available. [30]

Figure 29: Block diagram of the Sophon BM1880 SoC [30]

While the first two Sophon chips were designed as co-processors, the BM1880 breaks with
this tradition and is designed for standalone operation due to its Linux-capable ARM CPU.
Like many other accelerators, the TPU is optimized for INT8 rather than FP32 like the old
Sophon chips. The TPU contains 512 multiply-accumulate (MAC) units operating at a speed
of 1.0 GHz. Each of these units can perform one INT8 operation resulting in a total
performance of 1 TOPS. The external memory interface is a 32-bit DDR4 interface, and each
of the blocks like CPU, TPU, and video subsystem can access it directly.

The BMNet compiler can be used to program the BM1880. It supports almost all common
machine-learning frameworks such as Caffe, Tensorflow, or ONNX.

D3.3 Version 1.1

77

Since the chip is mainly offered as a compute stick, similar to the Intel Myriad,
communication is done via USB. An evaluation board is available for standalone usage, where
the Ethernet interface and the other IOs are accessible.

Main Processing Unit:

• 2x ARM Cortex A53 (1500 MHz)
• RISC-V MCU (1000 MHz)
• LPDDR4 32-bit

Accelerators:

• TPU
• 2MB SRAM
• H.264

Communication:

• GbE, USB3, 8x MIPI

Performance:

• 1000 GOPS @ 2.5W
• 0.4 TOPS/W

3.2.5.7 Blaize El Cano
El Cano [36] is a processor by Blaize that targets commercial and enterprise computer vision,
as well as automotive and industrial applications. It manages multiple workloads dynamically
based on their bandwidth and compute requirements and can execute multiple nodes in
parallel due to graph-streaming technology. [36]

Figure 30: Sequential (TensorFlow-based) and streaming (Blaize) neural-network execution [36]

D3.3 Version 1.1

78

El Cano integrates two Cortex-A53s with 32KB L1 and 512KB L2 cache each that work with
an ARM crypto accelerator. The Cortex-A53s are used to run an operating system and
application software, while the ARM crypto accelerator to guarantee secure operation. On
the chip there are two 32-bit LPDDR4 interfaces that support up to 16GB/s total bandwidth,
and a video codec that encodes/decodes a single 4K video stream to 30fps.

Figure 31: Blaize Pathfinder system-on-module [36]

The chip integrates 16 programmable graph-streaming processors (GSPs) that handle neural
network operations, image signal processing and other tasks. Each GSP has four sets of quad
processors, where every quad integrates four cores connected to an arbiter. Every core
consists of thread-state memory, an instruction scheduler, a scalar processing unit (SPU) and
a multiprocessing SIMD unit (MPU). The GSPs support operations up to 64-bit integers along
with 8-bit floating point.

The El Cano chip has 4 camera interfaces, 1 CAN, 1 GbE, 1 PCIe Gen3 and 1 USB3.0 I/O
interfaces.

The 6W power consumption at 16 TOPS leads to an efficiency of 2.7 TOPS/W.

Regarding the software side, El Cano supports the frameworks Caffe, Pytorch and
TensorFlow.

 Main Processing Unit:

• 2x Cortex-A53 (1000 MHz)
o 32KB L1 cache per core
o 512KB L2 cache per core
o ARM crypto accelerator
o 4K video processing @ 30fps

D3.3 Version 1.1

79

• 2x LPDDR4-2133 32 bit

 Accelerator

• 16x Graph-streaming Processors (GSP) @ 800 MHz
o Up to 64b operations (INT, FP)
o processor units per GSP

• Multiple graphs at once

 Interfaces:

• PCIe Gen3 (x4), GbE, CAN, 4x MIPI

 Performance:

• 16 TOPS @ ~6W
• 2.7 TOPS/W

3.2.5.8 Infer X1
The InferX X1 [37] is an AI co-processor by Flex Logic that targets high-performance edge
devices. The chip has a four-lane PCIe Gen3/4 interface, 32 GPIO ports and a single 32-bit
LPDDR4 interface. It also has a 4MB L3 SRAM and a reconfigurable tensor processor.

Figure 32: Size and power comparison of Half Height PCIe Card and M.2 22x80 Card

D3.3 Version 1.1

80

Figure 33: InferX X1 chip

For the tensor processor, there are 2x2 NNMax tiles integrated on the chip that include EFLX
programmable logic and 16 NNMax clusters per tile. Each cluster is a 64 MAC systolic array
and integrates 256 KB SRAMs for local weight storage. On the chip there is also an 8 MB
distributed L2 SRAM. The multipliers of the MACs are 16x8 bit and the accumulator 32 bits.

Figure 34: InferX X1 coprocessor chip [37]

The co-processor uses a data-flow architecture that reduces DRAM bandwidth by pipelining
layer operations.

D3.3 Version 1.1

81

Figure 35: Example of InferX pipeline operations [37]

The coprocessor has an estimated power consumption of 4W and delivers approximately 8.5
TOPS that leads to an efficiency of 2.125 TOPS/W.

 Regarding the software side, InferX X1 supports the TensorFlow Lite and ONNX models.

 Co Processing Unit:

• 4K MACs in 2x2 NNMAX tiles (1000 MHz)
• 8 MB distributed SRAM
• 4 MB L3 SRAM
• LPDDR4 32-bit

 Interfaces:

• PCIe Gen3 x4, 32x GPIO

Software:

• TensorFlow Lite, ONNX

Performance:

• 8.5 TOPS @ 4 W (est.)
• 2.125 TOPS/W (est.)

3.2.6 IP-Cores for ML-Acceleration
In the following subsections, the architecture and features of IP-cores targeting the
acceleration of machine learning are presented. The selection comprises commercial
designs as well as open-source architectures that can be used free of charge. Target
technologies vary from FPGAs to ASICs; hence, also the achievable performance differs
significantly.

3.2.6.1 NVIDIA Deep Learning Accelerator (NVDLA)

D3.3 Version 1.1

82

NVDLA is a free, open source and standardized architecture for accelerating deep learning
inference.

NVDLA source code including documentation, HDL and software implementation can be
found in the NVDLA Github group.

The NVDLA hardware design is implemented in Verilog. It is a modular architecture built
from the following components [38]:

• Convolution Core — optimized high-performance convolution engine,
• Single Data Processor — single-point lookup engine for activation functions,
• Planar Data Processor — planar averaging engine for pooling,
• Channel Data Processor — multi-channel averaging engine for advanced

normalization functions,
• Dedicated Memory and Data Reshape Engines — memory-to-memory

transformation acceleration for tensor reshape and copy operations.

The accelerator design is parametrized — the above blocks can be independently
configured, scaled or removed.

NVDLA can operate in two modes [38]:

• Headless — unit-by-unit management of the NVDLA hardware happens on the main
system processor.

• Headed — delegates the high-interrupt frequency tasks to a companion
microcontroller that is tightly coupled to the NVDLA sub-system.

The NVDLA connects with the rest of the system via:

• Configuration Space Bus (CSB) interface — synchronous, low-bandwidth, low-power,
32-bit control bus to be used by a CPU to access the NVDLA configuration registers
(NVDLA functions as a slave).

• Interrupt interface — NVDLA includes a 1-bit level-driven interrupt that is asserted
when a task has been completed or when an error occurs.

• Data Backbone (DBB) interface — connects NVDLA and the main system memory
subsystems. It is a synchronous, high-speed, configurable data bus.

The NVDLA hardware is natively supported and handled by the TensorRT library.

3.2.6.1.1 Features
• Supported data types — binary, int4, int8, int16, int32, fp16, fp32 and fp64
• Supported image memory format — planar images, semi-planar images or other

packed memory formats
• It can accept sparse convolution weights
• It can support Winograd convolution
• It can support batched convolution
• Configurable convolution buffer size, MAC array size

3.2.6.2 Versatile Tensor Accelerator (VTA)

http://nvdla.org/primer.html
https://github.com/nvdla/

D3.3 Version 1.1

83

VTA is a parameterizable accelerator that accelerates the bulk of the deep learning compute
graphs [39]. It incorporates a simple processor that can perform dense linear algebra
operations. It also adopts decoupled access-execute to hide memory access latency.

The code is available under the tvm-vta repository.

It consists of four modules:

• LOAD module — takes care of loading input and weights tensors from DRAM into
data-specialized on-chip memories.

• STORE module — stores results produced by the compute core back to DRAM
• COMPUTE module — performs dense linear algebra computations with its GEMM

core, and general computations with tensor ALU. It also loads data from DRAM into
the register file, and loads micro-op kernels into the micro-op cache.

• INSTRUCTION FETCH module — loads instructions from DRAM and decodes them to
route them into one of three command queues (for above-mentioned modules).

It also has 4 CISC instructions:

• LOAD — loads a 2D tensor from DRAM into buffers,
• GEMM — performs matrix-matrix multiplications,
• ALU — performs such operations as min, max, add, multiply shift,
• STORE — stores a 2D tensor from the output buffer to DRAM.

VTA is part of the Apache TVM (see Section 5.1), but can act as an independent deep learning
accelerator.

3.2.6.3 AccDNN
AccDNN (Accelerator Core Compiler for Deep Neural Network) automatically converts deep
neural networks, trained using Caffe, to RTL code that can be synthesized for FPGAs without
additional FPGA design effort. The solution has been developed in cooperation between the
University of Illinois, Urbana-Champaign and IBM. In their academic research, it is named
DNNBuilder. The design generation is performed in three stages. First, the net structure is
obtained from the Caffee net file, which is used as the basis for the implementation. In the
second step, the RTL-design is generated, combining parameterizable Verilog models with
the required on-chip memory for the weights. The library of Verilog models enables arbitrary
quantization for weights and activations. In the final step, the RTL implementation is
synthesized using the vendor-specific FPGA design tools. [40]

https://tvm.apache.org/docs/vta/dev/hardware.html
https://github.com/apache/tvm-vta
http://index.html/#tvm-framework

D3.3 Version 1.1

84

Figure 36: Example of an accelerator architecture generated by AccDNN [40]

In [40] a tool for automatic design space exploration is presented, which can be used for
optimizing the large number of parameters that needs to be selected during architecture
generation. The resulting structure is a pipeline, implementing a pipeline stage for each
major layer (i.e., convolutional or fully connected layers). Other layers, like activation layers
or batch normalization are aggregated to the major layers in order to reduce the number of
required pipeline stages and thus minimize latency. An example, comprising two pipeline
stages generated by AccDNN is depicted in Figure 36. [40]

Limitations
In its current version, AccDNN only supports models trained with the Caffee framework.
Additionally, only convolutional layers, max pooling layers, fully connected layers, and batch
normalization layers can be used. The total number of convolutional and fully connected
layers in the network should be less than 15. [41]

Performance
In [40] various benchmarks have been implemented on different FPGAs. An implementation
of YOLO9000, running on a Xilinx Zynq XC7Z45 FPGA with a clock frequency of 200MHz
achieved a performance of 468 GOPS (Fix8) and 234 GOPS (Fix16), respectively. On a larger
Xilinx Kintex UltraScale KU115 the performance increased to 4218 GOPS (Fix8) and 2109
GOPS (Fix16) for an automatically generated implementation running at a clock frequency
of 220MHz.

Availability
https://github.com/IBM/AccDNN, Apache-2.0 License

3.2.6.4 VSORA AD1028
Combining a DSP and a deep learning accelerator, the AD1028 [42] from the french IP
provider VSORA mainly targets autonomous driving. The combination of DSP and AI
architecture eliminates the need for additional accelerators. Figure 37 gives a high-level
overview of the architecture. Details about the internal structure are not disclosed. [42]

https://github.com/IBM/AccDNN

D3.3 Version 1.1

85

Figure 37: High-level architecture of the VSORA AD1028 [42]

The DSP integrates 1,024 24-bit floating-point ALUs (7 exponent bits, 16 mantissa bits, and
1 sign bit). The ALUs can be used in SIMD or MIMD mode and can execute several complex
instructions per cycle. The DLA consists of a series of cores, each built up of 16k floating-
point multiply-accumulate units (4 exponent bits, 3 mantissa bits, and 1 sign bit). In the
AD1028, 16 cores are integrated, providing a total of 262,144 MAC units. Keeping the high
number of ALUs and MACs utilized requires fast on-chip memory. Therefore, DSP and DLA
are connected to a tightly coupled memory (TCM), which can be sized based on the
application requirements. For performance and resource analyses, 105 MByte internal SRAM
have been used. [42]

Development environment
For programming the architecture, C++ and Matlab are typically used for the DSP, while
TensorFlow is supported for the DLA.

Architectural features

• DSP: 1024 ALUs in a single core
• DLA: 256k MACs divided into 16 cores
• TCM: User configurable memory size
• IEEE754 floating point with user selectable accuracy (exponent and mantissa)

Resource requirements and performance

• Size: 35 mm² for a 7 nm technology (logic only, excluding memory)
• DSP: 4 Tflops @ 2 GHz
• DLA: 1024 Tflops @ 2 GHz
• Power: 35 W
• 29 TOPS/W

3.2.6.5 Andes NX27V
The Andes NX27V [43] is a RISC-V single-issue five-stage microcontroller processor. It
implements the RISC-V RV64 ISA with memory atomics, 16-bit compressed instructions,
single-precision FPU, hardware multiplier/divider, user-level interrupts and the vector
extension (A, C, F, M, N and V extension). Furthermore, it includes proprietary Andes

D3.3 Version 1.1

86

extensions. Use cases for the NX27V are digital baseband applications, image/vision
processing and neural-network acceleration. [43]

Figure 38: Architecture of the Andes NX27V CPU [43]

The vector processing unit can be configured to different bit widths to fit the given
requirements. Possible bit widths are 128, 256 and 512 bits. In order to satisfy the high
memory bandwidth demand of the VPU, different data paths are integrated. This includes
direct access of the VPU to the shared D-Cache and to the external memory via AXI. In
addition, Andes added the streaming interface Ace. In addition to single core
implementations, the NX27V can also be configured as a multi core. [43]

Figure 39: Integration of the vector pipeline into the NX27V scalar unit via the vector instruction queue (VIQ) [43]

Architectural Features

• Up to 512 bits RVV Vector Processing Unit
o Out-of-order execution for the VPU
o Proprietary extension with Bfloat16 and INT4 data types

D3.3 Version 1.1

87

o Proprietary extension with the Ace streaming interface
• Configurable 8-64 KB I-Cache and D-Cache
• AXI-Interface
• Support for MXNet, Pytorch and Tensorflow

Performance

• Estimated with 7 nm TSCM: 1.5 GHz and 48 GFLOPS (FP32) [43]

The Andes NX27V is available as a proprietary IP core. The IP core includes the pre-
integrated core with CPU subsystem including PLIC, Timer and Debug Module.

3.2.6.6 LeapMind Efficiera
The LeapMind Efficiera [43]is a deep-learning accelerator for binary neural networks. It
consists of a configurable number of MAC-units, each capable of performing one multiply
and accumulate operation of 1-bit weights and 2-bit activation values (w1a2 MAC operation)
per cycle. Details about the internal architecture are not disclosed. LeapMind offers a variety
of software tools to prepare the model for their accelerator. The main goal of these tools is
to reduce the accuracy loss, which comes with the binarization of the NN-model. Therefore,
the software tools include binary-aware training which uses binarized weights for training.
Another possibility suggested by LeapMind to get a higher accuracy is to double the output
channels, which on the other hand increases the computing time. To compensate for the
additional computing time, LeapMind offers a technique called grouped convolution.
Further methods to increase the efficiency of the architecture are developed by LeapMind.
Users can decide which combination of tools they want to use for their application. [44]

Features

• Configurable number of w1a2 MAC units: 1024 or 4096 (39864 in development)
• AXI4 and AXI4-Lite interfaces for connection to the rest of the SoC
• Supported Framework: TensorFlow
• Software-Stack with different approaches to reduce accuracy loss of binarization

o Binary-aware training
o Double channel
o Grouped convolution

Performance

• 1024 MAC units in TSMC 22ULP technology: 0.402 mm²; 533 MHz; 1.09 TOPS; 81 mW
• 4096 MAC units in TSMC 12FFC technology: 0.442 mm²; 800 MHz; 6.55 TOPS; 236 mW
• Intel Cyclone V and 4096 Mac units: 140 MHz; 1.1 TOPS

LeapMind Efficiera is available as a proprietary IP core.

3.2.6.7 Ceva NeuPro

The Ceva NeuPro [45] is a neural network processor targeting advanced driver-assistance
systems, augmented-reality headsets, drones, smartphones and surveillance cameras. It
combines a scalar unit and a vector unit in a supervisor role with the NeuPro Engine.
Although it mainly runs the neural network control code, the scalar unit is capable of running
layer functions which cannot be run by the NeuPro Engine. The main component of the

D3.3 Version 1.1

88

NeuPro Engine is the MAC array. It consists of a configurable number of 8x8-bit MAC units.
In combination with a convolution control unit the MAC array can efficiently perform
convolution calculations. Other parts of a neural network can be accelerated with additional
units for accumulation, scaling, activation and pooling. A special feature of the NeuPro is the
on-device retraining, which enables adjustments to the model weights without recompiling
the model. [46]

Figure 40: Architecture overview of the Ceva NeuPro deep-learning accelerator [45]

Architectural Features
• Scalar Unit including a VPU
• NeuPro Engine

o MAC Array configurable with 512, 1024, 2048, 4096 8x8-bit MAC units
o Additional hardware acceleration:

 32-bit Accumulator
 Scaling unit
 Activation unit for, e.g., ReLUs, parametric ReLUs, sigmoid, tangens

hyperbolic
 Pooling Unit for 2x2 and 3x3 average and maximum calculations

o Mixed precision neural networks possible (8 and 16 bit)
o On-device retraining

Performance
• 512 MAC units: 2.0 GHz; 2000 GOPS; 1024 GMACS/s
• 16 nm and 4096 MAC units: 1.53 GHz; 125000 GOPS; 6267 GMAC/s

The Ceva NeuPro ist available as a proprietary IP core.

3.2.6.8 Mipsology Zebra
Zebra by Mipsology is a compute engine for neural network inference. Mipsology claims that
with Zebra the developers should be able to develop their solutions seamlessly without
knowledge of underlying hardware technology, use of specific compilation tools or changes
to the neural network, the training, the framework and the application.

 Unfortunately, there is not much technical information available online.

D3.3 Version 1.1

89

Zebra is an IP that is to be deployed and operated on a FPGA. Mipsology claims that it can
be deployed for efficient execution for the whole compute continuum from data centres to
the edge. Zebra is available in the Amazon AWS marketplace.

 Mipsology provides the integration for Caffe, Caffe2, Tensorflow and MXNet. A demo is
available with pre-trained models for AlexNet and GoogLeNet for Caffe which is provided
for the education and open-source community.

3.2.6.9 Ceva SensPro2

SensPro2 [47] combines NeuPro’s deep learning acceleration capabilities with sensor fusion
and computer vision features of Ceva’s previous DSP and vision engines to create a high-
performance architecture scalable for different sensor computations, deep learning
inference and signal processing.

SensPro2 includes two vector units that can be configured in terms of MAC arrays and the
capability of performing floating point operations as well as integer operations. SensPro2
can be further customized by allowing the user to add support for application-specific ISA
extensions during IP configuration as well as adding custom scalar instructions using Ceva-
Xtend.

Regarding performance, SensPro2 is expected to run at up to 1.6 GHz on a 7 nm technology,
which can result in a 3.3 trillion INT8 operations per second for the largest configuration of
SensPro2, SP1000.

Ceva SensPro2 IP core ships with a software development kit with libraries for deep learning,
sensor-fusion and speech recognition. The SDK can support a variety of deep neural
networks in TensorFlow Lite Micro format.

D3.3 Version 1.1

90

3.2.6.10 Xilinx DPU
Xilinx Deep Learning Processor (DPU) [48] is an IP core developed for accelerating
convolutional neural networks inference. DPU can be implemented in programmable logic
of Xilinx FPGAs and programmed to execute a deep neural network pre-compiled with
custom DPU instructions. The custom instruction set of DPU supports many state-of-the-art
convolutional networks.

An application processing unit is needed to invoke the DPU, facilitate data transfer and
service interrupts.

DPU architecture varies based on the target Xilinx platform, but usually consists of a
convolution engine of several processing elements that can be parallelized for higher
performance. The architecture also includes instruction scheduler and on-chip buffer
controller to control the on-chip BRAM.

The DPU is configurable in terms of the number of DPU cores in an IP package, the degree
of parallelism in the convolution architecture, UltraRAM usage, DSP usage and capability to
support depth-wise convolutions and activation functions.

Regarding performance, on a Zynq® UltraScale ZU7EV, with 2 DPUs of B4096 configuration,
running at a rate of 333MHz, 2700GOPS peak theoretical performance can be achieved.

Figure 41: SensPro2 block diagram [44]

D3.3 Version 1.1

91

3.2.6.11 Xilinx FINN-R

Xilinx FINN-R is a framework for creating inference engines targeted for FPGAs. FINN-R can
choose a suitable hardware implementation based on a given neural network, precision and
resource constraints.

For a given neural network workload, FINN-R first chooses between a fully customised
dataflow architecture and a multi-layer offload architecture. While the former architecture
template lays out the workload on heterogeneous customised engines for each part of the
neural network, the latter uses a more general compute array to calculate workload.

FINN-R then either tries to fold the network to fully use the engines in the dataflow
architecture or generates a runtime schedule for the multilayer offload architecture. It also
optimises the configuration of the accelerator for the given network.

The dataflow architecture optimised by FINN-R when benchmarked on an Ultra96
development board can perform 2318GOPS while running at 300MHz clock rate and
consuming 10.7W of power. The benchmark was done using a binary 6-layer convolutional
network [FINN-R18].

3.2.6.12 Think Silicon Neox V
Neox V [49] is a GPU architecture based on the RISC-V RV64C instruction set designed for
machine learning, computer vision and video processing applications. Neox’s multicore
multithreaded GPU architecture licensable intellectual property can be configured to have
4 to 64 cores in clusters of 4, running at a rate of 800MHz, the 64-core configuration can
reach 410 billion 16-bit floating point operations per second. Neox benefits from extended
instruction set architecture that can support AI-specific instructions, which makes Neox a
deep learning accelerator. Each core of Neox V can support eight 8-bit integer MAC
operations, or sixteen 4-bit integer MAC operations, or four half-precision MAC operations
in a single cycle [34].

The design comes with a custom software development kit, compiler and simulator from
Think Silicon.

3.2.6.13 Imagination Technologies Series4
The Imagination Technologies Series4 deep learning accelerators [46] are targeting
advanced driver-assistance systems and autonomous vehicles. The main components of the
Series4 are 4096 8x8-bit MAC units. In combination with additional hardware accelerators
for element-wise operations, activation functions, pooling, output formatting and rescaling,
the Series4 is capable of accelerating neural networks. [46]

D3.3 Version 1.1

92

Figure 42: Architecture of the Imagination Technologies Series4 DLA [46]

The Series4 can be configured in a multicore system with up to eight similar cores. For data-
transfer between the cores and to the shared SRAM, a high-bandwidth interconnect with a
transfer-rate of up to 384GB/s is included. For the control tasks a third-party host CPU has
to be added to the system. To efficiently distribute the computation between the cores,
Imagination Technologies offers optimizations in the model compiler which group
computations so that intermediate results do not have to be written to memory. This
reduces DRAM transactions and therefore increases the efficiency. [46]

Architectural Features

• 4096 single-cycle 8-bit MAC units
o Mixed precision possible (4/8/16-bit)

• Additional hardware accelerators:
o Element-wise operation unit
o Activation unit
o Pooling Unit
o Output formatting unit
o Output Rescaling unit

• 256 KB to 64 MB SRAM
• 64 KB Input Buffer / 128 KB coefficient buffer per core
• Interconnect with 256 bits per cycle per core => 384 GB/s at 1.5 GHz
• Compiler

o Supports layer merging and tiling
o Distributes computation between the cores to reduce DRAM transactions
o Enables running of different workloads in parallel

Performance
• 5 nm, single core: 1.53 GHz; 12.5 TOPS
• 5 nm, multicore (8 Cores): 1.53 GHz; 100.3 TOPS

D3.3 Version 1.1

93

The Imagination Technologies Series4 is available as a commercial IP core.

3.2.6.14 SiFive VIU7-256
The VIU7- 256 [50] is a RISC-V based 256-bit wide vector CPU IP-core that is sold by SiFive. It
is using the older U7-series SiFive CPU and adds the 256-bit vector unit to it. It competes
with CPUs like the ARM Cotex-A55 that has a 128-bit ARM NEON vector unit. Since the input
of the vector unit is twice the size it outperforms the ARM processor by factor two on the
same target frequency.

The vector unit supports 4x 64-, 8x32-, 16x16-, or 32x8-bit operations per cycle. It also
supports 512-bit input vectors but then generates a solution every second cycle, which
should increase utilization of the unit. Regarding cache sizes the IP-core is customizable to
fit into the target architecture. For each core, the instruction and data caches can vary from
4KB up to 64 KB and the L2 cache can vary from 128 KB up to 1 MB.

Figure 43: SiFive VIU7-256 microarchitecture [50]

SiFive reports 1800 MHz for TSMC 7 nm process, which leads to a performance of 29 Gflops
for 32-bit floating point operations. In the same 7 nm process the ARM is rated at 2600 MHz
having a performance of 21 Gflops. Showing that the RVV[i] enabled core is 38 % faster than
the ARM core.

Utilizing the core in software is done by using RVV 1.0 instructions that are known by the
RISC-V compiler.

3.2.6.15 SiFive VIS7

D3.3 Version 1.1

94

The VIS7 [51]is a larger variant of the VIU7-256, supporting real 512-bit operations. The basic
difference is that it is designed for the SiFive S7 core which is more likely to be a
microcontroller than a linux capable application processor the U7 is. Nevertheless, SiFive
announces 64 Gflops for 32-bit floating point operations. It will use the same RVV 1.0
instruction set to be seamlessly integrated into the toolchain.

SiFive compares it to the ARM Cortex-R82 that also has the 128-bit NEON unit. For the S7
cores the performance is 30 % below the ARM cores but for the vector throughput the VIS7
is 4x more performant.

3.2.6.16 ARM Ethos-N78
The ARM Ethos-N78 [52] is a deep learning accelerator IP-core designed to fit the ARM
Cortex-A series. The Cortex-A series is the larger application processor product from ARM.
The Ethos is configurable, it can consist of 1 to 8 compute engines. Each compute engine has
4 MAC Engine arrays of dot product (DP) units organized as 8 x 16 INT8 MACs providing 128
MACs per array. As result, the total number of MACs can vary from 512 up to 4096. For a 7nm
process, ARM declares the maximum frequency to be 1250 MHz, resulting in a maximum
performance of 5.12 TOPS (INT8). In addition the Ethos-N78 provides Winograd convolution,
which reduces the amount of operations, boosting the theoretical maximum performance
to 10 TOPS.

The Programmable Layer Engine (PLE) is a Cortex-M CPU that mainly handles activation and
pooling. It includes a 128-bit vector engine that matches to the output of the accumulators
in the MAC arrays shifting the data into the SRAM holding the feature map.

The N78 supports multiple frameworks, Caffe, MXNet, ONNX, Pytorch and TensorFlow/-Lite.
The Ethos compiler is reducing the computational load by pruning and clustering at compile
time. It is also clustering sequential operations into one compute engine allowing the MAC
Engine to reuse weights stored in the SRAM. [52]

Figure 44: Ethos-N78 compute engine [52]

D3.3 Version 1.1

95

3.2.6.17 ARM Ethos-U55
The Ethos-U55 [53] is a deep learning accelerator IP-core that is designed to work with ARMs
Cortex-M series, which is the smaller microcontroller product from ARM. The U55 is
configurable regarding the number of MACs, they can be scaled from 32 units up to 256 INT8
MACs. It is optimized for the newer Cortex-M55 microcontroller that has the AXI processor
bus. It is a small accelerator that targets ULP applications.

The ARM Cortex-M toolchain is supporting TensorFlow Lite. It identifies AI operations and
maps it to the Ethos-U55.

Figure 45: Cortex M55 pipeline with Helium [53]

3.2.6.18 ARM Cortex-A55
The ARM Cortex-A55 is not a dedicated AI accelerator like the other IP-cores in this Chapter.
It is included because many companies refer the performance and energy efficiency of the
A55 as reference for low-power inference. The A55 is the successor of the Cortex-A53 that
is well known from modern mobile devices and embedded compute platforms. It increases
the performance by 15 % to 20 % compared to the old version [54]. It has 8 pipeline stages
and supports only in-order execution, which results in less chip area compared to out-of-
order architectures. [54]

D3.3 Version 1.1

96

Instruction and data cache can be configured from 16 KB up to 64 KB by the designer. In the
A55 the data cache is dual-ported which is a major advantage compared to the A53, because
it improves latency and usable bandwidth of the memory. Additionally, L2 cache can be
configured from 64 KB up to 256 KB and it features the new DynamIQ architecture changing
the L2 cache to be part of the core [55] Allowing it to run at CPU frequency and reduce
latency from 13 cycles to 6 cycles, which gives the system a significant higher performance.
The A55 has two ALUs, one is a simple one that doesn’t feature dot operations, the second
one is a Full ALU that supports all integer operations. They are running in parallel so that
two operations per cycle can be calculated. For floating point operations, a 128-bit NEON
unit is integrated that can process eight FP16 operation simultaneously. In addition, it
supports the ARM dot-product instructions which provide up to 4x higher performance on
CNN operations making the A55 suitable for small neural networks [56].

Figure 46: Architecture of the ARM Cortex-A55 [51]

D3.3 Version 1.1

97

3.2.7 Comparison of AI Accelerators

Figure 47: Overview of Machine Learning Accelerators

Since VEDLIoT focuses on edge computing, mainly ultra-low power and low power
accelerators for machine learning have been presented in this Chapter. Figure 47
summarizes the different architectures, extended by various high-performance
accelerators. Performance is given in INT8 GOPS, when available. If only Float is supported,
the highest reported value for GOPS is used. Hence, the figure currently only gives a rough
overview; a detailed comparison is provided in Chapter 3.3, where a subset of the listed
hardware was benchmarked using realistic workloads. On average over all architectures, a
power efficiency in the order of 1 TOPS/W is achieved (represented by the diagonal of the
chart).

D3.3 Version 1.1

98

3.3 Accuracy Results
The accuracy measurement is the most important novelty in D3.3 compared to D3.1. During
the evaluation of performance, that was reported in D3.1, it turned out that there is no
possibility to have a uniform compiler for all platforms analysed. As result, vendor specific
DL compilers were used for each platform, which leads to an uncertainty regarding
comparability of the performance results.

In order to verify the results of the performance evaluation, this chapter reports the
accuracy for each architecture. The assumption is, that if the accuracy of the DL models
compiled by different DL compilers is similar, then the benchmark results are comparable.

The accuracy was measured for the three DL models that were used for the performance
evaluation (ResNet50, MobileNetV3small, YoloV4). The metrics for the classification models
ResNet50 and MobileNetV3small are Top1 and Top5 as described in section 3.1.4.1 and the
metrics for the object detection model YoloV4 are mAP(.50) and mAP(.50:.95) as described
in section 3.1.4.2.

In the case of NVIDIA devices, results could be combined to two classes. The class ‘NVIDIA
Volta’ shows the accuracy of Volta based platforms together with all older NVIDIA
architectures. The class ‘NVIDIA Ampere’ shows the results for Ampere based platforms
only, because there were slight differences in some of the measurements. The class
‘OpenVINO’ combines all platforms that use OpenVINO as DL compiler (x86 and Myriad), as
well as the class ‘Xilinx’ combines all Xilinx devices. The ‘TVM’ classes ‘Ampere’ and ‘Volta’
show the results for NVIDIA Jetson AGX Orin (Ampere) and NVIDIA Jetson AGX Xavier
(Volta) that were analysed using the open-source compiler ApacheTVM. The differences of
the results of FP16 and FP32 precision are low enough to be combined in the following
charts to ‘Floating Point Accuracy’. The INT8 results are named ‘Integer Accuracy’.

3.3.1 ResNet50
The accuracy for ResNet50 shows that the floating-point results are very close, even the
open-source compiler ApacheTVM shows similar accuracy. For the integer accuracy the
results are a bit more mixed, the Volta based NVIDIA platforms have lower accuracy than
the Ampere based ones as well as the open-source compiler results. Xininx, Coral, Hailo-8
and i.MX8 use vendor specific models that are optimized for INT8 operation. In some cases
they show even better results than the floating-point implementation used for evaluation.

Figure 48: ResNet50 Accuracy Results

60

70

80

90

NVIDIA
Ampere

TVM
Ampere

NVIDIA
Volta

TVM
Volta

OpenVINO

Floating Point Accuracy

Top 1 Top 5

60

70

80

90

NVIDIA
Ampere

TVM
Ampere

NVIDIA
Volta

TVM
Volta

Xilinx Coral Hailo-8 i.MX8

Integer Accuracy

Top 1 Top 5

D3.3 Version 1.1

99

For validation of the accuracy results, Kenning was used to generate Confusion-Matrices.
Since the model is trained for 1000 classes these matrices are too large to be depicted in
this document.

3.3.2 MobileNetV3small
The accuracy for MobileNetV3small shows that the floating-point results are depending on
the used DL compiler. The open-source compiler ApacheTVM delivered the best results,
followed by OpenVINO. Looking at the integer results, the NVIDIA compiler performs better
than ApacheTVM. The best result shows the Xilinx FPGA implementation. Unfortunately,
Hailo-8 didn’t provide the correct model, so the results are not shown here.

Figure 49: MobileNetV3 small Accuracy Results

For validation of the accuracy results, Kenning was used to generate Confusion-Matrices.
Since the model is trained for 1000 classes these matrices are too large to be depicted in
this document.

3.3.3 YoloV4
The accuracy for YoloV4 shows that the floating-point results are very close, even the open-
source compiler ApacheTVM shows similar accuracy. For integer accuracy it wasn’t possible
to quantize the model correctly using ApacheTVM and TensorFlowLite (i.MX8). The Coral
was simply too small to fit the YoloV4 model on it. NVIDIA and Hailo-8 have similar results
compared with each other and the floating-point accuracy.

Figure 50: YoloV4 Accuracy Results

3.3.3.1 Recall-Precision Gradients
In contrast to the classification models (ResNet50 and MobileNetV3small), which can classify
1000 classes, the object detection model YoloV4 is trained for 80 classes only. That’s why it

20

40

60

80

NVIDIA
Ampere

TVM
Ampere

NVIDIA
Volta

TVM
Volta

OpenVINO

Floating Point Accuracy

Top 1 Top 5

20

40

60

80

NVIDIA
Ampere

TVM
Ampere

NVIDIA
Volta

TVM
Volta

Xilinx Coral Hailo-8 i.MX8

Integer Accuracy

Top 1 Top 5

40

60

80

NVIDIA
Ampere

TVM
Ampere

NVIDA
Volta

TVM
Volta

OpenVINO

Floating Point Accuracy

mAP(.50) mAP(.50:.95)

40

60

80

NVIDIA
Ampere

TVM
Ampere

NVIDA
Volta

TVM
Volta

Xilinx Coral Hailo-8 i.MX8

Integer Accuracy

mAP(.50) mAP(.50:.95)

D3.3 Version 1.1

100

was chosen for the report of a per-class comparison, providing in-depth knowledge about
similarity of results from the different architectures and toolchains.

The Kenning toolbox was feed with the detection outputs of the accuracy evaluation.
Kenning rendered multiple graphs showing mAP, Histogram of True Positive IoU, Recall-
Precision curves and Recall-Precision gradients. Examples of all graphs have been shown in
the APPENDIX of D3.1. Comparing all graphs it was decided to present the Recall-Precision
gradients here, because they allow a per-class comparison of the accuracy measurements.

Figure 51: Recall-Precision gradients per class for YOLOv4 with FP32 precision comparing OpenVino, TensorRT and
TVM results

Figure 51 shows the Recall-Precision gradients for FP32 precision. The precision per
detection is indicated by color, dark green indicates a precision of 100 % and red a precision
of 0 %. This is an mAP(.50) measurement which means that a positive detection needs to
have a minimum intersection over union (IoU) of 50 %, everything below will be marked as

D3.3 Version 1.1

101

false detection with a precision of 0 %. That’s why the orange color is never used in this
graph. The recall indicates how many of the objects, that are present in the dataset, have
been detected, e.g. class ‘hair drier’ in the OpenVINO plot has a recall of 0.099, showing that
only ~10 % of all ‘hair drier’ have been detected.

The floating-point accuracy results for OpenVINO, TensorRT and ApacheTVM, which are
shown in Figure 51, are very close together. Only some classes, e.g. ‘toothbrush’ have minor
deviations. Over all it is expected that the performance results are comparable.

Figure 52: Recall-Precision gradients per class for YOLOv4 with INT8 precision comparing TensorRT, Hailo-8 and
Xilinx results

Looking at the integer accuracy in Figure 52 the deviations are larger. Especially the Hailo-8
has a well-trained INT8 model that in some cases delivers better results than the floating-
point accuracy depicted in Figure 51. The TensorRT and Xilinx accuracy is comparable to the
floating-point accuracy and therefore INT8 results are also comparable.

D3.3 Version 1.1

102

This validates that the performance analysis was done on real data showing frames per
second that can be achived in the use-cases. The results will be used in the VEDLIoT project
as basis for hardware decisions.

3.4 Evaluation Results
3.4.1 x86 Baseline
The standard compute architecture in today’s data centers are classic x86 based processors.
In the VEDLIoT project there are several x86 based COM-Express microserver integrated into
the RECS architecture. For the baseline evaluation two microservers have been choosen, a
Xeon-D 1577 from Intel and an Epyc 3451 from AMD. Both are equipped with 16 pyhsical
processor cores and due to Hyper-Threading with 32 logical processor cores. The AMD is 2
years younger. It has a newer technology and has a higher base frequency. Nevertheless,
the Intel CPU performs quite well and seems to be comparable to the AMD Epyc.

ADLINK COM-Express Xeon-D 1577

• ADLINK Express-BD7-D1577
o Intel Xeon-D 1577

 16 cores
 32 threads
 1.3 GHz base frequency
 24 MB cache

o 64 GB DDR4-2133 dual-channel
o 512 GB SATA SSD HDD

• Module Cost: 2959.06 € (Mouser)

Congatec COM-Express EPYC 3451

• Congatec conga-B7E3/3451
o AMD EPYC Embedded 3000 Model 3451

 16 cores
 32 threads
 2.1 GHz base frequency
 32 MB cache

o 96 GB DDR4-2666 quad-channel (3 channels used)
o 256 GB NVMe SSD HDD

• Module Cost: 1343.46 $ (Digikey)

3.4.1.1 Peak Performance
The maximum performance for x86 processors running inference can be achieved by
utilizing the AVX2 SIMD units of the cores. Both processors are equipped with AVX2 [57]
units that are capable of 32 32-bit operations per second or 64 16-bit operations per second.
The processor has one AVX2 unit per physical core, so each processor has 16 AVX2 unit.
Table 2 shows the calculated theoretical maximum performance of the x86 processors for
16-bit and 32-bit floating point operations.

Table 2: Theoretical maximum performance of x86 processors

Processor FP16 FP32

D3.3 Version 1.1

103

Xeon-D 1577 1331.2 GOPS 665.6 GOPS

EPYC 3451 2191.36 GOPS 1095.68 GOPS

3.4.1.2 Toolflow
For the performance evaluation of the x86-based microservers, version 2021.4.1 of the Intel
OpenVINO toolkit [58] was used. The evaluation was performed using the benchmarking app
shipped with OpenVINO. Using this application, it was possible to profile the latency and
throughput of the different onnx models from the VEDLIoT model chosen in Chapter 3.1.2.
Furthermore, by modifying the configuration parameters, the batch size and quantization of
the target model could be adjusted without the need for additional tools.

Power consumption of the microservers was measured using the WebGUI-based
management interface of the RECS. Peak memory usage was determined using the htop
application, an interactive process manager.

3.4.1.3 Results
Table 3: ResNet50 Performance (Xeon-D 1577)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference Time [ms] 20.460 111.790 20.470 114.650

Achieved performance

[Inferences/s]

48.88 71.56 48.85 69.78

Achieved performance

[GOPS]

380.25 556.76 380.07 542.87

Peak performance

[GOPS]

1331.2 665.6

Performance Ratio 28.56 % 41.82 % 57.10 % 81.56 %

Cost Metrics

Memory Utilization [GB] 1023 MB 1.18 GB 1023 MB 1.20 GB

Power [W] 56.960 60.240 58.490 60.320

Idle Power [W] 14.030 14.030 14.030 14.030

Energy / Inference [mJ] 1165.40 841.78 1197.29 864.46

GOPS / W 6.68 9.24 6.50 9.00

D3.3 Version 1.1

104

Table 4: ResNet50 Accuracy (Xeon-D 1577)

Classification
accuracy

FP32 FP16

Top 1 66.85 % 66.86 %

Top 5 87.30 % 87.31 %

Table 5: MobileNetV3 Small Performance (Xeon-D 1577)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference Time [ms] 1.710 4.660 1.710 4.710

Achieved performance

[Inferences/s]

584.80 1716.74 584.80 1698.51

Achieved performance

[GOPS]

104.09 305.58 104.09 302.34

Peak performance

[GOPS]

1331.2 665.6

Performance Ratio 7.82 % 22.96 % 15.64 % 45.42 %

Cost Metrics

Memory Utilization [GB] 811 MB 869 MB 809 MB 869 MB

Power [W] 45.840 58.450 46.130 59.350

Idle Power [W] 14.030 14.030 14.030 14.030

Energy / Inference [mJ] 78.39 34.05 78.88 34.94

GOPS / W 2.27 5.23 2.26 5.09

Table 6: MobileNetV3 Small Accuracy (Xeon-D 1577)

Classification
accuracy

FP32 FP16

Top 1 57.12 % 57.13 %

Top 5 81.40 % 81.39 %

D3.3 Version 1.1

105

Table 7: YoloV4 (Xeon-D 1577)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference Time [ms] 130.77 953.56 132.15 968.65

Achieved performance

[Inferences/s]

7.65 8.39 7.57 8.26

Achieved performance

[GOPS]

461.88 506.73 457.06 498.84

Peak performance

[GOPS]

1331.2 665.6

Performance Ratio 34.70 % 38.07 % 68.67 % 74.95 %

Cost Metrics

Memory Utilization [GB] 1.49 GB 2.01 GB 1.32 GB 2.01 GB

Power [W] 57.24 60.08 58.12 60.15

Idle Power [W] 14.030 14.030 14.030 14.030

Energy / Inference [mJ] 7485.27 7161.24 7680.56 7283.04

GOPS / W 8.07 8.43 7.86 8.29

Table 8: mAP accuracies for YoloV4 (Xeon-D 1577)

Classification accuracy FP16 FP32

mAP (.50) 46.3 % 46.3 %

mAP (.50:.95) 70.3 % 70.3 %

Table 9: ResNet50 (EPYC 3451)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 21.110 59.952 21.320 59.814

Achieved performance

[Inferences/s]

47.37 66.72 46.90 66.87

D3.3 Version 1.1

106

Achieved performance

[GOPS]

368.55 519.08 364.92 520.28

Peak performance

[GOPS]

2191.36 1095.68

Performance Ratio 16.82 % 23.69 % 33.30 % 47.48 %

Cost Metrics

Memory Utilization [GB] 1.01 GB 1.43GB 1.02 GB 1.43GB

Power [W] 91.520 96.850 92.550 98.540

Idle Power [W] 24.760 24.760 24.760 24.760

Energy / Inference [mJ] 1931.99 1451.59 1973.17 1473.52

GOPS / W 4.03 5.36 3.94 5.28

Table 10: ResNet50 Accuracy (Xeon-D 1577)

Classification
accuracy

FP32 FP16

Top 1 66.85 % 66.86 %

Top 5 87.30 % 87.31 %

Table 11: MobileNetV3 Small (EPYC 3451)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 2.150 2.743 2.160 2.750

Achieved performance

[Inferences/s]

465.12 1458.26 462.96 1454.55

Achieved performance

[GOPS]

82.79 259.57 82.41 258.91

Peak performance

[GOPS]

2191.36 1095.68

Performance Ratio 3.78 % 11.85 % 7.52 % 23.63 %

Cost Metrics

Memory Utilization [GB] 796 MB 936MB 796 MB 935MB

D3.3 Version 1.1

107

Power [W] 79.380 94.380 78.490 94.830

Idle Power [W] 24.760 24.760 24.760 24.760

Energy / Inference [mJ] 170.67 64.72 169.54 65.20

GOPS / W 1.04 2.75 1.05 2.73

Table 12: MobileNetV3 Small Accuracy (EPYC 3451)

Classification
accuracy

FP32 FP16

Top 1 57.12 % 57.13 %

Top 5 81.40 % 81.39 %

Table 13: YoloV4 (EPYC 3451)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 135.94 490.384 137.19 491.962

Achieved performance

[Inferences/s] 7.36 8.16 7.29 8.13

Achieved performance

[GOPS] 444.31 492.68 440.27 491.09

Peak performance

[GOPS] 2191.36 1095.68

Performance Ratio 20.28 % 22.48 % 40.18 % 44.82 %

Cost Metrics

Memory Utilization [GB] 1.47 GB 2.42GB 1.30 GB 2.3GB

Power [W] 102.3 100.2 103.4 103.3

Idle Power [W] 24.760 24.760 24.760 24.760

Energy / Inference [mJ] 13906.66 12284.12 14185.45 12704.92

GOPS / W 4.34 4.92 4.26 4.75

Table 14: mAP accuracies for YoloV4 (EPYC 3451)

Classification accuracy FP16 FP32

D3.3 Version 1.1

108

mAP (.50) 46.3 % 46.3 %

mAP (.50:.95) 70.3 % 70.3 %

3.4.2 Intel Myriad X
The PCIe M.2 based accelerator was attached to a NVIDIA Jetson TX2 evaluation platform
via an adapter to fit on the standard PCIe x4 connector. The specific hardware used was an
AAON AI Core XM2280 module. It has a PCIe to USB chip and attaches two Intel Myriad X
chips to the host system.

NVIDIA Jetson TX2 Evaluation Platform + Intel Movidius Myriad X

• NVIDIA Jetson TX2
o Dual-Core NVIDIA Denver 2 64-Bit CPU
o Quad-Core ARM Cortex-A57 MPCore
o 8 GB DDR4-1866 dual-channel
o 32 GB eMMC HDD
o Cost: 575 €

• AAON AI Core XM2280
o 2x AAON AI Core XM2280
o M.2 2280 B+M key
o Cost: 163 €

3.4.2.1 Peak Performance
The theoretical maximum performance is claimed to be 4000 GOPS. The smallest datatype
supported by the Myriad is INT4. A trivial approximation of the peak performance is
calculated by, e.g. dividing the INT4 performance by 4 to get INT16 / FP16 peak performance.
This approximation leads to 1000 GOPS for 16-bit operations and 500 GOPS for 32-bit
operations.

3.4.2.2 Toolflow
For this evaluation, the M.2-based Intel Myriad VPU was installed in an NVIDIA Jetson TX2
module. The performance analysis was performed using version 2021.4.1 of the Intel
OpenVINO toolkit [58]. The benchmarking app shipped with OpenVINO was used to perform
the evaluation. Using this application, it was possible to profile the latency and throughput
of the different onnx models from model set v1. Furthermore, by modifying the
configuration parameters, the batch size and quantization of the target model could be
adjusted without the need for additional tools.

Power consumption of the Intel Myriad and its host module was measured using a Tektronix
MDO4054B oscilloscope.

3.4.2.3 Results

Table 15: ResNet50 (Myriad)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 49.430 141.041 49.560 136.188

D3.3 Version 1.1

109

Achieved performance

[Inferences/s]

20.23 28.36 20.18 29.37

Achieved performance

[GOPS]

157.39 220.65 156.98 228.51

Peak performance

[GOPS]

1000 500

Performance Ratio 15.74 % 22.06 % 31.40 % 45.70 %

Cost Metrics

Memory Utilization [GB]

Power [W] 7.750 8.600 7.800 8.600

Idle Power [W] 5.850 5.850 5.850 5.850

Energy / Inference [mJ] 383.08 303.24 386.57 292.80

GOPS / W 20.31 25.66 20.13 26.57

Table 16: ResNet50 Accuracy (Myriad)

Classification
accuracy

FP32 FP16

Top 1 66.96 % 66.96 %

Top 5 87.32 % 87.33 %

Table 17: MobileNetV3 Small (Myriad)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 19.450 30.367 19.510 30.468

Achieved performance

[Inferences/s]

51.41 131.72 51.26 131.29

Achieved performance

[GOPS]

9.15 23.45 9.12 23.37

Peak performance

[GOPS]

1000 500

Performance Ratio 0.91 % 2.34 % 1.82 % 4.67 %

Cost Metrics

D3.3 Version 1.1

110

Memory Utilization [GB]

Power [W] 7.200 7.850 7.200 7.850

Idle Power [W] 5.850 5.850 5.850 5.850

Energy / Inference [mJ] 140.04 59.60 140.47 59.79

GOPS / W 1.27 2.99 1.27 2.98

Table 18: MobileNetV3 Small Accuracy (Myriad)

Classification
accuracy

FP32 FP16

Top 1 57.07 % 57.05 %

Top 5 81.35 % 81.35 %

Table 19: YoloV4 (Myriad)

Performance FP16 FP32

Batchsize 1 4 1 4

Inference Time [ms] 312.51 1019.226 332.77 1035.17

Achieved performance

[Inferences/s]

3.20 3.92 3.01 3.86

Achieved performance

[GOPS]

193.27 237.04 181.51 233.39

Peak performance

[GOPS]

1000 500

Performance Ratio 19.33 % 23.70 % 36.30 % 46.68 %

Cost Metrics

Memory Utilization [GB]

Power [W] 7.9 9.1 7.95 9.15

Idle Power [W] 5.850 5.850 5.850 5.850

Energy / Inference [mJ] 2468.83 2318.74 2645.52 2367.95

GOPS / W 24.47 26.05 22.83 25.51

D3.3 Version 1.1

111

Table 20: mAP accuracies for YoloV4 (Myriad)

Classification accuracy FP16 FP32

mAP (.50) 46.3 % 46.3 %

mAP (.50:.95) 70.3 % 70.3 %

3.4.3 Google Coral TPU (M.2)
For this evaluation, the M.2-based Google Coral TPU was installed in an NVIDIA Jetson Xavier
NX evaluation platform. The Coral TPU has native PCIe support for Gen.2 x1, it is directly
connected to the Xavier NX.

NVIDIA Jetson Xavier NX Evaluation Platform + M.2 Google Coral TPU

• NVIDIA Jetson Xavier NX
o NVIDIA Carmel ARM v8.2 64-Bit-CPU, 6 Cores
o NVIDIA GPU 384 Volta Cores + 48 Tensor Cores
o 2x NVIDIA DLA-Engines
o 8 GB DDR4-1866 dual-channel
o Cost: 519 €

• M.2 Google Coral TPU
o 1x Google Coral TPU
o Cost: 55 €

3.4.3.1 Peak Performance
The theoretical maximum performance is rated at 4 TOPS for INT8 operations.

3.4.3.2 Toolflow
The performance analysis was performed using the publicly available Coral examples [59] in
combination with the .pb models from the VEDLIoT model set. For use in the example, the
models first had to be converted to tflite, which was done using TensorFlow and afterward,
optimized for the Coral Edge TPU, using the Edge TPU Compiler [60]. These evaluations were
performed using Edge TPU Compiler version 16.0.384591198.

The power consumption of the Google Coral TPU and its host module was measured using a
Tektronix MDO4054B oscilloscope.

3.4.3.3 Results

Table 21: INT8 (Coral M.2)

Performance ResNet50 MobileNet YoloV4

Inference Time [s] 41.07 3.88 -

Latency [s] 42.07 4.51 -

D3.3 Version 1.1

112

Achieved performance

[Inferences/s]

24.35 257.73 -

Achieved performance

[GOPS]

189.43 45.88 -

Peak performance

[ops/s]
4000 4000 -

Performance Ratio 4.74 % 1.15 % -

Cost Metrics

Memory Utilization [GB]

Power [W] 4.97 5.40 -

Idle Power [W] 4.38 4.38 -

Energy / Inference [mJ] 204.12 20.95 -

GOPS / W 38.12 8.50 -

Table 22: MobileNetV3 Small and ResNet50 INT8 Accuracy (Coral TPU)

Classification
accuracy

MobileNetV3 Small ResNet50

Top 1 41.15 % 63.18 %

Top 5 67.16 % 84.63 %

3.4.4 Google Coral TPU
3.4.4.1 Coral Dev Board
Coral Dev board encapsulates the Edge TPU as a system-on-module along with Quad-core
Cortex-A53 CPU.

3.4.4.2 Peak Performance
Edge TPU can reach 4 TOPS in performance with a power efficiency of 2 TOPS/W [61].

3.4.4.3 Toolflow
.pb models were converted to tflite using TensorFlow 2.4 and 2.5. Then tflite models were
compiled into models compatible with Edge TPU and executable on Edge TPU runtime. This
was done using the Edge TPU Compiler [60], a command line tool that can take tflite models
as input and process them targeting optimal inference on Edge TPU devices. Edge TPU
Compiler version 16.0.384591198 was used for benchmarks.

Power was measured using a USB C power meter, which measures the whole Dev board’s
power consumption.

3.4.4.4 Results

D3.3 Version 1.1

113

Table 23: INT8 (Coral Dev)

Performance ResNet50 MobileNet YoloV4

Inference Time [ms] 49.7111 5.6105

Achieved performance

[Inferences/s]

20.11 178.23

Achieved performance

[GOPS]

156.505 31.72

Peak performance

[GOPS]

4000 4000

Performance Ratio 3.9 % 0.8 %

Cost Metrics

Power [W] 3.9116 4.2247

Idle Power [W] 3.366 3.366

Energy [J] 194.4 23.7

GOPS/W 40 7.52

Table 24: MobileNetV3 Small and ResNet50 INT8 Accuracy (Coral TPU M.2)

Classification
accuracy

MobileNetV3 Small ResNet50

Top 1 41.15 % 63.18 %

Top 5 67.16 % 84.63 %

3.4.5 Hailo.AI Hailo-8
ADLINK COM-Express Xeon-D 1577 + Hailo.AI Hailo-8

• ADLINK Express-BD7-D1577
o Intel Xeon-D 1577

 16 cores
 32 threads
 1.3 GHz base frequency
 24 MB cache

o 64 GB DDR4-2133 dual-channel
o 512 GB SATA SSD HDD
o Cost: 2959.06 € (Mouser)

• Hailo.AI Hailo-8
o Hailo-8 M.2 2280 B+M key AI module
o PCIe Gen 3.0, 2 lanes (up to 16 Gbps)

D3.3 Version 1.1

114

o Cost: $ 199 (up-shop.org 10.2023)

3.4.5.1 Peak Performance
The Hailo-8 is an PCIe based accelerator for DL applications. The performance is rated at
26 TOPS for INT8 [62].

3.4.5.2 Toolflow
The ‘Hailo Software Suite’ provides compilers and a model zoo optimized for Hailo-8
accelerator. For the evaluation, version 4.11.0 of the hailo software was used.

The power measurements were done inside the RECS testbed. The Hailo-8 plugged into the
PCIe-port of Intel Xeon-D1577 was measured individually without the power consumed by
the CPU module.

3.4.5.3 Results
Table 25: INT8 (Hailo-8 – Batchsize 1)

Performance ResNet50 MobileNetV3

small
YoloV4

Inference Time [ms] 2.922 0.503 27.205

Achieved performance [Inferences/s] 342.23 1988.88 34.72

Achieved performance [GOPS] 2662.57 354.02 3176.37

Peak performance [GOPS] 26000 26000 26000

Performance Ratio 10.24% 1.36% 12.22%

Cost Metrics

Power [W] 3.89 1.81 2.52

Idle Power [W] ~0 ~0 ~0

Energy [J] 11.37 0.91 72.59

GOPS/W 684.47 195.60 1260.34

Table 26: INT8 (Hailo-8 – Batchsize 8)

Performance ResNet50 MobileNetV3

small
YoloV4

Inference Time [ms] 2.922 0.503 98.767

Achieved performance [Inferences/s] 1328.50 8456.17 69.31

Achieved performance [GOPS] 10335.73 1505.20 6340.86

Peak performance [GOPS] 26000 26000 26000

D3.3 Version 1.1

115

Performance Ratio 39.75% 5.79% 24.39%

Cost Metrics

Power [W] 3.89 1.81 4.00

Idle Power [W] ~0 ~0 ~0

Energy [J] 2.93 0.21 57.73

GOPS/W 2657.00 831.65 1584.76

Table 27: MobileNetV3 Small and ResNet50 INT8 Accuracy on Hailo-8

Classification
accuracy

MobileNetV3 Small ResNet50

Top 1 64.82 % 74.73 %

Top 5 85.33 % 91.31 %

Table 28: mAP accuracies for YoloV4 on Hailo-8

Classification accuracy INT8

mAP (.50) 72.40 %

mAP (.50:.95) 47.19 %

3.4.6 NXP i.MX8M Plus
CONGATEC conga-SMX8-Plus

• SMARC based i.MX8M Plus Compute Module
o 4x ARM Cortex-A53 @1.8GHz
o Neural Processing Unit (NPU)
o 4 GB 32 bit LPDDR4 RAM 16.0 GB/s
o 16GB eMMC Storage
o Cost: 207 €

3.4.6.1 Peak Performance
The NPU is the integrated accelerator for DL applications. The performance is rated at 2.3
TOPS for INT8 [63].

3.4.6.2 Toolflow
.pb models were converted to tflite using TensorFlow 2.3.1. The i.MX8M Plus supports direct
execution of tflite models using TensorFlow-Lite.

The power measurements were done manually connecting a multimeter.

D3.3 Version 1.1

116

3.4.6.3 Results
Table 29: INT8 (i.MX8M Plus)

Performance MobileNetV3 Small ResNet50

Inference Time [ms] 13.7514 21.2383

Achieved performance

[Inferences/s]

72.72 47.08

Achieved performance

[GOPS]

12.94 366.28

Peak performance

[GOPS]

2300 2300

Performance Ratio 0.5 % 15.9 %

Cost Metrics

Power [W] 3.86 4.68

Memory utilization [MB] 57.867 87.316

Idle Power [W] 3.54 3.54

Energy [J] 53.08 99.4

GOPS/W 3.35 78.26

Table 30: MobileNetV3 Small and ResNet50 INT8 Accuracy (i.MX8M Plus)

Classification
accuracy

MobileNetV3 Small ResNet50

Top 1 63.17 % 70.76 %

Top 5 84.83 % 91.19 %

3.4.7 NVIDIA Jetson AGX Orin
NVIDIA Jetson AGX Orin Platform

• NVIDIA Jetson AGX Orin Platform

o ARM Cortex-A78AE v8.2 64-Bit-CPU, 8 Cores
o NVIDIA GPU 2048 Ampere Cores + 64 Tensor Cores
o 2x NVIDIA DLA-Engines (NVDLA v2)
o 32 GB 256-bit LPDDR5 204.8GB/s
o Cost: 1999€

D3.3 Version 1.1

117

3.4.7.1 Peak Performance
Theoretical peak performance of Jetson AGX Orin is 275 TOPS for INT8 precision, including
the 52.5 TOPS of the two NVDLA 2.0 cores [64].

3.4.7.2 Toolflow
For the performance evaluation of the NVIDIA Jetson AGX Orin version 8.4.1 of the
TensorRT SDK [65] was used. The onnx models from model set v1 were used for this
evaluation. TensorRT specific inference engines were created using the stand-alone
executable trtexec. This flow allowed for direct quantization of the input model into the
different data types (FP32, FP16 and INT8) examined in this project. Furthermore, changing
the target batch size was also possible. After the different engines were created, trtexec
was also used to profile the latency and throughput of the different models. Tegrastats, a
utility from NVIDIA, was used to measure power consumption and peak memory usage,
while the power mode of the module was set to maximum performance mode MAXN.

3.4.7.3 Results

Table 31: ResNet50 (Orin AGX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.843 2.950 1.168 4.840 2.154 9.351

Achieved performance

[IPS] 1185.78 2711.98 856.10 1652.79 464.32 855.48

Achieved performance

[GOPS] 9225.34 21099.17 6660.48 12858.74 3612.39 6655.65

Peak performance

[GOPS] 137500 68750 34375

Performance ratio 6.77 % 15.37 % 9.68 % 18.70 % 10.51 % 19.36 %

Memory utilization [GB] 5.830 5.850 5.870 5.900 5.980 6.030

Power [W] 33.915 47.759 40.101 54.139 45.877 56.031

Idle power [W] 6.900 6.900 6.900 6.900 6.900 6.900

Inference energy [mJ] 28.37 17.58 46.87 32.76 98.78 65.50

GOPS/W 274.28 442.58 166.00 237.52 78.76 118.77

Table 32: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Orin

Classification accuracy INT8 FP16 FP32

D3.3 Version 1.1

118

Top 1 71.04 % 71.05 % 71.04 %

Top 5 89.83 % 89.82 % 89.83 %

Table 33: MobileNetV3 Small (Orin AGX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.729 1.395 0.753 1.737 0.928 2.831

Achieved performance

[IPS] 1371.45 5734.32 1327.50 4604.83 1077.34 2826.32

Achieved performance

[GOPS] 244.12 1020.71 236.29 819.66 191.77 503.09

Peak performance

[GOPS] 137500 68750 34375

Performance ratio 0.18 % 0.74 % 0.34 % 1.19 % 0.56 % 1.46 %

Memory utilization [GB] 5.790 5.800 5.790 5.810 7.870 7.900

Power [W] 21.755 32.724 23.454 35.711 25.743 37.301

Idle power [W] 6.900 6.900 6.900 6.900 6.900 6.900

Inference energy [mJ] 15.86 5.71 17.67 7.76 23.89 13.20

GOPS/W 11.22 31.19 10.07 22.95 7.45 13.49

Table 34: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Orin

Classification accuracy INT8 FP16 FP32

Top 1 36.09 % 63.18 % 63.15 %

Top 5 61.95 % 84.82 % 84.82 %

Table 35: YoloV4 (Orin AGX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 6.498 41.205 9.503 65.764 19.532 141.031

D3.3 Version 1.1

119

Achieved performance

[Inferences/s] 153.89 194.15 105.23 121.65 51.20 56.73

Achieved performance

[GOPS] 9295.09 11726.83 6355.61 7347.48 3092.33 3426.19

Peak performance

[GOPS] 137500 68750 34375

Performance ratio 6.76 % 8.53 % 9.24 % 10.69 % 9.00 % 9.97 %

Memory utilization [GB] 5.970 6.360 6.120 6.750 7.430 8.530

Power [W] 50.34 59.804 59.893 67.067 58.720 62.510

Idle Power [W] 6.900 6.900 6.900 6.900 6.900 6.900

Inference energy [mJ] 327.07 308.03 569.19 551.32 1146.93 1101.98

GOPS/W 184.67 196.09 106.12 109.55 52.66 54.81

Table 36: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Orin

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.1 % 49.4 % 49.4 %

mAP (.50:.95) 73.8 % 74.2 % 74.2 %

3.4.8 NVIDIA Jetson AGX Xavier

NVIDIA Jetson Xavier AGX Evaluation Platform

• NVIDIA Jetson Xavier AGX
o NVIDIA Carmel ARM v8.2 64-Bit-CPU, 8 Cores
o NVIDIA GPU 512 Volta Cores + 64 Tensor Cores
o 2x NVIDIA DLA-Engines
o 32 GB DDR4-2133 quad-channel

Cost: 960 €
3.4.8.1 Peak Performance
Theoretical peak performance of Jetson AGX Xavier is 22TOPS, not considering the
performance of NVDLA cores [66].

3.4.8.2 Toolflow
For the performance evaluation of the NVIDIA Jetson AGX Xavier version 8.4.1 of the
TensorRT SDK [65] was used. The onnx models from model set v1 were used for this
evaluation. TensorRT specific inference engines were created using the stand-alone
executable trtexec. This flow allowed for direct quantization of the input model into the
different data types (FP32, FP16 and INT8) examined in this project. Furthermore, changing
the target batch size was also possible with ease. After the different engines were created,

D3.3 Version 1.1

120

trtexec was also used to profile the latency and throughput of the different models.
Tegrastats, a utility from NVIDIA, was used to measure power consumption and peak
memory usage. The NVIDIA Jetson Xavier AGX was tested in different power modes, the low
power (LP) 15 W and the high power (HP) MAXN 30 W mode, to determine changes in energy
efficiency.

3.4.8.3 Results (15 W Mode)

Table 37: ResNet50 (Xavier AGX LP)

Performance INT8 FP16 FP32

Inference time [ms] 3.7242 5.8149 14.9318

Achieved performance

[Inferences/s]

268.51 171.97 66.97

Achieved performance

[GOPS]

2088 1336 521

Peak performance

[GOPS]
22000 11000

(INT/2)

5500

(INT/4)

Performance Ratio 9.49 % 12.14 % 9.47 %

Cost Metrics

Memory Utilization [GB] 5.935 5.953 6.502

Power [W] 8.8380 10.0140 10.2936

Idle Power [W] 4.0 4.0 4.0

Energy/Inference [mJ] 32 58 150

[GOPS/W] 236.24 133.4 50.6

Table 38: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Xavier

Classification accuracy INT8 FP16 FP32

Top 1 71.05 % 71.03 % 71.05 %

Top 5 89.82 % 89.82 % 89.82 %

Table 39: MobileNetV3 Small (Xavier AGX LP)

Performance INT8 FP16 FP32

Inference time [ms] 2.2595 2.5541 3.0871

D3.3 Version 1.1

121

Achieved performance

[Inferences/s]

442.57 391.52 323.92

Achieved performance

[GOPS]

78.78

69.68

57.64

Peak performance

[GOPS]

22000 11000

(INT/2)

5500

(INT/4)

Performance Ratio 0.35 % 0.633 % 1.048 %

Cost Metrics

Memory utilization [GB] 5.867 5.862 6.316

Power [W] 7.5758 7.7921 7.9913

Idle Power [W] 4.0 4.0 4.0

Energy/Inference [mJ] 17 19.9 24

[GOPS/W] 10.398 8.94 7.2

Table 40: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Xavier

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

Top 5 54.22 % 79.15 % 79.14 %

Table 41: YoloV4 (Xavier AGX LP)

Performance INT8 FP16 FP32

Inference time [ms] 20.3331 30.2533 92.4868

Achieved performance

[Inferences/s]

49.18 33.05 10.812

Achieved performance

[GOPS]

2970

1996

652

Peak performance

[GOPS]

22000 11000

(INT/2)

5500

(INT/4)

Performance Ratio 13.5 % 18.14 % 11.85 %

D3.3 Version 1.1

122

Cost Metrics

Memory utilization [GB] 6.222 6.235 7.145

Power [W] 9.6104 10.9868 10.8139

Idle Power [W] 4.0 4.0 4.0

Energy [J] 0.195 0.332 1.00

[GOPS/W] 309.04 181.66 60.292

Table 42: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Xavier

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.3 % 49.4 % 49.4 %

mAP (.50:.95) 73.7 % 74.2 % 74.2 %

3.4.8.4 Results (30 W Mode)

Table 43: ResNet50 (Xavier AGX HP)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 1.990 7.125 3.091 13.540 7.872 47.276

Achieved performance

[Inferences/s]

502.47 1122.83 323.54 590.83 127.03 169.22

Achieved performance

[GOPS]

3909.19 8735.62 2517.12 4596.68 988.28 1316.53

Peak performance

[GOPS]

22000 11000 5500

Performance Ratio 17.77 % 39.71 % 22.88 % 41.79 % 17.97 % 23.94 %

Cost Metrics

Memory Utilization [GB] 6.16 GB 6.16 GB 6.17 GB 6.16 GB 6.67 GB 6.30 GB

Power [W] 25.915 32.506 32.046 34.933 36.064 39.503

Idle Power [W] 9.244 9.244 9.244 9.244 9.244 9.244

Energy / Inference [mJ] 51.58 28.95 99.05 59.12 283.91 233.44

D3.3 Version 1.1

123

GOPS / W 150.85 268.74 78.55 131.59 27.40 33.33

Table 44: MobileNetV3 Small (Xavier AGX HP)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 1.190 2.944 1.347 3.816 1.622 5.827

Achieved performance

[Inferences/s]

840.31 2717.51 742.16 2096.55 616.40 1372.85

Achieved performance

[GOPS]

149.57 483.72 132.10 373.19 109.72 244.37

Peak performance

[GOPS]

22000 11000 5500

Performance Ratio 0.68 % 2.20 % 1.20 % 3.39 % 1.99 % 4.44 %

Cost Metrics

Memory Utilization [GB] 6.17 GB 6.18 GB 6.17 GB 6.61 GB 6.53 GB 6.59 GB

Power [W] 19.176 24.931 21.096 29.053 23.469 30.878

Idle Power [W] 9.244 9.244 9.244 9.244 9.244 9.244

Energy / Inference [mJ] 22.82 9.17 28.43 13.86 38.07 22.49

GOPS / W 7.80 19.40 6.26 12.84 4.68 7.91

Table 45: YoloV4 (Xavier AGX HP)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 10.798 62.758 16.426 106.187 47.579 347.063

Achieved performance

[Inferences/s]

92.61 127.47 60.88 75.34 21.02 23.05

Achieved performance

[GOPS]

5593.84 7699.44 3677.21 4550.46 1269.46 1392.25

Peak performance

[GOPS]

22000 11000 5500

D3.3 Version 1.1

124

Performance Ratio 25.43 % 35.00 % 33.43 % 41.37 % 23.08 % 25.31 %

Cost Metrics

Memory Utilization [GB] 6.56 GB 6.77 GB 6.56 GB 6.89 GB 7.43 GB 8.00 GB

Power [W] 31.632 36.678 36.603 39.997 40.817 43.691

Idle Power [W] 9.244 9.244 9.244 9.244 9.244 9.244

Energy / Inference [mJ] 341.55 287.73 601.22 530.90 1942.04 1895.44

GOPS / W 176.84 209.92 100.46 113.77 31.10 31.87

3.4.9 NVIDIA Jetson AGX Orin (TVM)
NVIDIA Jetson AGX Orin Platform

• NVIDIA Jetson AGX Orin Platform

o ARM Cortex-A78AE v8.2 64-Bit-CPU, 8 Cores
o NVIDIA GPU 2048 Ampere Cores + 64 Tensor Cores
o 2x NVIDIA DLA-Engines (NVDLA v2)
o 32 GB 256-bit LPDDR5 204.8GB/s
o Cost: 1999€

3.4.9.1 Peak Performance
Theoretical peak performance of Jetson AGX Orin is 275 TOPS for INT8 precision, including
the 52.5 TOPS of the two NVDLA 2.0 cores [64].

3.4.9.2 Toolflow
3.4.9.2.1 ResNet50
ResNet50 was processed with the Kenning framework using the following flow:

• For FP32:
o Model was firstly processed with TensorFlow Lite to create a FP32 TFLite

model for initial optimizations
o Secondly, the model was compiled using the TVM framework for CUDA

runtime (compute capability 87), with available CUDNN, CUBLAS and
TensorRT libraries. Layout was set to NHWC for data, OHWI for kernels

• For FP16:
o Model was firstly processed with TensorFlow Lite to create a FP32 TFLite

model for initial optimizations
o Secondly, the model was compiled using the TVM framework for CUDA

runtime (compute capability 87), with available CUDNN, CUBLAS and
TensorRT libraries. Layout was set to NHWC for data, OHWI for kernels. In
addition, a transformation pass converting weights from FP32 to FP16 was
applied

• For INT8:

D3.3 Version 1.1

125

o Model was firstly processed with TensorFlow Lite – the model was quantized
here to INT8 precision using the calibration dataset. The calibration dataset
was 10000 random images from the training dataset

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 87), with available CUDNN, CUBLAS and
TensorRT libraries.. Layout was set to NHWC for data, OHWI for kernels.

3.4.9.2.2 MobileNetV3

MobileNetV3 was processed with the Kenning framework using the following flow:

• For FP32:
o Model was loaded directly by TVM and compiled for CUDA runtime (compute

capability 87), with available CUDNN, CUBLAS and TensorRT libraries.
• For FP16:

o Model was loaded directly by TVM and compiled for CUDA runtime (compute
capability 87), with available CUDNN, CUBLAS and TensorRT libraries. In
addition, a transformation pass converting weights from FP32 to FP16 was
applied

• For INT8:
o Model was firstly processed with TensorFlow Lite – the model was quantized

here to INT8 precision using the calibration dataset. The calibration dataset
was 10000-200000 random images from the training dataset (various
calibration dataset sizes were checked)

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 87), with possible frameworks CUDNN, CUBLAS,
TensorRT.

INT8 precision for MobileNetV3 resulted in significant quality decrease regardless of
selected calibration dataset size. Looking at the confusion matrix for INT8 precision, after
the quantization process some of the classes yield zero-like results – due to this some classes
are always ignored in the prediction process.

Changing the calibration dataset size may result in slightly different set of classes that are
no longer usable.

This may be due to the fact that scale and zero factor computed for the final layer are global
for all classes – values for certain classes may be so low they fall below quantized ranges,
which results in a significant clipping error.

One of possible solutions would be to split the final 1000-element tensor to separate single-
value tensors for which the scale and zero-point values would be computed separately.

3.4.9.2.3 YOLOv4

YOLOv4 was processed with the Kenning framework using the following flow:

• For FP32:

D3.3 Version 1.1

126

o Model was loaded directly by TVM and compiled for CUDA runtime (compute
capability 87), with available CUDNN, CUBLAS and TensorRT libraries. Model
was kept in original NCHW format.

• For FP16:
o Model was loaded directly by TVM and compiled for CUDA runtime (compute

capability 87), with available CUDNN, CUBLAS and TensorRT libraries. Model
was kept in original NCHW format. In addition, a transformation pass
converting weights from FP32 to FP16 was applied

• For INT8:
o Model was firstly processed with TensorFlow Lite – the model was quantized

here to INT8 precision using the calibration dataset. The calibration dataset
was 1000-4000 random images from the training dataset (various calibration
dataset sizes were checked)

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 87), with possible frameworks CUDNN, CUBLAS,
TensorRT. Model was kept in original NCHW format.

The quantization process of YOLOv4 using the TensorFlow Lite converter was a very slow
process allowing to use only small calibration datasets (around 1000-4000 random images
from the training dataset) - this on the other hand resulted in models unable to predict
objects correctly. Apache TVM data-aware quantization algorithm also allowed using only
very small calibration datasets. Due to this, the results for INT8 precision are not included.

The possible future fix could be using different framework for quantization purposes,
before loading to TVM.

3.4.9.3 Results

Table 46: ResNet50 (Orin TVM)

Performance INT8 FP16 FP32

Inference time [ms] 0.5792 8.4106 8.5608

Achieved performance

[Inferences/s]

1726.52 118.89 116.81

Achieved performance

[GOPS]

13432.32 924.96 908.78

Peak performance

[GOPS] 137500 68750 34375

Performance Ratio 10.23 % 1.34 % 2.64 %

Cost Metrics

Memory Utilization [GB] 6.725 7.896 8.009

D3.3 Version 1.1

127

Power [W] 31.368 21.152 27.039

Idle Power [W] 6.90 6.90 6.90

Energy/Inference [mJ] 18.17 177.91 231.48

[GOPS/W] 428.22 43.73 33.61

Table 47: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Orin TVM

Classification accuracy FP32 FP16 INT8

Top 1 70,90 % 70,91 % 67,85 %

Top 5 89,74 % 89,73 % 87,45 %

Table 48: MobileNetV3 Small (Orin TVM)

Performance INT8 FP16 FP32

Inference time [ms] 3.6054 3.3374 3.8813

Achieved performance

[Inferences/s]

277.36 299.63 257.65

Achieved performance

[GOPS]

49.37

53.33

45.86

Peak performance

[GOPS] 137500 68750 34375

Performance Ratio 0.035 % 0.077 % 0.133 %

Cost Metrics

Memory utilization [GB] 7.568 7.534 7.566

Power [W] 19.075 18.974 19.079

Idle Power [W] 6.90 6.90 6.90

Energy/Inference [mJ] 68.7 63.32 74.05

[GOPS/W] 2.59 2.81 2.40

Table 49: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Orin TVM

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

D3.3 Version 1.1

128

Top 5 54.22 % 79.15 % 79.14 %

Table 50: YoloV4 (Orin TVM)

Performance FP16 FP32

Inference time [ms] 21.8598 25.0377

Achieved performance

[Inferences/s]
45.75 39.94

Achieved performance

[GOPS]
2763.3 2412.38

Peak performance

[GOPS] 68750 34375

Performance Ratio 4.02 % 7.02 %

Cost Metrics

Memory utilization [GB] 7.936 8.565

Power [W] 32.094 38.471

Idle Power [W] 6.90 6.90

Energy [J] 701.51 963.21

[GOPS/W] 86.10 62.71

Table 51: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Orin TVM

mAP FP32 FP16

mAP (.50) 67,2 % 67,2 %

mAP (.50:.95) 46,5 % 46,5 %

3.4.10 NVIDIA Jetson AGX Xavier (TVM)

NVIDIA Jetson Xavier AGX Evaluation Platform

• NVIDIA Jetson Xavier AGX
o NVIDIA Carmel ARM v8.2 64-Bit-CPU, 8 Cores
o NVIDIA GPU 512 Volta Cores + 64 Tensor Cores
o 2x NVIDIA DLA-Engines
o 32 GB DDR4-2133 quad-channel

Cost: 960 €

D3.3 Version 1.1

129

3.4.10.1 Peak Performance
Theoretical peak performance of Jetson AGX Xavier is 22TOPS, not considering the
performance of NVDLA cores [66].

3.4.10.2 Toolflow
3.4.10.2.1 ResNet50
ResNet50 was processed with the Kenning framework using the following flow:

• For FP32:
o Model was firstly processed with TensorFlow Lite to create a FP32 TFLite

model for initial optimizations
o Secondly, the model was compiled using the TVM framework for CUDA

runtime (compute capability 72), with available CUDNN, CUBLAS and
TensorRT libraries. Layout was set to NHWC for data, OHWI for kernels

• For FP16:
o Model was firstly processed with TensorFlow Lite to create a FP32 TFLite

model for initial optimizations
o Secondly, the model was compiled using the TVM framework for CUDA

runtime (compute capability 72), with available CUDNN, CUBLAS and
TensorRT libraries. Layout was set to NHWC for data, OHWI for kernels. In
addition, a transformation pass converting weights from FP32 to FP16 was
applied

• For INT8:
o Model was firstly processed with TensorFlow Lite – the model was quantized

here to INT8 precision using the calibration dataset. The calibration dataset
was 10000 random images from the training dataset

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 72), with available CUDNN, CUBLAS and
TensorRT libraries.. Layout was set to NHWC for data, OHWI for kernels.

3.4.10.2.2 YOLOv4

YOLOv4 was processed with the Kenning framework using the following flow:

• For FP32:
o Model was loaded directly by TVM and compiled for CUDA runtime (compute

capability 72), with available CUDNN, CUBLAS and TensorRT libraries. Model
was kept in original NCHW format.

• For FP16:
o Model was loaded directly by TVM and compiled for CUDA runtime (compute

capability 72), with available CUDNN, CUBLAS and TensorRT libraries. Model
was kept in original NCHW format. In addition, a transformation pass
converting weights from FP32 to FP16 was applied

• For INT8:
o Model was firstly processed with TensorFlow Lite – the model was quantized

here to INT8 precision using the calibration dataset. The calibration dataset
was 1000-4000 random images from the training dataset (various calibration
dataset sizes were checked)

D3.3 Version 1.1

130

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 72), with possible frameworks CUDNN, CUBLAS,
TensorRT. Model was kept in original NCHW format.

The quantization process of YOLOv4 using the TensorFlow Lite converter was a very slow
process allowing to use only small calibration datasets (around 1000-4000 random images
from the training dataset) - this on the other hand resulted in models unable to predict
objects correctly. Apache TVM data-aware quantization algorithm also allowed using only
very small calibration datasets. Due to this, the results for INT8 precision are not included.

The possible future fix could be using different framework for quantization purposes,
before loading to TVM.

3.4.10.2.3 MobileNetV3

MobileNetV3 was processed with the Kenning framework using the following flow:

• For FP32:
o Model was converted to ONNX and then loaded by TVM and compiled for

CUDA runtime (compute capability 72), with available CUDNN, CUBLAS and
TensorRT libraries.

• For FP16:
o Model was converted to ONNX and then loaded by TVM and compiled for

CUDA runtime (compute capability 72), with available CUDNN, CUBLAS and
TensorRT libraries. In addition, a transformation pass converting weights
from FP32 to FP16 was applied

• For INT8:
o Model was firstly processed with TensorFlow Lite – the model was quantized

here to INT8 precision using the calibration dataset. The calibration dataset
was 10000-200000 random images from the training dataset (various
calibration dataset sizes were checked)

o Secondly, the model was compiled using the TVM framework for CUDA
runtime (compute capability 72), with possible frameworks CUDNN, CUBLAS,
TensorRT.

INT8 precision for MobileNetV3 resulted in significant quality decrease regardless of
selected calibration dataset size. Looking at the confusion matrix for INT8 precision, after
the quantization process some of the classes yield zero-like results – due to this some classes
are always ignored in the prediction process.

Changing the calibration dataset size may result in slightly different set of classes that are
no longer usable.

This may be due to the fact that scale and zero factor computed for the final layer are global
for all classes – values for certain classes may be so low they fall below quantized ranges,
which results in a significant clipping error.

One of possible solutions would be to split the final 1000-element tensor to separate single-
value tensors for which the scale and zero-point values would be computed separately.

3.4.10.3 Results

D3.3 Version 1.1

131

Table 52: ResNet50 (Xavier TVM)

Performance INT8 FP16 FP32

Inference time [ms] 0.8363 7.6726 12.1483

Achieved performance

[Inferences/s]

1195.74 130.33 82.31

Achieved performance

[GOPS]

9302 1013.96 640.37

Peak performance

[GOPS]

22000 11000

(INT/2)

5500

(INT/4)

Performance Ratio 42.228 % 9.218 % 11.643 %

Cost Metrics

Memory Utilization [GB] 8.620 8.552 8.663

Power [W] 20.384 12.086 17.969

Idle Power [W] 4.0 4.0 4.0

Energy/Inference [mJ] 17.05 92.73 218.31

[GOPS/W] 456.33 83.89 35.64

Table 53: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Xavier TVM

Classification accuracy INT8 FP16 FP32

Top 1 71.05 % 71.03 % 71.05 %

Top 5 89.82 % 89.82 % 89.82 %

Table 54: MobileNetV3 Small (Xavier TVM)

Performance INT8 FP16 FP32

Inference time [ms] 4.532 4.5041 9.1732

Achieved performance

[Inferences/s]

220.65 222.02 109.01

Achieved performance

[GOPS]

39.27

39.52

19.4

Peak performance

[GOPS]

22000 11000

(INT/2)

5500

(INT/4)

D3.3 Version 1.1

132

Performance Ratio 0.178 % 0.359 % 0.353 %

Cost Metrics

Memory utilization [GB] 8.365 7.699 7.766

Power [W] 9.915 9.859 10.013

Idle Power [W] 4.0 4.0 4.0

Energy/Inference [mJ] 44.94 44.41 91.85

[GOPS/W] 3.96 4.01 1.94

Table 55: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Xavier TVM

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

Top 5 54.22 % 79.15 % 79.14 %

Table 56: YoloV4 (Xavier TVM)

Performance FP16 FP32

Inference time [ms] 18.2214 33.814

Achieved performance

[Inferences/s]
54.88 29.57

Achieved performance

[GOPS]
3314.75

1786.02

Peak performance

[GOPS]

11000

(INT/2)

5500

(INT/4)

Performance Ratio 30.13 % 32.47 %

Cost Metrics

Memory utilization [GB] 8.736 8.673

Power [W] 23.89 29.121

Idle Power [W] 4.0 4.0

Energy [mJ] 435.31 984.82

[GOPS/W] 138.75 61.33

Table 57: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Xavier TVM

D3.3 Version 1.1

133

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.3 % 49.4 % 49.4 %

mAP (.50:.95) 73.7 % 74.2 % 74.2 %

3.4.11 NVIDIA Jetson Xavier NX

NVIDIA Jetson Xavier NX Evaluation Platform

• NVIDIA Jetson Xavier NX
o NVIDIA Carmel ARM v8.2 64-Bit-CPU, 6 Cores
o NVIDIA GPU 384 Volta Cores + 48 Tensor Cores
o 2x NVIDIA DLA-Engines
o 8 GB DDR4-1866 dual-channel
o Cost: 519 €

3.4.11.1 Peak Performance
The theoretical maximum performance of 21000 GOPS that is rated by NVIDIA shows the
combined performance of GPU and NVDLA cores. Unfortunately there are no separate
values for GPU and NVDLA. From the NVIDIA Xavier AGX the GPU performance is known.
From that value one can calculate that the Volta GPU performs 32 INT8 operations per cycle
per core. This results in 13516 GOPS for the GPU of the Xavier NX.

3.4.11.2 Toolflow
For the performance evaluation of the NVIDIA Jetson Xavier version 7.1.3 of the TensorRT
SDK [65] was used. The onnx models from model set v1 were used for this evaluation.
TensorRT specific inference engines were created using the stand-alone executable trtexec.
This flow allowed for direct quantization of the input model into the different data types
(FP32, FP16, and INT8) examined in this project. Furthermore, changing the target batch size
was also possible with ease. After the different engines were created, trtexec was also used
to profile the latency and throughput of the different models.

Tegrastats, a utility from NVIDIA, was used to measure power consumption and peak
memory usage.

3.4.11.3 Results

Table 58: ResNet50 (Xavier NX)

Performance INT8 FP16 FP32

D3.3 Version 1.1

134

Batchsize 1 8 1 8 1 8

Inference Time [ms] 3.106 12.236 5.07 23.658 13.282 97.185

Achieved performance

[Inferences/s]

320.62 653.81 195.69 338.15 71.65 82.32

Achieved performance

[GOPS]

2494.39 5086.63 1522.50 2630.82 557.47 640.43

Peak performance

[GOPS]
13516 6758

(INT8 / 2)

3379

(INT8 / 4)

Performance Ratio 18.46 % 37.63 % 22.53 % 38.93 % 16.50 % 18.95 %

Cost Metrics

Memory Utilization [GB] 2.21 2.19 2.21 2.19 2.57 2.19

Power [W] 11.86 14.421 13.42 15.202 15.38 15.449

Idle Power [W] 4.38 4.38 4.38 4.38 4.38 4.38

Energy / Inference [mJ] 36.84 22.06 68.58 44.96 214.65 187.67

GOPS / W 210.32 352.72 113.45 173.06 36.25 41.45

Table 59: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Xavier NX

Classification accuracy INT8 FP16 FP32

Top 1 71.05 % 71.03 % 71.05 %

Top 5 89.82 % 89.82 % 89.82 %

Table 60: MobileNetV3 (Xavier NX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 1.571 4.438 2.059 6.051 2.264 9.887

Achieved performance

[Inferences/s]

636.54 1802.61 485.67 1322.09 441.69 809.14

Achieved performance

[GOPS]

113.30 320.86 86.44 235.33 78.62 144.03

Peak performance

[GOPS]
13516 6758

(INT8 / 2)

3379

(INT8 / 4)

D3.3 Version 1.1

135

Performance Ratio 0.8 % 2.4 % 1.3 % 3.5 % 2.3 % 4.3 %

Cost Metrics

Memory Utilization [GB] 2.21 2.19 2.21 2.19 2.58 2.55

Power [W] 9.18 11.875 10.17 13.471 11.46 14.238

Idle Power [W] 4.38 4.38 4.38 4.38 4.38 4.38

Energy / Inference [mJ] 14.42 6.59 20.94 10.19 25.94 17.60

GOPS / W 12.34 27.02 8.50 17.47 6.86 10.11

Table 61: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Xavier NX

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

Top 5 54.22 % 79.15 % 79.14 %

Table 62: YoloV4 (Xavier NX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 16.493 109.062 27.814 209.990 97.144 792.084

Achieved performance

[Inferences/s]

60.63 73.35 35.95 38.10 10.29 10.10

Achieved performance

[GOPS]

3662.16 4430.51 2171.57 2301.06 621.76 610.04

Peak performance

[GOPS]
13516 6758

(INT8 / 2)

3379

(INT8 / 4)

Performance Ratio 27.09 % 32.78 % 32.13 % 34.05 % 18.4 % 18.05 %

Cost Metrics

Memory Utilization [GB] 2.18 2.30 2.18 2,42 3.23 3.95

Power [W] 15.13 15.449 15.41 15.449 15.45 15.449

Idle Power [W] 4.38 4.38 4.38 4.38 4.38 4.38

Energy / Inference [mJ] 249.54 210.61 428.61 405.52 1500.87 1529.61

GOPS / W 242.05 286.78 140.92 148.95 40.24 39.49

D3.3 Version 1.1

136

Table 63: mAP accuracies for YoloV4 on NVIDIA Jetson Xavier NX

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.3 % 49.4 % 49.4 %

mAP (.50:.95) 73.7 % 74.2 % 74.2 %

3.4.12 NVIDIA Jetson Orin NX

NVIDIA Jetson Orin NX Evaluation Platform

• NVIDIA Jetson Orin NX
o ARM Cortex-A78AE v8.2 64-Bit-CPU, 8 Cores
o NVIDIA GPU 1048 Ampere Cores + 32 Tensor Cores
o 2x NVIDIA DLAv2-Engines
o 16 GB DDR5-3200 dual-channel
o Cost: 643 €

3.4.12.1 Peak Performance
The theoretical maximum performance of 100000 GOPS that is rated by NVIDIA shows the
combined performance of GPU and NVDLA cores. Unfortunately there are no separate
values for GPU and NVDLA.

3.4.12.2 Toolflow
For the performance evaluation of the NVIDIA Jetson Xavier version 8.4.1 of the TensorRT
SDK [65] was used. The onnx models from model set v1 were used for this evaluation.
TensorRT specific inference engines were created using the stand-alone executable trtexec.
This flow allowed for direct quantization of the input model into the different data types
(FP32, FP16, and INT8) examined in this project. Furthermore, changing the target batch size
was also possible with ease. After the different engines were created, trtexec was also used
to profile the latency and throughput of the different models.

Tegrastats, a utility from NVIDIA, was used to measure power consumption and peak
memory usage.

3.4.12.3 Results

Table 64: ResNet50 (Orin NX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 2.4 7.011 4.645 11.292 4.586 22.791

Achieved performance

[Inferences/s]

416.73 1141.09 215.26 708.46 218.08 351.01

D3.3 Version 1.1

137

Achieved performance

[GOPS]

3242.17 8877.67 1674.75 5511.82 1696.65 2730.85

Peak performance

[GOPS]

100000 50000

(INT8 / 2)

25000

(INT8 / 4)

Performance Ratio 3.23% 8.88% 3.35% 11.02% 6.79% 10.92%

Cost Metrics

Memory Utilization [GB] 3.540 3.540 3.540 3.540 3.730 3.730

Power [W] 18 19 19 20 19 20

Idle Power [W] 4.700 4.700 4.700 4.700 4.700 4.700

Energy / Inference [mJ] 41.99 16.30 86.41 28.51 85.75 58.12

GOPS / W 185.27 477.29 90.04 272.86 90.73 133.87

Table 65: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Orin NX

Classification accuracy INT8 FP16 FP32

Top 1 71.05 % 71.03 % 71.05 %

Top 5 89.82 % 89.82 % 89.82 %

Table 66: MobileNetV3 (Orin NX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 1.261 2.543 1.245 3.173 1.619 4.977

Achieved performance

[Inferences/s]

792.95 3146.16 802.96 2520.98 617.59 1607.32

Achieved performance

[GOPS]

141.15 560.02 142.93 448.73 109.93 286.10

Peak performance

[GOPS]
100000 50000

(INT8 / 2)

25000

(INT8 / 4)

Performance Ratio 0.14% 0.56% 0.29% 0.90% 0.44% 1.14%

Cost Metrics

Memory Utilization [GB] 3.740 3.940 3.740 3.940 3.850 4.140

D3.3 Version 1.1

138

Power [W] 10 15 10 16 10 17

Idle Power [W] 4.700 4.700 4.700 4.700 4.700 4.700

Energy / Inference [mJ] 11.98 4.70 12.70 6.39 16.68 10.58

GOPS / W 14.86 37.84 14.01 27.87 10.67 16.83

Table 67: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Orin NX

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

Top 5 54.22 % 79.15 % 79.14 %

Table 68: YoloV4 (Orin NX)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 16.645 106.194 22.813 157.256 48.841 327.626

Achieved performance

[Inferences/s]

60.08 75.33 43.84 50.87 20.47 24.42

Achieved performance

[GOPS]

3628.75 4550.17 2647.66 3072.69 1236.66 1474.85

Peak performance

[GOPS]
100000 50000

(INT8 / 2)

25000

(INT8 / 4)

Performance Ratio 3.63% 4.55% 5.30% 6.15% 4.95% 5.90%

Cost Metrics

Memory Utilization [GB] 4.000 4.070 4.000 4.100 4.700 4.840

Power [W] 19 20 21 22 21 22

Idle Power [W] 4.700 4.700 4.700 4.700 4.700 4.700

Energy / Inference [mJ] 309.59 261.50 485.91 436.39 1006.13 896.88

GOPS / W 195.09 230.97 124.30 138.41 60.03 67.34

Table 69: mAP accuracies for YoloV4 on NVIDIA Jetson Orin NX

Classification accuracy INT8 FP16 FP32

D3.3 Version 1.1

139

mAP (.50) 48.3 % 49.4 % 49.4 %

mAP (.50:.95) 73.7 % 74.2 % 74.2 %

3.4.13 NVIDIA Jetson TX2

NVIDIA Jetson TX2 Evaluation Platform

• NVIDIA Jetson TX2
o Dual-Core NVIDIA Denver 2 64-Bit CPU
o Quad-Core ARM Cortex-A57 MPCore
o 8 GB DDR4-1866 dual-channel
o 32 GB eMMC HDD
o Cost: 575 €

3.4.13.1 Peak Performance
The theoretical peak performance of Nvidia Jetson TX2 is 1300 GOPS for FP16 [67]. The
value used for FP32 was calculated as half of the value for FP16 (650 GOPS). Even though
INT8 is not supported by the TX2 it was calculated to be 2600 GOPS. But it seems that
TensorRT is falling back to FP32 operation.

3.4.13.2 Tool Flow
For the performance evaluation of the NVIDIA Jetson TX2 version 8.2.1 of the TensorRT SDK
[65] was used. The onnx models from model set v1 were used for this evaluation. TensorRT
specific inference engines were created using the stand-alone executable trtexec. This flow
allowed for direct quantization of the input model into the different data types (FP32, FP16,
and INT8) examined in this project. Furthermore, changing the target batch size was also
possible with ease. After the different engines were created, trtexec was also used to profile
the latency and throughput of the different models.

Tegrastats, a utility from NVIDIA, was used to measure power consumption and peak
memory usage.

3.4.13.3 Results

Table 70: ResNet50 (TX2)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 18.710 126.330 10.508 67.963 18.956 125.735

Achieved performance

[Inferences/s]

53.45 63.33 95.16 117.71 52.75 63.63

Achieved performance

[GOPS]

415.82 492.68 740.37 915.79 410.42 495.01

D3.3 Version 1.1

140

Peak performance

[GOPS]

CPU only 1300 650 (FP16 / 2)

Performance Ratio 56.95 % 70.45 % 63.14 % 76.16 %

Cost Metrics

Memory Utilization [GB] 1.91 GB 1.91 GB 1.91 GB 1.91 GB 1.91 GB 1.91 GB

Power [W] 15.808 16.599 15.016 16.074 16.112 16.750

Idle Power [W] 3.425 3.425 3.425 3.425 3.425 3.425

Energy / Inference [mJ] 295.76 262.12 157.79 136.56 305.42 263.26

GOPS / W 26.30 29.68 49.31 56.97 25.47 29.55

Table 71: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson TX2

Classification accuracy FP16 FP32

Top 1 71.03 % 71.05 %

Top 5 89.82 % 89.82 %

Table 72: MobileNetV3 (TX2)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 3.756 18.497 3.777 17.389 3.395 18.494

Achieved performance

[Inferences/s]

266.23 432.51 264.74 460.06 294.59 432.58

Achieved performance

[GOPS]

47.39 76.99 47.12 81.89 52.44 77.00

Peak performance

[GOPS]

CPU only 1300 650 (FP16 / 2)

Performance Ratio 3.62 % 6.30 % 8.07 % 11.85 %

Cost Metrics

Memory Utilization [GB] 2.12 GB 2.12 GB 2.12 GB 1.91 GB 2.12 GB 2.12 GB

Power [W] 10.125 12.816 10.163 12.441 10.619 12.854

Idle Power [W] 3.425 3.425 3.425 3.425 3.425 3.425

D3.3 Version 1.1

141

Energy / Inference [mJ] 38.03 29.63 38.39 27.04 36.05 29.71

GOPS / W 4.68 6.01 4.64 6.58 4.94 5.99

Table 73: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson TX2

Classification accuracy FP16 FP32

Top 1 54.33 % 54.32 %

Top 5 79.15 % 79.14 %

Table 74: YoloV4 (TX2)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference Time [ms] 125.119 952.778 74.747 549.968 124.670 950.723

Achieved performance

[Inferences/s]

7.99 8.40 13.38 14.55 8.02 8.41

Achieved performance

[GOPS]

482.74 507.15 808.05 878.60 484.48 508.24

Peak performance

[GOPS]

CPU only 1300 650 (FP16 / 2)

Performance Ratio 62.16 % 67.58 % 74.54 % 78.19 %

Cost Metrics

Memory Utilization [GB] 2.40 GB 3.12 GB 1.92 GB 2.19 GB 2.32 GB 3.04 GB

Power [W] 17.617 18.034 16.333 16.788 17.582 18.142

Idle Power [W] 3.425 3.425 3.425 3.425 3.425 3.425

Energy / Inference [mJ] 2204.22 2147.80 1220.85 1154.11 2191.95 2156.00

GOPS / W 27.40 28.12 49.47 52.33 27.56 28.01

Table 75: mAP accuracies for YoloV4 on NVIDIA Jetson TX2

Classification accuracy FP16 FP32

mAP (.50) 49.4 % 49.4 %

mAP (.50:.95) 74.2 % 74.2 %

D3.3 Version 1.1

142

3.4.14 NVIDIA Jetson Nano

3.4.14.1 Peak Performance
Theoretical peak performance of Nvidia Jetson Nano is 472.0 GOPS for FP16 [68]. The value
used for FP32 was calculated as half of the value for FP16 (236.0 GOPS).

3.4.14.2 Toolflow
In order to create inference engines and run inference on Nvidia Jetson Nano, version 8.0.1
of NVIDIA’s TensorRT library was used. TensorRT comes with a profiling tool called trtexec,
which allows for latency, throughput and layer-wise benchmarking of neural networks in
TensorRT representation. Onnx versions of model set v1 were used to create TensorRT
inference engines and to measure timing using trtexec.

Tegrastats, a utility from NVIDIA, was used to measure the peak memory usage.

Watts up PRO, a Watt meter and power analyzer and electricity meter, was used to measure
the power consumption. The mode used while measuring the time is the headless mode.
However, measuring power with Watts up requires the wiring of the display mode. In this
mode, the largest model we evaluated (YoloV4 FP32) was not able to execute until
completion due to lack of memory, therefore the power measurement for that model is
missing. Notice that this is a different method than that used for other NVIDIA platforms
and thus cannot be directly compared to the other platforms.

3.4.14.3 Results
We present results for the supported precisions FP16 and FP32 and also for batch size of 1
and 8.

Table 76: ResNet50 (Nano)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference time [ms] 39.9 269.1 73.9 490.7

Achieved performance

[IPS]

25.0 29.7 13.5 16.3

Achieved performance

[GOPS]

197.2 230.8 105.3 126.8

Peak performance

[GOPS]

472.0 236.0

Performance ratio 41.8 % 48.9 % 44.6 % 53.7 %

Memory utilization [GB] 2.1 2.2 2.2 2.3

Power [W] 5.7 5.8 5.9 5.9

D3.3 Version 1.1

143

Idle power [W] 1.7 1.7 1.7 1.7

Inference energy [mJ] 227.9 195.1 435.8 361.9

GOPS/W 34.6 39.8 17.9 21.5

Table 77: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Nano

Classification accuracy FP16 FP32

Top 1 71.11 % 71.07 %

Top 5 89.81 % 89.83 %

Table 78: MobileNet (Nano)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference time [ms] 9.6 42.7 11.7 58.5

Achieved performance

[IPS]

103.9 187.3 85.0 136.1

Achieved performance

[GOPS]

18.5 36.7 15.2 26.1

Peak performance

[GOPS]

472.0 236.0

Performance ratio 3.9 % 7.8 % 6.4 % 11.1 %

Memory utilization [GB] 1.9 2.1 1.9 2.1

Power [W] 5.1 5.2 5.2 5.2

Idle power [W] 1.7 1.7 1.7 1.7

Inference energy [mJ] 49.1 27.8 60.8 38.0

GOPS/W 3.6 7.1 2.9 5.0

Table 79: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Nano

Classification accuracy FP16 FP32

Top 1 54.28 % 54.32 %

Top 5 79.12 % 79.12 %

D3.3 Version 1.1

144

Table 80: YoloV4 (Nano)

Performance FP16 FP32

Batchsize 1 8 1 8

Inference time [ms] 286.5 1961.0 488.4 3673.0

Achieved performance

[IPS]

3.5 4.1 2.0 2.2

Achieved performance

[GOPS]

210.8 246.4 123.7 131.4

Peak performance

[GOPS]

472.0 236.0

Performance ratio 44.7 % 52.2 % 52.4 % 55.7 %

Memory utilization [GB] 2.2 2.4 2.4 2.7

Power [W] 5.9 6.1 - -

Idle power [W] 1.7 1.7 1.7 1.7

Inference energy [mJ] 1690.5 1495.2 - -

GOPS/W 35.7 40.4 - -

Table 81: mAP accuracies for YoloV4 on NVIDIA Jetson Nano

Classification accuracy FP16 FP32

mAP (.50) 49.4 % 49.4 %

mAP (.50:.95) 74.2 % 74.2 %

3.4.15 NVIDIA GTX1660
The NVIDA GTX1660 PCIe-based graphics card was plugged into a x86-based desktop
computer. The standard Gen.3 x16 port was used.

Desktop system

• Intel Core-I7 10700K
o 8 cores @ 2.9 GHz
o 16 threads
o 16 MB Smart Cache

• 32 GB DDR4-3200 RAM
• 256 GB NVMe SSD HDD

D3.3 Version 1.1

145

3.4.15.1 Peak Performance
Theoretical peak performance of NVIDIA-GTX1660 Ti is reported to be 11.0 TFLOPS for FP16
and 5.5 TFLOPS for FP32 [69]. NVIDIA specs also mention 5.5 TOPS for INT32. The model
used in our evaluation though is not the GTX1660Ti but instead the GTX1660r which is
reported to have slightly lower theoretical performance of 5.0 TFLOPS for FP32 [70]. Based
on this info we estimate the peak performance to be 10.0 TFLOPS for FP16 and 20.0 TOPS
for INT8.

3.4.15.2 Toolflow
In order to create inference engines and run inference on GTX1660r, version 8.0.1 of
NVIDIA’s TensorRT library was used. TensorRT comes with a profiling tool called trtexec,
which allows for latency, throughput and layer-wise benchmarking of neural networks in
TensorRT representation. Onnx versions of model set v1 were used to create TensorRT
inference engines and to measure timing using trtexec.

Nvidia-smi, a utility from NVIDIA, was used to measure power consumption and peak
memory usage. Please note that in contrast to all previous measurements, nvidia-smi only
measures the graphics card power and not the total system power which leads to a better
efficiency.

3.4.15.3 Results

Table 82: ResNet50 (GTX1660)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 1.0 5.0 1.7 8.6 3.0 15.8

Achieved performance

[IPS]

990.1 1612.9 595.6 930.2 330.8 507.0

Achieved performance

[GOPS]

7702.0 12548.0 4634.0 7237.0 1574.0 3944.0

Peak performance

[GOPS]

20000.0 10000.0 5000.0

Performance ratio 38.5 % 62.7 % 46.3 % 72.4 % 31.5 % 78.9 %

Memory utilization [GB] 0.7 0.7 0.8 0.9 0.9 1.0

Power [W] 100.4 101.0 101.2 101.0 101.9 103.0

Idle power [W] 10.0 10.0 10.0 10.0 10.0 10.0

Inference energy [mJ] 101.4 62.6 169.9 108.6 308.0 203.2

GOPS/W 76.7 124.2 45.8 71.7 15.5 38.3

D3.3 Version 1.1

146

Table 83: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA GTX-1660

Classification accuracy INT8 FP16 FP32

Top 1 71.03 % 71.06 % 71.05 %

Top 5 89.93 % 89.82 % 89.82 %

Table 84: MobileNetV3 (GTX1660)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.4 0.9 0.6 1.4 0.6 1.8

Achieved performance

[IPS]

2405.6 9177.5 1778.1 5867.3 1722.7 4530.0

Achieved performance

[GOPS]

428.2 1633.6 316.5 1044.4 306.6 806.5

Peak performance

[GOPS]

20000.0 10000.0 5000.0

Performance ratio 2.1 % 8.2 % 3.2 % 10.4 % 6.1 % 16.1 %

Memory utilization [GB] 0.7 0.7 0.7 0.7 0.7 0.7

Power [W] 63.0 90.0 73.3 100.0 75.4 103.0

Idle power [W] 10.0 10.0 10.0 10.0 10.0 10.0

Inference energy [mJ] 26.2 9.8 41.2 17.0 43.8 22.7

GOPS/W 6.8 18.2 4.3 10.4 4.1 7.8

Table 85: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA GTX-1660

Classification accuracy INT8 FP16 FP32

Top 1 32.91 % 54.33 % 54.32 %

Top 5 58.65 % 79.17 % 79.14 %

Table 86: YoloV4 (GTX1660)

Performance INT8 FP16 FP32

D3.3 Version 1.1

147

Batchsize 1 8 1 8 1 8

Inference time [ms] 6.0 33.5 9.4 63.1 17.8 123.8

Achieved performance

[Inferences/s]
167.3 239.2 106.6 126.8 56.1 64.6

Achieved performance

[GOPS]
10107.1 14444.8 6437.2 7659.8 3388.1 3903.8

Peak performance

[GOPS]

20000.0 10000.0 5000.0

Performance ratio 50.5 % 72.2 % 64.4 % 76.6 % 67.8 % 78.1 %

Memory utilization [GB] 0.8 1.0 1.1 1.6 1.9 2.4

Power [W] 100.8 100.0 102.4 101.0 102.8 101.0

Idle Power [W] 10.0 10.0 10.0 10.0 10.0 10.0

Inference energy [mJ] 602.4 418.1 960.8 796.4 1832.6 1562.7

GOPS/W 100.3 144.5 62.9 75.8 33.0 38.7

Table 87: mAP accuracies for YoloV4 on NVIDIA GTX-1660

Classification accuracy INT8 FP16 FP32

mAP (.50) 47.9 % 49.4 % 49.4 %

mAP (.50:.95) 73.5 % 74.2 % 74.2 %

3.4.16 NVIDIA Tesla V100
The NVIDA Tesla V100 PCIe-based graphics card was plugged into an x86-based server
system containing 8x V100 cards. The standard Gen.3 x16 PCIe port was used.

Server system

• 2x Intel Xeon Silver 4114
o 10 cores @ 2.2 GHz
o 13.75 MB L3 Cache

• 384 GB DDR4-2400 RAM (12 Channels)
• 2 PByte BeeGFS based NAS

3.4.16.1 Peak Performance
Theoretical peak performance of the NVIDIA Tesla V100 is reported to be 112 TFLOPS for
DL applications, 29.4 TFLOPS for FP16 and 15.7 TFLOPS for FP32 [71]. Based on this info we
estimate the peak performance to be 58.8 TOPS for INT8.

D3.3 Version 1.1

148

3.4.16.2 Toolflow
In order to create inference engines and run inference on V100, version 8.4.3.1 of NVIDIA’s
TensorRT library was used. TensorRT comes with a profiling tool called trtexec, which allows
for latency, throughput and layer-wise benchmarking of neural networks in TensorRT
representation. Onnx versions of model set v1 were used to create TensorRT inference
engines and to measure timing using trtexec.

Nvidia-smi, a utility from NVIDIA, was used to measure power consumption and peak
memory usage. Please note that in contrast to all previous measurements, nvidia-smi only
measures the graphics card power and not the total system power which leads to a better
efficiency.

3.4.16.3 Results

Table 88: ResNet50 (V100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.909 2.933 0.994 2.413 2.019 6.089

Achieved performance

[IPS] 1099.85 2727.13 1006.26 3314.73 495.22 1313.80

Achieved performance

[GOPS] 8556.80 21217.06 7828.72 25788.64 3852.83 10221.34

Peak performance

[GOPS] 250000 125000 15700

Performance ratio 3.42 % 8.49 % 6.26 % 20.63 % 24.54 % 65.10 %

Memory utilization [GB] 0.53 GB 0.55 GB 0.67 GB 0.70 GB 0.96 GB 1.03 GB

Power [W] 140.644 198.877 127.277 234.712 176.825 278.280

Idle power [W]

Inference energy [mJ] 127.88 72.93 126.48 70.81 357.06 211.81

GOPS/W 60.84 106.68 61.51 109.87 21.79 36.73

Table 89: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Tesla V100

Classification accuracy INT8 FP16 FP32

Top 1 71.05 % 71.03 % 71.05 %

Top 5 89.82 % 89.82 % 89.82 %

D3.3 Version 1.1

149

Table 90: MobileNetV3 (V100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 1.055 1.497 0.763 1.214 0.999 1.640

Achieved performance

[IPS] 947.79 5345.27 1311.19 6590.16 1001.13 4877.78

Achieved performance

[GOPS] 168.71 951.46 233.39 1173.05 178.20 868.24

Peak performance

[GOPS] 250000 125000 15700

Performance ratio 0.07 % 0.38 % 0.19 % 0.94 % 1.14 % 5.53 %

Memory utilization [GB] 0.96 GB 0.68 GB 0.86 GB 0.52 GB 0.68 GB 0.89 GB

Power [W] 78.503 112.477 75.234 125.984 81.088 140.636

Idle power [W]

Inference energy [mJ] 82.83 21.04 57.38 19.12 81.00 28.83

GOPS/W 2.15 8.46 3.10 9.31 2.20 6.17

Table 91: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Tesla V100

Classification accuracy INT8 FP16 FP32

Top 1 29.59 % 54.29 % 54.32 %

Top 5 54.22 % 79.15 % 79.14 %

Table 92: YoloV4 (V100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 5.864 32.471 5.605 30.589 12.735 83.992

Achieved performance

[Inferences/s] 170.54 246.37 178.41 261.53 78.52 95.25

D3.3 Version 1.1

150

Achieved performance

[GOPS] 10300.42 14880.79 10775.99 15796.38 4742.86 5752.95

Peak performance

[GOPS] 250000 125000 15700

Performance ratio 4.12 % 5.95 % 8.62 % 12.64 % 30.21 % 36.64 %

Memory utilization [GB] 0.63 GB 0.95 GB 0.71 GB 1.27 GB 1.12 GB 2.19 GB

Power [W] 252.060 288.125 241.740 289.232 289.460 290.360

Idle Power [W]

Inference energy [mJ] 1478.04 1169.48 1354.97 1105.93 3686.26 3048.48

GOPS/W 40.86 51.65 44.58 54.61 16.39 19.81

Table 93: mAP accuracies for YoloV4 on NVIDIA Tesla V100

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.3 % 49.4 % 49.4 %

mAP (.50:.95) 73.7 % 74.2 % 74.2 %

3.4.17 NVIDIA Tesla A100
The NVIDA Tesla A100 PCIe-based graphics card was plugged into an x86-based server
system containing 8x A100 cards. The standard Gen.3 x16 PCIe port was used.

Server system

• 2x AMD EPYC 7313
o 16 cores @ 3.0 GHz
o 128 MB L3 Cache

• 512 GB DDR4-3200 RAM (16 Channels)
• 2 PByte BeeGFS based NAS

3.4.17.1 Peak Performance
Theoretical peak performance of the NVIDIA Tesla A100 is reported to be 312 TFLOPS for
DL applications, 78 TFLOPS for FP16 and 39 TFLOPS for FP32 [72]. Based on this info we
estimate the peak performance to be 156 TOPS for INT8.

3.4.17.2 Toolflow
In order to create inference engines and run inference on GTX1660r, version 8.0.1 of
NVIDIA’s TensorRT library was used. TensorRT comes with a profiling tool called trtexec,
which allows for latency, throughput and layer-wise benchmarking of neural networks in
TensorRT representation. Onnx versions of model set v1 were used to create TensorRT
inference engines and to measure timing using trtexec.

D3.3 Version 1.1

151

Nvidia-smi, a utility from NVIDIA, was used to measure power consumption and peak
memory usage. Please note that in contrast to all previous measurements, nvidia-smi only
measures the graphics card power and not the total system power which leads to a better
efficiency.

3.4.17.3 Results

Table 94: ResNet50 (A100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.501 0.933 0.640 1.141 0.906 1.986

Achieved

performance [IPS] 1996.01 8574.49 1562.50 7011.39 1103.75 4028.20

Achieved

performance [GOPS] 15528.94 66709.54 12156.25 54548.64 8587.20 31339.38

Peak performance

[GOPS] 624000 312000 156000

Performance ratio 2.49 % 10.69 % 3.90 % 17.48 % 5.50 % 20.09 %

Memory utilization

[GB]
1.057 0.693 1.081 0.731 1.129 1.185

Power [W] 120 187 137 234 156 271

Idle power [W]

Inference energy [mJ] 60.12 21.81 87.68 33.37 141.34 67.28

GOPS/W 129.41 356.74 88.73 233.11 55.05 115.64

Table 95: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Tesla A100

Classification accuracy INT8 FP16 FP32

Top 1 71.04 % 71.05 % 71.04 %

Top 5 89.83 % 89.82 % 89.83 %

D3.3 Version 1.1

152

Table 96: MobileNetV3 (A100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 0.524 0.702 0.541 0.805 0.580 1.044

Achieved

performance [IPS] 1908.40 11396.01 1848.43 9937.89 1724.14 7662.84

Achieved

performance [GOPS] 339.69 2028.49 329.02 1768.94 306.90 1363.98

Peak performance

[GOPS] 624000 312000 156000

Performance ratio 0.05 % 0.33 % 0.11 % 0.57 % 0.20 % 0.87 %

Memory utilization

[GB]
0.653 0.665 0.653 0.667 0.657 1.099

Power [W] 87 112 89 118 98 137

Idle power [W]

Inference energy

[mJ] 45.59 9.83 48.15 11.87 56.84 17.88

GOPS/W 3.90 18.11 3.70 14.99 3.13 9.96

Table 97: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Tesla A100

Classification accuracy INT8 FP16 FP32

Top 1 36.09 % 63.18 % 63.15 %

Top 5 61.95 % 84.82 % 84.82 %

Table 98: YoloV4 (A100)

Performance INT8 FP16 FP32

Batchsize 1 8 1 8 1 8

Inference time [ms] 2.142 9.774 2.491 12.656 4.238 23.173

D3.3 Version 1.1

153

Achieved performance

[Inferences/s] 466.85 818.50 401.45 632.11 235.96 345.23

Achieved performance

[GOPS] 28197.95 49437.28 24247.29 38179.52 14252.01 20851.85

Peak performance

[GOPS] 624000 312000 156000

Performance ratio 4.52 % 7.92 % 7.77 % 12.24 % 9.14 % 13.37 %

Memory utilization [GB] 0.765 1.087 0.857 1.417 1.473 2.519

Power [W] 207 351 265 396 298 398

Idle Power [W]

Inference energy [mJ] 443.39 428.83 660.12 626.47 1262.92 1152.86

GOPS/W 136.22 140.85 91.50 96.41 47.83 52.39

Table 99: mAP accuracies for YoloV4 on NVIDIA Tesla A100

Classification accuracy INT8 FP16 FP32

mAP (.50) 48.1 % 49.4 % 49.4 %

mAP (.50:.95) 73.8 % 74.2 % 74.2 %

3.4.18 Xilinx Ultrascale FPGAs
For a first evaluation of the performance and energy efficiency of FPGAs for ML inference,
the Xilinx DPU (cf. Chapter 3.2.6.10) is used on state of the Art Xilinx UltraScale+ FPGAs. The
used reconfigurable SoCs combine Quad Arm Cortex-A53 cores with an FPGA fabric in one
device. Two FPGA boards have been utilized for the measurements, spanning from low-cost
(Avnet Ultra96-v2 equipped with a Xilinx Zynq UltraScale+ ZU3EG) to mid-range
reconfigurable SoCs (Trenz UltraSOM+ ZU15EG equipped with a Xilinx Zynq UltraScale+
XCZU15EG).

Trenz UltraSOM+ ZU15EG

• Trenz TE0808-04-BBE21-AS UltraSOM+ MPSoC Module
o Xilinx Zynq UltraScale+ XCZU15EG-1FFVC900E FPGA

 Quad-core Arm Cortex-A53, Dual-core Arm Cortex-R5F, Mali-400MP2
 341k 6-input look-up tables (LUTs)
 682k Flip-Flops(FFs)
 3,528 DSP Slices
 744 36kb BRAM blocks (26.2 Mb total)
 112 288kb URAM blocks (31.5 Mb total)

o 4 GByte 64-Bit DDR4 SDRAM

D3.3 Version 1.1

154

o 128 MByte SPI Boot Flash
• Trenz TEBF0808-04A UltraITX+ Baseboard for TE080X UltraSOM+

o Mini-ITX form factor
o PCIe, CAN FD transceiver, DisplayPort, SATA, 3 x USB 3.0
o FMC HPC slot
o Gigabit Ethernet RGMII PHY with RJ45 MagJack
o MicroSD/MMC card socket (bootable)
o 32 GBit (4 GByte) on-board eMMC Flash

• Cost of the complete setup: 3250$

Avnet Ultra96-v2

• Xilinx Zynq UltraScale+ MPSoC ZU3EG A484
o Quad-core Arm Cortex-A53, Dual-core Arm Cortex-R5F, Mali-400MP2
o 71k 6-input look-up tables (LUTs)
o 141k Flip-Flops(FFs)
o 360 DSP Slices
o 216 36kb BRAM blocks (7.6 Mb total)

• 2 GB (512M x32) LPDDR4 Memory
• MicroSD card socket (bootable)
• Wi-Fi / Bluetooth
• Mini DisplayPort
• 1x USB 3.0 Type Micro-B upstream port
• 2x USB 3.0, 1x USB 2.0 Type A downstream ports
• Cost of the complete setup: 300€

The indicated cost for the systems includes the required power supplies, cooling, etc.

3.4.18.1 Peak Performance
The theoretical maximum performance that can be achieved depends on type and number
of utilized DPU cores. In DPU designs with multiple DPU cores, the distribution between the
cores is managed by the Xilinx Runtime library. For evaluation, we have used several
configurations based on three different DPU cores, ranging from the smallest one (B512) to
the largest (B4096). The number behind the “B” corresponds to the peak operations per
clock cycle for the DPU core (INT8). Table 100 shows the theoretical peak performance for
the used DPU cores at a clock frequency of 300 MHz and 200 MHz, respectively. While all
developed FPGA designs in principle run at clock frequencies of 300 MHz and above, power
limitations of the used boards limit most implementations to 200 MHz.

At design time, various parameters for the DPU configurations can be chosen, like high/low
DPS usage or dedicated low power modes. For our implementations, the values have been
chosen to provide maximum performance with the given power constraints.

Table 100: Peak performance of the DPU configurations used for evaluation
at a clock frequency of 300 MHz and 200 MHz

DPU Name Peak ops/clock Peak performance
(300 MHz) [GOPS]

Peak performance
(200 MHz) [GOPS]

B512 512 153.6 102.4

B2304 2304 691.2 460.8

B4096 4096 1228.8 819.2

D3.3 Version 1.1

155

3.4.18.2 Tool Flow
For the FPGA development, Xilinx Vitis AI version 1.3 has been used together with Xilinx Vitis
2020.2. The designflow consists of two basic steps: (1) development of the target platform
and (2) quantization and compilation of the AI model.

Development of the target platform
The target platform consists of a hardware design integrating the DPU and the required
peripherals on the one hand and a board-specific Linux image, running on the embedded
ARM on the other hand. The design flow consists of two main parts. First, the configuration
and the number of cores of the DPU are specified together with the remainder of the
targeted system design. Additional constrains such as the maximum clock frequency of the
DPU on the used board have to be considered. After successful built of the hardware design,
a Linux image needs to be created, which will run on the ARM cores of the reconfigurable
SOC. The image has to be configured with the Xilinx runtime library for the DPU together
with additional board-specific drivers.

Compilation of the AI model
The second flow consists of the preparation of the AI model for execution on the DPU. The
model has to be present in a common AI-framework format (Tensoflow/Keras, Caffe or
PyTorch). Hence, it can be trained for the intended use-case with the common tools provided
by the used framework. The trained model is then quantized with the help of the Xilinx VITIS-
AI library into an 8-bit Integer format. To compensate for accuracy loss due to quantization,
additional training runs are performed, for which training data has to be provided. The last
step, before the model can be loaded onto the reconfigurable SOC, is to compile the model
for the used DPU. The resulting compiled model can be used on any FPGA, which contains a
DPU with the exact same configuration, the model was compiled for.

3.4.18.3 Results
For performance evaluation, various implementations have been compared, differing in the
DPU configuration, the number of integrated DPU cores, and the number of software
threads. In the tables, presenting the results, single threaded refers to an implementation
where pre-processing, DPU calls, and postprocessing are performed by a single thread. In
the multithreaded implementations, the threads are evenly distributed between pre-
processing, DPU-calls, and postprocessing.

3.4.18.3.1 ResNet50
For performance evaluation of ResNet50, a set of 1000 images has been used. Table 101
summarizes the results for the Trenz system and Table 102 the results achieved with the
Ultra96-v2. For all analyzed nets, pre-processing includes reading the input data from the SD
card and during postprocessing the results are stored in external DRAM.

For singlethread implementations, the latencies of the single steps (pre-processing,
inference, and postprocessing) add up to the total time for one frame. When using
multithreading, the latency increases but the throughput (inferences/s) also significantly
grows. In the tables, B2304 x3, 200 MHz, refers to an FPGA implementation with a DPU that
integrates three B2304 DPU cores, running at 200 MHz. The theoretical peak performance
is based on the DPU core, the number of instances and the clock frequency.

D3.3 Version 1.1

156

Figure 53: Example of current measurements for an FPGA configuration including
two B4096 DPUs running at 200MHz on the Xilinx XCZU15EG-1 FPGA –

single-threaded (left) and using 12 threads (right)

Power measurements for all experiments have been performed with high-speed current-
locking, as discussed in Chapter 3.1.3. Complete system power has been measured, covering
all components of the hardware platforms. Two examples are provided in Figure 53. The
measurement of the single-threaded implementation on the left clearly shows when the
DPU is active and reveals the low utilization of the core. The figure on the right shows a
measurement with the same time resolution, where a multithreaded software
implementation provides enough data to keep the multicore DPU continuously busy (the
right figure has a different offset for the measured power). While in general the average
power is most interesting, the graphs provide interesting insights into the running
application, which will be of high interest especially for the own FPGA implementations that
are planned in the project.

For the FPGA platforms, idle power has been measured in two system states and data for
both is provided in the subsequent tables:

1) The system is powered on but the reconfigurable SoC is not yet configured

2) The system is powered on, the reconfigurable SoC is configured and Linux has finished
booting on the embedded Arm cores but ML inference has not yet started

The results in the subsequent tables show that a high performance ratio can be achieved,
especially when multithreading the implementation. It needs to be noticed that the batch
size is one for all reported FPGA implementations. As can be seen in the tables, there is a
trade-off between high throughput (Inferences/s) and low latency since increasing the
number of threads significantly increases the throughput but at the same time increases the
latency.

Table 101: Evaluation of ResNet50 on the Trenz UltraSOM+ ZU15EG FPGA system

Platform Trenz UltraSOM+ ZU15EG

DPU B2304 x3, 200MHz B4096 x2, 200MHz

Number of threads 1 9 18 1 6 12

Inference Time [ms] 30.64 31.96 61.61 20.44 20.99 39.47

D3.3 Version 1.1

157

Latency [ms] 48.82 50.99 82.41 38.74 39.34 58.81

Achieved performance
[Inferences/s]

20.48 93.37 96.62 25.81 94.55 100.66

Achieved performance
[GOPS]

159.36 726.38 751.73 200.81 735.57 783.10

Peak performance
[Gops/s]

1382.4 1382.4 1382.4 1638.4 1638.4 1638.4

Performance Ratio 11.53 % 52.55 % 54.38 % 12.26 % 44.90 % 47.80 %

Cost Metrics

FPGA Resources 124k (36.6 %) LUTs, 216k (31.6 %) FFs,
1,302 (36.9 %) DSP,
333 (44.8 %) BRAM, 72 (64.3 %) URAM

102k (29.8 %) LUTs, 201k (29.4 %)FFs,
1,412 (40.0 %) DSP,
342 (46.0 %) BRAM, 48 (42.9 %)
URAM

Power [W] 15.26 20.94 21.38 15.26 20.54 21.26

Idle Power [W]1 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6

Energy/Inference [J] 0.745 0.224 0.221 0.591 0.217 0.211

Table 102: Evaluation of ResNet50 on the Avnet Ultra96-v2 FPGA system

Platform Avnet Ultra96-v2

DPU B2304 x1, 200MHz B512 x1, 200MHz B512 x1, 300MHz

Number of threads 1 12 1 12 1 12

Inference Time [ms] 40.31 158.33 100.95 395.03 72.78 284.42

Latency [ms] 57.86 180.78 118.25 414.44 90.49 304.82

Achieved performance
[Inferences/s]

17.28 25.19 8.45 10.11 11.04 14.04

Achieved performance
[GOPS]

134.46 196.00 65.73 78.62 85.86 109.20

Peak performance
[Gops/s]

460.8 460.8 102.4 102.4 153.6 153.6

Performance Ratio 29.18 % 42.54 % 64.19 % 76.78 % 55.90 % 71.09 %

Cost Metrics

FPGA Resources 56k (79.7 %) LUTs,
91k (64.2 %) FFs,
326 (90.6 %) DSP,
171 (79.2 %) BRAM

41k (58.5 %) LUTs,
52k (36.8 %) FFs,
78 (21.7 %) DSP,
77.5 (35.9 %) BRAM

1 The first value is measured while the reconfigurable SoC is unconfigured, the second is
measured after configuration with Linux completely booted

D3.3 Version 1.1

158

Power [W] 6.756 7.368 5.496 5.532 5.928 6.144

Idle Power [W] 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4

Energy/Inference [J] 0.391 0.292 0.651 0.547 0.537 0.438

In the following table, the achieved accuracies are provided for the implementations
discussed above. The results are independent of the used DPU and hardware platform.

Table 103: Top-1 and Top-5 accuracies for ResNet50 using the Xilinx DPU on UltraScale+

Classification accuracy INT8

Top 1 73.99 %

Top 5 91.70 %

3.4.18.3.2 YoloV4
For performance evaluation of YoloV4, a set of 404 images has been used. Table 104
summarizes the results for the Trenz system and Table 105 the results achieved with the
Ultra96-v2.

Table 104: Evaluation of YoloV4 on the Trenz UltraSOM+ ZU15EG FPGA system

Platform Trenz UltraSOM+ ZU15EG

DPU B2304 x3, 200MHz B4096 x2, 200MHz

Number of threads 1 9 18 1 6 12

Inference Time [ms] 198.50 202.78 369.79 118.11 119.38 205.16

Latency [ms] 218.88 225.11 397.32 141.21 139.26 225.02

Achieved performance
[Inferences/s]

4.57 14.55 15.91 7.06 16.54 19.10

Achieved performance
[GOPS]

275.95 878.75 960.95 426.64 999.02 1153.72

Peak performance
[Gops/s]

1382.4 1382.4 1382.4 1638.4 1638.4 1638.4

Performance Ratio 19.96 % 63.57 % 69.51 % 26.04 % 60.98 % 70.42 %

Cost Metrics

FPGA Resources 124k (36.6 %) LUTs, 216k (31.6 %) FFs,
1,302 (36.9 %) DSP,
333 (44.8 %) BRAM, 72 (64.3 %) URAM

102k (29.8 %) LUTs, 201k (29.4 %)FFs,
1,412 (40.0 %) DSP,
342 (46.0 %) BRAM, 48 (42.9 %)
URAM

Power [W] 16.22 22.94 23.18 17.30 23.30 24.50

Idle Power [W] 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6

Energy/Inference [J] 3.551 1.577 1.457 2.450 1.409 1.283

D3.3 Version 1.1

159

Table 105: Evaluation of YoloV4 on the Avnet Ultra96-v2 FPGA system

Platform Avnet Ultra96-v2

DPU B2304 x1, 200MHz B512 x1,
200MHz

B512 x1,
300MHz

Number of threads 1 6 12 6 6

Inference Time [ms] 223.37 424.16 850.24 1375.72 956.64

Latency [ms] 246.62 472.35 900.41 1419.17 995.49

Achieved performance
[Inferences/s]

4.05 4.69 4.67 1.45 2.08

Achieved performance
[GOPS]

244.91 283.16 282.00 87.56 125.86

Peak performance
[Gops/s]

460.8 460.8 460.8 102.4 153.6

Performance Ratio 53.15 % 61.45 % 61.20 % 85.50 % 81.94 %

Cost Metrics

FPGA Resources 56k (79.7 %) LUTs, 91k (64.2 %) FFs,
326 (90.6 %) DSP, 171 (79.2 %) BRAM

41k (58.5 %) LUTs, 52k (36.8 %) FFs,
78 (21.7 %) DSP, 77.5 (35.9 %) BRAM

Power [W] 7.88 8.22 8.22 5.64 6.31

Idle Power [W] 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4

Energy/Inference [J] 1.944 1.753 1.761 3.891 3.029

In the following table, the achieved accuracies are provided for the implementations
discussed above. The results are independent of the used DPU and hardware platform.

Table 106: mAP accuracies for YoloV4 using the Xilinx DPU on UltraScale+

mAP INT8

mAP (.50) 69.4 %

mAP (.50:.95) 39.0 %

3.4.18.3.3 MobileNetV2
Since, MobileNetV3 could not be compiled for the DPU, MobileNetV2 was used as an
example of a small net. A set of 1000 images has been used. Table 107 summarizes the
results for the Trenz system and Table 108 the results achieved with the Ultra96-v2. In
comparison to the previous examples, the utilization, i.e., the achieved performance vs. the
theoretical maximum, is quite low. This is mainly due to the I/O overhead since in this case
pre-processing requires more time than the inference on the DPU. Obviously, a small
implementation like the B512 on the Ultra96v2 is more suitable for such nets.

D3.3 Version 1.1

160

Table 107: Evaluation of MobileNetV2 on the Trenz UltraSOM+ ZU15EG FPGA system

Platform Trenz UltraSOM+ ZU15EG

DPU B2304 x3, 200MHz B4096 x2, 200MHz

Number of threads 1 18 1 12

Inference Time [ms] 7.68 8.82 6.50 7.34

Latency [ms] 28.12 43.38 26.93 30.36

Achieved performance
[Inferences/s]

35.56 169.19 37.04 169.31

Achieved performance
[GOPS]

21.69 103.20 22.59 103.28

Peak performance
[Gops/s]

1382.4 1382.4 1638.4 1638.4

Performance Ratio 1.57 % 7.47 % 1.38 % 6.30 %

Cost Metrics

FPGA Resources 124k (36.6 %) LUTs, 216k (31.6 %) FFs,
1,302 (36.9 %) DSP,
333 (44.8 %) BRAM, 72 (64.3 %) URAM

102k (29.8 %) LUTs, 201k (29.4
%)FFs, 1,412 (40.0 %) DSP,
342 (46.0 %) BRAM, 48 (42.9
%)URAM

Power [W] 13.82 15.62 13.88 15.74

Idle Power [W] 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6 6.6 / 12.6

Energy/Inference [J] 0.389 0.092 0.375 0.093

Table 108: Evaluation of MobileNetv2 on the Avnet Ultra96-v2 FPGA system

Platform Avnet Ultra96-v2

DPU B2304 x1, 200MHz B512 x1, 300MHz

Number of threads 1 6 12 1 6 12

Inference Time [ms] 10.08 19.77 40.58 15.34 29.74 60.44

Latency [ms] 28.84 41.48 67.24 34.43 52.30 83.49

Achieved performance
[Inferences/s]

34.67 89.15 97.71 28.90 66.82 65.82

Achieved performance
[GOPS]

21.15 54.38 59.60 17.63 40.76 40.15

Peak performance
[Gops/s]

460.8 460.8 460.8 153.6 153.6 153.6

Performance Ratio 4.59 % 11.80 % 12.93 % 11.48 % 26.54 % 26.14 %

D3.3 Version 1.1

161

Cost Metrics

FPGA Resources 56k (79.7 %) LUTs, 91k (64.2 %) FFs,
326 (90.6 %) DSP, 171 (79.2 %) BRAM

41k (58.5 %) LUTs, 52k (36.8 %) FFs,
78 (21.7 %) DSP, 77.5 (35.9 %) BRAM

Power [W] 5.868 6.636 6.756 5.58 6.06 6.108

Idle Power [W] 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4 3.2 / 5.4

Energy/Inference [J] 0.169 0.074 0.069 0.193 0.091 0.093

In the following table, the achieved accuracies are provided for the implementations
discussed above. The results are independent of the used DPU and hardware platform.

Table 109: Top-1 and Top-5 accuracies for MobileNetV3 using the Xilinx DPU on UltraScale+

Classification accuracy INT8

Top 1 65.23 %

Top 5 85.25 %

3.4.19 Xilinx Versal AI Core Series
As discussed in deliverable D4.1, the new Xilinx Versal devices are promising targets for
integration into the RECS platforms. The reconfigurable SoCs combine an ARM processing
system with a programmable logic fabric and a variety of I/O interfaces. In addition to the
classical FPGA-based SoCs, these Adaptive Compute Acceleration Platforms (ACAP)
integrate new DSP engines, optional AI engines and a network on chip infrastructure for
communication between the heterogeneous computing resources. A Versal AI Core Series
VCK190 Evaluation Kit has been utilized for performance, power and accuracy
measurements. The system is equipped with an XCVC1902-2MSEVSVA2197 ACAP with the
following characteristics:

• 400 AI Engines
• 1,968 DSP Engines
• 1,968k System Logic Cells
• 899,840 LUTs
• Dual-Core Arm Cortex-A72Application Processing Unit
• Dual-Core Arm Cortex-R5F Real-Time Processing Unit

3.4.19.1 Peak Performance
Like for the Xilinx UltraScale devices, designs based on the Xilinx DPU have been used for
first evaluations. All implementations are based on the DPUCVDX8G using INT8 data
representation. Six different architectural variants of the DPUCVDX8G have been evaluated,
summarized in Table 100. In the naming, “C32” refers to the use of 32 AI Engine cores per
batch handler while “C64” utilizes 64. The number behind the “B” represents the number of
batch handlers. “L2S2” indicates that there are two load/store interfaces per batch handler.
Finally, “x3” means that three instances of the DPU have been instantiated. The theoretical
peak performance is provided for a PL clock frequency of 333MHz and 1.25GHz AIE clock
frequency.

D3.3 Version 1.1

162

Table 110: Resource requirements and peak performance of the DPU configurations used for evaluation

DPU
Architecture

AIE
Cores

DSP
Slices

BRAM URAM LUTs FFs Peak perf.
[TOPS]

C32B1L2S2 32 139 0 136 83k 111k 10.24

C32B1L2S2x3 96 417 0 408 249k 334k 30.72

C32B3L2S2 96 407 0 264 210k 269k 30.72

C32B6L2S2 192 809 678 343 402k 507k 61.44

C64B1L2S2 64 139 0 136 94k 133k 20.48

C64B5L2S2 320 675 0 392 356k 468k 102.4

3.4.19.2 Tool Flow
The general tool flow is identical to the design flow for the UltraScale+ FPGAs, discussed in
the previous Section. For the development, Xilinx Vitis AI version 2.5 has been used together
with Xilinx Vitis 2022.1.

3.4.19.3 Results
For performance evaluation, various implementations based on different DPU architectures
have been compared, as will be shown in the following. Power measurements are provided
for the Versal device, excluding the supporting devices on the VCK190 Evaluation Kit. In
addition to the power when executing the models, idle power is reported for the system
state, where the system is powered on, the Versal device is configured and Linux has finished
booting on the embedded Arm cores but ML inference has not yet started.

3.4.19.3.1 ResNet50

Table 111: Evaluation of ResNet50 on the Versal AI Core Series VCK190 Evaluation Kit

Platform Versal AI Core Series VCK190 Evaluation Kit

DPU C31B1 C32B1x3 C32B3 C32B6 C64B1 C64B5

Inference Time [ms] 1.908 1.908 1.882 1.965 1.391 1.588

Latency [ms] 1.908 1.908 1.882 1.965 1.391 1.588

Achieved performance
[Inferences/s]

524 1056 1594 3053 719 3149

Achieved performance
[TOPS]

4.077 8.216 12.401 23.752 5.594 24.499

Peak performance
[TOPS]

10.24 30.72 30.72 61.44 20.48 102.4

Performance Ratio 39.81 % 26.74 % 40.37 % 38.66 % 27.31 % 23.93 %

Idle Power [W] 14.90 23.66 19.82 27.86 16.22 30.62

D3.3 Version 1.1

163

Power [W] 20.30 34.70 32.42 51.62 23.42 55.46

Energy/Inference [mJ] 38.74 32.86 20.34 16.91 32.57 17.61

GOPS/Watt 200.82 236.76 382.52 460.14 238.85 441.75

Table 112: Top-1 and Top-5 accuracies for ResNet50 on the Versal AI Core Series VCK190 Evaluation Kit

Classification accuracy INT8

Top 1 73.99 %

Top 5 91.70 %

3.4.19.3.2 YoloV4

Table 113: Evaluation of YoloV4 on the Versal AI Core Series VCK190 Evaluation Kit

Platform Versal AI Core Series VCK190 Evaluation Kit

DPU C31B1 C32B1x3 C32B3 C32B6 C64B1 C64B5

Inference Time [ms] 17.241 17.241 19.737 30.769 12.821 22.831

Latency [ms] 17.241 17.241 19.737 30.769 12.821 22.831

Achieved performance
[Inferences/s]

58 140 152 195 78 219

Achieved performance
[TOPS]

3.503 8.456 9.181 11.778 4.711 13.228

Peak performance
[TOPS]

10.24 30.72 30.72 61.44 20.48 102.4

Performance Ratio 34.21 % 27.53 % 29.89 % 19.17 % 23.00 % 12.92 %

Idle Power [W] 14.90 23.66 19.82 27.86 16.22 30.62

Power [W] 19.58 35.30 31.10 43.70 22.46 48.38

Energy/Inference [mJ] 337.59 252.14 204.61 224.10 287.95 220.91

GOPS/Watt 178.92 239.55 295.20 269.52 209.76 273.41

Table 114: mAP accuracies for YoloV4 on the Versal AI Core Series VCK190 Evaluation Kit

mAP INT8

mAP (.50) 69.4 %

mAP (.50:.95) 39.0 %

D3.3 Version 1.1

164

3.4.19.3.3 MobileNetV3

Table 115: Evaluation of MobileNetV3 on the Versal AI Core Series VCK190 Evaluation Kit

Platform Versal AI Core Series VCK190 Evaluation Kit

DPU C31B1 C32B1x3 C32B3 C32B6 C64B1 C64B5

Inference Time [ms] 0.664 0.664 0.987 1.685 0.629 1.503

Latency [ms] 0.664 0.664 0.987 1.685 0.629 1.503

Achieved performance

[Inferences/s]

1505 2216 3038 3560 1590 3326

Achieved performance

[TOPS]

0.268 0.394 0.541 0.634 0.283 0.592

Peak performance

[TOPS]

10.24 30.72 30.72 61.44 20.48 102.4

Performance Ratio 2.62% 1.28% 1.76% 1.03% 1.38% 0.58%

Idle Power [W] 14.90 23.66 19.82 27.86 16.22 30.62

Power [W] 17.18 26.54 22.94 31.70 18.50 34.46

Energy/Inference [mJ] 11.42 11.98 7.55 8.90 11.64 10.36

GOPS/Watt 15.59 14.86 23.57 19.99 15.30 17.18

Table 116: Top-1 and Top-5 accuracies for MobileNetV3 on the Versal AI Core Series VCK190 Evaluation Kit

Classification accuracy INT8

Top 1 65.23%

Top 5 85.25%

D3.3 Version 1.1

165

3.5 Comparison of DL Accelerators
The VEDLIoT project is trying to find the best suited accelerators for the given use-cases. An
evaluation of all the ML hardware, that is available at the partners, was performed. The
results are summed up in the following graphics. The graphics are categorized by the three
ML models that were chosen for this evaluation (ResNet50, MobileNetV3, YoloV4) (cf.
Chapter 3.1.2.1). The graphs show performance in GOPS over power in Watt and the results
for different quantization are marked in multiple colours. An imaginary diagonal through the
coordinate system represents energy efficiency in GOPS/W. In addition, energy efficiency is
visualized in bar diagrams. In comparison to the results shown in D3.1, the list of accelerators
was extended by High-Performance NVIDIA Tesla GPUs, the newer generation of NVIDIA
Jetson AGX Orin SoCs, NVIDIA Orin NX SoCs and the Hailo.AI Hailo-8 PCIe-based DL
accelerator. In addition the performance evaluation was validated by measuring the
accuracy for all vendor specific DL toolchains.

As a result of this analysis it is approved that the NVIDIA Xavier NX, chosen for the new
VEDLIoT hardware u.RECS, is a good choice in terms of efficiency and that classical x86 lack
far behind for ML applications. In addition the Hailo.AI Hailo-8 is a perfect candidate for
PCIe based acceleration of ML use-cases. In the following comparison the Hailo-8 results are
displayed without the necessary host system, making it complicated to directly compare it
with the other accelerators. Nevertheless, it is the most efficient ML-accelerator we could
observe in the frame of the VEDLIoT project.

3.5.1 ResNet50
The performance results for the ResNet50 benchmarks are shown in Figure 54. Figure 55 is
a more clearly representation of energy efficiency showing GOPS/W.

Figure 54: ResNet50 Performance Diagram

D3.3 Version 1.1

166

Figure 55: ResNet50 Efficiency Diagram

3.5.2 MobileNetV3 Small
The MobileNetV3 Small is the smallest model tested in the VEDLIoT project, the
performance results are depicted in Figure 56. The power efficiency of all accelerators is
shown in Figure 57.

D3.3 Version 1.1

167

Figure 56: MobileNetV3 Performance Diagram

Figure 57: MobileNetV3 Efficiency Diagram

D3.3 Version 1.1

168

3.5.3 YoloV4
The YoloV4 model is the largest in the current set. The performance results of all tested
accelerators are shown in Figure 58. The corresponding power efficiency is shown in Figure
59.

Figure 58: YoloV4 Performance Diagram

Figure 59: YoloV4 Efficiency Diagram

D3.3 Version 1.1

169

4 Conclusion

This report is a joint work of WP6 and WP3, providing an overview of the current state of the
edge AI systems and how VEDLIoT can leverage and improve the existing ecosystem. The
content has been produced by Task 6.1 (Survey of Deep Learning Inference Tools, Interfaces
and Compilers) and Task 3.1 (Evaluation of existing architectures and compilers for DL), as
the two tasks are related, covering different aspects of edge AI systems. This deliverable
was previously released in an intermediate version as D3.1, which was extended by
evaluation of newly available hardware and accuracy measurements for DL toolchains.

This report provides an overview of the current state of the art in edge AI processing,
covering the typically used deployment stack and walks the reader through the detailed
description of the most popular deep learning frameworks, platforms, and compilers and
their position in the deep learning ecosystem. VEDLIoT has come up with a VEDLIoT model
zoo, containing commonly used models for benchmarking and analysis, which is described in
this report. The model zoo is continuously maintained and updated throughout the project
in an attempt to include new developments in the project.

An extensive analysis of novel deep learning accelerator platforms is presented, covering
both dedicated ASICs as well as IP Cores. The different architectures are briefly explained,
covering key elements of processing, memory, interfaces, as well as performance and energy
efficiency. A comparison at the end shows the relation of the different accelerators and their
performance respective performance regions. On average, over all architectures, a power
efficiency in the order of 1 TOPS/W is achieved, based on specifications extracted from
information provided by the respective vendors.

In addition to the detailed analysis of novel deep learning accelerators, another huge part
of the report covers an in-depth evaluation of available DL accelerator platforms, comparing
the performance and energy-efficiency of different accelerators among each other’s and
against a commonly accepted baseline, based on benchmarking and measurement activities
conducted within VEDLIoT. A methodology for measuring the different figures has been
established as a common reference. Results show that the NVIDIA Jetson accelerators,
particularly the Jetson NX, show high energy efficiency across different models and data
formats of up to 350 GOPS/W. The benchmarks are confirmed by a comprehensive accuracy
evaluation proving that all measurements are performed using representative data similar
to the requirements of the use-cases.

The Kenning platform presented in this report aims to provide an interface for switching
between various compilers depending on chosen hardware and models. Kenning provides
support for a wide range of available technology, offering automated benchmarking,
characterization, and deployment. Tight integration of Kenning with the VEDLIoT hardware
platform is pursued.

In summary, this report presents an in-depth overview of deep learning tools, models and
technology, combined with a sophisticated methodology for evaluation and benchmarking
new accelerators in a heterogeneous hardware environment. While extensive benchmarking
and research has been performed, this is still an activity to be continued beyond the frame
of the VEDLIoT project, as most of the presented novel hardware platforms are not yet
available for hands-on benchmarking, mainly due to supply-chain problems in the electronics
industry, which are currently faced on a global scale.

D3.3 Version 1.1

170

5 References

[1] J. Roesch. [Online]. Available: URL: http://dx.doi.org/10.1145/3211346.3211348.

[2] “Apache Software Foundation,” [Online]. Available: https://tvm.apache.org/docs/.

[3] G. Developers, “FlatBuffers Documentation,” [Online]. Available:
https://google.github.io/flatbuffers/index.html.

[4] G. Developers, “TensorFlow Lite Documentation,” [Online]. Available:
https://www.tensorflow.org/lite/guide?hl=en.

[5] A. Demidovskij, “learning workbench: comprehensive analysis and tuning of neural
networks inference.,” 2019.

[6] W.-F. Lin, “ Onnc: a compilation framework connecting onnx to roprietary deep learning
accelerators.,” in International Conference on Artificial Intelligence Circuits and Systems
, 2019.

[7] W.-F. Lin, “Onnc-based software development platform for configurable nvdla
designs,” in International Symposium on VLSI Design, Automation and Test (VLSI-DAT),
2019.

[8] N. Rotem, “Graph Lowering Compiler Techniques for Neural Networks,” 2019.

[9] P. Mattson et al., “MLPerf: An Industry Standard Benchmark Suite for Machine Learning
Performance,” in IEEE Micro, vol. 40, no. 2, pp. 8-16, doi: 10.1109/MM.2020.2974843,
2020.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language,” in http://arxiv.org/abs/1810.04805,
CoRR, 2018.

[11] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, doi:
10.1109/CVPR.2016.90, 2016.

[12] Chen, Liang-Chieh, et al., “Encoder-decoder with atrous separable convolution for
semantic image segmentation,” in Proceedings of the European conference on computer
vision (ECCV), 2018.

[13] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao, “Yolov4: Optimal
speed and accuracy of object detection,” in arXiv preprint arXiv:2004.10934, 2020.

[14] He, Kaiming, et al., “Mask r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2017.

[15] A. Howard et al., “Searching for MobileNetV3,” in IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1314-1324, doi: 10.1109/ICCV.2019.00140, 2019.

D3.3 Version 1.1

171

[16] Tan, Mingxing and Quoc Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International Conference on Machine Learning. PMLR, 2019.

[17] Tan, Mingxing, Ruoming Pang, and Quoc V. Le., “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020.

[18] Ma, Ningning, et al., “Shufflenet v2: Practical guidelines for efficient cnn architecture
design,” in Proceedings of the European conference on computer vision (ECCV), 2018.

[19] Diganta Misra, “Mish: {A} Self Regularized Non-Monotonic Neural Activation Function,”
CoRR, http://arxiv.org/abs/1908.08681, 2019.

[20] “ImageNet Dataset,” [Online]. Available: https://www.image-net.org/. [Accessed 09
2022].

[21] “COCO Dataset,” [Online]. Available: https://cocodataset.org/. [Accessed 09 2022].

[22] “COCO-API,” [Online]. Available: https://github.com/cocodataset/cocoapi. [Accessed
09 2022].

[23] A. Jani, “Maxim Showcases Efficient Custom AI,” Microprocessor Report, 2021.

[24] L. Gwennap, “Kneron Delivers Efficient AI,” Microprocessor Report, 2020.

[25] L. Gwennap, “Kneron KL720 Boosts Efficiency,” Microprocessor Report, 2020.

[26] L. Gwennap, “XMOS Xcore.ai Adds Vector Unit,” Microprocessor Report, 2020.

[27] B. Wheeler, “RISC-V Enables IoT Edge Processor,” Microprocessor Report, 2018.

[28] L. Gwennap, “GreenWaves GAP9 Goes Faster,” Microprocessor Report, 2020.

[29] L. Gwennap, “Kendryte Embeds AI for Surveillance,” Microprocessor Report, 2019.

[30] B. Wheeler, “Bitmain SoC Brings AI to the Edge,” Microprocessor Report, 2019.

[31] M. Demler, “Syntiant NDP120 Sharpens Its Hearing,” Microprocessor Report, 2021.

[32] M. Demler, “Syntiant NDP120 Sharpens Its Hearing,” Microprocessor Report, 2021.

[33] L. Gwennap, “Intel Gains Myriad Customers,” Microprocessor Report, 2018.

[34] M. Demler, “Coherent Logix Configures Edge AI,” Microprocessor Report, 2020.

[35] M. Demler, “Hailo Illuminates Low-Power AI Chip,” Microprocessor Report, 2019.

[36] M. Demler, “Blaize Ignites Edge-AI Performance,” Microprocessor Report, 2020.

[37] M. Demler, “Flex Logix Moves Into Chips,” Microprocessor Report, 2019.

[38] N. Developers, “Nvdla primer,” 2021. [Online]. Available: http://nvdla.org/primer.html.

D3.3 Version 1.1

172

[39] T. Moreau, “A hardware-software blueprint for flexible deep learning specialization,”
arXiv:1807.04188, 2019.

[40] X. Zhang, “an Automated Tool for Building High-Performance DNN Hardware
Accelerators for FPGAs,” 2018.

[41] [Online]. Available: https://github.com/IBM/AccDNN.

[42] M. Demler, “Vsora Drives to Deliver Petaflops,” Microprocessor Report, 2020.

[43] M. Demler, “Andes plots RISC-V vector heading,” Microprocessor Report, 2020.

[44] L. Gwennap, “LeapMind jumps on binary networks,” Microprocessor Report, 2020.

[45] M. Demler, “Ceva NeuPro accelerates neural nets,” Microprocessor Report, 2018.

[46] M. Demler, “Imagination Series4 tiles tensors,” Microprocessor Report, 2020.

[47] M. Demler, “Ceva SensPro2 Doubles AI Throughput,” Microprocessor Report, 2021.

[48] “DPUCZDX8G for Zynq UltraScale+ MPSoCs,” [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/dpu/.

[49] M. Demler, “Think Silicon Spins AI Accelerator,” Microprocessor Report, 2020. [Online].

[50] A. Jani, “SiFive VIU7-256 Takes Vector Lead,” Microprocessor Report.

[51] A. Jani, “SiFive Brings Vectors to S-Series,” Microprocessor Report, 2021.

[52] M. Demler, “Ethos-N78 Boosts AI Efficiency,” Microprocessor Report, 20202.

[53] M. Demler, “Cortex-M55 Supports Tiny-AI Ethos,” Microprocessor Report, 2020.

[54] L. Gwennap, “Cortex-A55 Improves Memory,” Microprocessor Report, 2017.

[55] L. Gwennap, “Cortex-A75 Has DynamIQ Debut,” Microprocessor Report , 2018.

[56] L. Gwennap, “Arm Dot Products Accelerate CNNs,” Microprocessor Report , 2018.

[57] Linley Group, “AVX2 Refreshes x86 Architecture,”
https://www.linleygroup.com/mpr/h/article.php?id=10794, 2011.

[58] OpenVINO, “https://docs.openvino.ai/latest/index.html,” [Online].

[59] Google, “TensorFlow Lite Example,” [Online]. Available: https://github.com/google-
coral/tflite. [Accessed 14 10 2021].

[60] Google, “Edge TPU Compiler,” [Online]. Available:
https://coral.ai/docs/edgetpu/compiler/. [Accessed 14 10 2021].

[61] Google, “Edge TPU Benchmarks,” [Online]. Available:
https://coral.ai/docs/edgetpu/benchmarks/. [Accessed 14 10 2021].

D3.3 Version 1.1

173

[62] Hailo.ai, “Hailo-8 Overview,” [Online]. Available: https://hailo.ai/de/products/hailo-
8/#overview. [Accessed 30 09 2022].

[63] congatec, “conga-SMX8-Plus,” [Online]. Available:
https://www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-
SMX8-Plus.pdf. [Accessed 29 9 2022].

[64] NVIDIA, “Jetson AGX Orin Series Module Data Sheet,” [Online]. Available:
https://developer.nvidia.com/embedded/secure/jetson/agx_orin/jetson_agx_orin_ds.
[Accessed 29 07 2022].

[65] NVIDIA, “TensorRT SDK,” [Online]. Available: https://developer.nvidia.com/tensorrt.

[66] NVIDIA, “Xavier AGX Module Specs,” [Online]. Available:
https://developer.nvidia.com/embedded/jetson-agx-xavier. [Accessed 14 10 2021].

[67] NVIDIA, “Overview of Jetson Computer on Modules,” [Online]. Available:
https://developer.nvidia.com/embedded/jetson-modules.

[68] NVIDIA, “Jetson Nano Module Specs,” [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-nano/product-development/.

[69] NVIDIA, “GeForce GTX 1660 Ti Streaming Multiprocessor, In-Depth,” [Online].
Available: https://www.nvidia.com/en-us/geforce/news/geforce-gtx-1660-ti-
advanced-shaders-streaming-multiprocessor/.

[70] Toms Hardware, “Nvidia GeForce GTX 1660 Review: The Turing Onslaught Continues,”
[Online]. Available: https://www.tomshardware.com/reviews/nvidia-geforce-gtx-
1660-turing-tu116,6027.html.

[71] NVIDIA, “NVIDIA V100,” [Online]. Available: https://www.nvidia.com/de-de/data-
center/v100/. [Accessed 27 09 2022].

[72] NVIDIA, “NVIDIA A100,” [Online]. Available: https://www.nvidia.com/de-de/data-
center/a100/. [Accessed 27 09 2022].

[73] KERAS, “Keras Applications,” [Online]. Available:
https://keras.io/api/applications/#resnet. [Accessed 30 9 2022].

D3.3 Version 1.1

174

6 List of Figures
Figure 1: VEDLIoT abstracted overview. Parts covered by this report appear in the middle
part (WP6 and WP3) .. 7
Figure 2: Popularity of frameworks over time (based on Google Trends), between 2016-06
till 2021-06. The popularity is normalized to range between 0 and 100, where 100 means the
highest popularity in a given period of time. .. 12
Figure 3: The TVM compilation flow ... 19
Figure 4 : Bert: (From [10]) An illustration of the difference between BERT, GPT and ELMo
 ... 31
Figure 5: ResNet: An example of a residual bottleneck block introduced in [11] (Figure 5 from
[11]) .. 32
Figure 6: DeepLab: (From [12]) Subfigure (c) shows an atrous depthwise convolution 32
Figure 7: MobNet: Inverted residual bottleneck. (Figure 3 from [15]) 33
Figure 8: EDet: (from [17]) The bidirectional feature pyramid ... 34
Figure 9: ShNet: (Figure 3 from [18]) (a) and (b) shows the ShuffleNetV1 block and (c) and
(d) shows the ShuffleNetV2 block .. 34
Figure 10: Resistive Measurement .. 42
Figure 11: Oscilloscope based high-speed measurement of supply current 42
Figure 12: Inductive Measurements ... 43
Figure 13: Node selection screen of the RECS_Master WebGUI .. 43
Figure 14: Block diagram of the MAX78000 [23] .. 58
Figure 15 : Block diagram of one AI core [23] ... 59
Figure 16: Architecture of the GPX-10 SoC [Jan20] .. 60
Figure 17: Compute engine of the GPX-10, combining digital storage and analog processing
[Jan20] ... 61
Figure 18: Kneron KL520 block diagram .. 62
Figure 19: Architecture overview of the Xcore CPU [26] .. 63
Figure 20: Block diagram of the Xcore.ai [26] ... 64
Figure 21: Block diagram of the GAP8 processor [27] ... 65
Figure 22: Block diagram of the Kendryte K210 SoC [30] .. 66
Figure 23: Block diagram of the NDP120 SoC [31] .. 68
Figure 24: Block diagram of the Myriad X [30] .. 70
Figure 25: Function blocks inside the PE and DMR Array [34] ... 72
Figure 26: Detailed view of the Accelerator structure [34] .. 72
Figure 27: Visualization of the DNN layers on the chip [35] ... 74
Figure 28: Hailo-8 Bus Structure [35] .. 75
Figure 29: Block diagram of the Sophon BM1880 SoC [30] .. 76
Figure 30: Sequential (TensorFlow-based) and streaming (Blaize) neural-network execution
[36] .. 77
Figure 31: Blaize Pathfinder system-on-module [36] .. 78
Figure 32: Size and power comparison of Half Height PCIe Card and M.2 22x80 Card 79
Figure 33: InferX X1 chip ... 80
Figure 34: InferX X1 coprocessor chip [37] .. 80
Figure 35: Example of InferX pipeline operations [37] .. 81
Figure 36: Example of an accelerator architecture generated by AccDNN [40] 84
Figure 37: High-level architecture of the VSORA AD1028 [42] .. 85
Figure 38: Architecture of the Andes NX27V CPU [43] ... 86
Figure 39: Integration of the vector pipeline into the NX27V scalar unit via the vector
instruction queue (VIQ) [43] ... 86

D3.3 Version 1.1

175

Figure 40: Architecture overview of the Ceva NeuPro deep-learning accelerator [45] 88
Figure 41: SensPro2 block diagram [44] ... 90
Figure 42: Architecture of the Imagination Technologies Series4 DLA [46] 92
Figure 43: SiFive VIU7-256 microarchitecture [50] ... 93
Figure 44: Ethos-N78 compute engine [52] ... 94
Figure 45: Cortex M55 pipeline with Helium [53] ... 95
Figure 46: Architecture of the ARM Cortex-A55 [51] .. 96
Figure 47: Overview of Machine Learning Accelerators ... 97
Figure 48: ResNet50 Accuracy Results ... 98
Figure 49: MobileNetV3 small Accuracy Results .. 99
Figure 50: YoloV4 Accuracy Results .. 99
Figure 51: Recall-Precision gradients per class for YOLOv4 with FP32 precision comparing
OpenVino, TensorRT and TVM results ... 100
Figure 52: Recall-Precision gradients per class for YOLOv4 with INT8 precision comparing
TensorRT, Hailo-8 and Xilinx results ... 101
Figure 53: Example of current measurements for an FPGA configuration including two
B4096 DPUs running at 200MHz on the Xilinx XCZU15EG-1 FPGA – single-threaded (left) and
using 12 threads (right) ... 156
Figure 54: ResNet50 Performance Diagram .. 165
Figure 55: ResNet50 Efficiency Diagram .. 166
Figure 56: MobileNetV3 Performance Diagram ... 167
Figure 57: MobileNetV3 Efficiency Diagram ... 167
Figure 58: YoloV4 Performance Diagram .. 168
Figure 59: YoloV4 Efficiency Diagram .. 168

D3.3 Version 1.1

176

7 List of Tables
Table 1: OPs and Multiply-Adds of model subset ... 40
Table 2: Theoretical maximum performance of x86 processors .. 102
Table 3: ResNet50 Performance (Xeon-D 1577) ... 103
Table 4: ResNet50 Accuracy (Xeon-D 1577) .. 104
Table 5: MobileNetV3 Small Performance (Xeon-D 1577) .. 104
Table 6: MobileNetV3 Small Accuracy (Xeon-D 1577) ... 104
Table 7: YoloV4 (Xeon-D 1577) .. 105
Table 8: mAP accuracies for YoloV4 (Xeon-D 1577) ... 105
Table 9: ResNet50 (EPYC 3451) ... 105
Table 10: ResNet50 Accuracy (Xeon-D 1577) .. 106
Table 11: MobileNetV3 Small (EPYC 3451) .. 106
Table 12: MobileNetV3 Small Accuracy (EPYC 3451) ... 107
Table 13: YoloV4 (EPYC 3451).. 107
Table 14: mAP accuracies for YoloV4 (EPYC 3451) .. 107
Table 15: ResNet50 (Myriad) .. 108
Table 16: ResNet50 Accuracy (Myriad) ... 109
Table 17: MobileNetV3 Small (Myriad) ... 109
Table 18: MobileNetV3 Small Accuracy (Myriad) .. 110
Table 19: YoloV4 (Myriad) ... 110
Table 20: mAP accuracies for YoloV4 (Myriad) ... 111
Table 21: INT8 (Coral M.2) .. 111
Table 22: MobileNetV3 Small and ResNet50 INT8 Accuracy (Coral TPU) 112
Table 23: INT8 (Coral Dev) .. 113
Table 24: MobileNetV3 Small and ResNet50 INT8 Accuracy (Coral TPU M.2) 113
Table 25: INT8 (Hailo-8 – Batchsize 1)... 114
Table 26: INT8 (Hailo-8 – Batchsize 8)... 114
Table 27: MobileNetV3 Small and ResNet50 INT8 Accuracy on Hailo-8 115
Table 28: mAP accuracies for YoloV4 on Hailo-8 .. 115
Table 29: INT8 (i.MX8M Plus) ... 116
Table 30: MobileNetV3 Small and ResNet50 INT8 Accuracy (i.MX8M Plus) 116
Table 31: ResNet50 (Orin AGX) .. 117
Table 32: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Orin 117
Table 33: MobileNetV3 Small (Orin AGX) ... 118
Table 34: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Orin 118
Table 35: YoloV4 (Orin AGX) .. 118
Table 36: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Orin ... 119
Table 37: ResNet50 (Xavier AGX LP) ... 120
Table 38: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Xavier 120
Table 39: MobileNetV3 Small (Xavier AGX LP) .. 120
Table 40: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Xavier
 ... 121
Table 41: YoloV4 (Xavier AGX LP) ... 121
Table 42: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Xavier 122
Table 43: ResNet50 (Xavier AGX HP) .. 122
Table 44: MobileNetV3 Small (Xavier AGX HP) ... 123
Table 45: YoloV4 (Xavier AGX HP) ... 123
Table 46: ResNet50 (Orin TVM) ... 126
Table 47: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Orin TVM 127

D3.3 Version 1.1

177

Table 48: MobileNetV3 Small (Orin TVM) .. 127
Table 49: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Orin TVM
 ... 127
Table 50: YoloV4 (Orin TVM) .. 128
Table 51: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Orin TVM 128
Table 52: ResNet50 (Xavier TVM) .. 131
Table 53: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson AGX Xavier TVM ... 131
Table 54: MobileNetV3 Small (Xavier TVM) ... 131
Table 55: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson AGX Xavier
TVM... 132
Table 56: YoloV4 (Xavier TVM) .. 132
Table 57: mAP accuracies for YoloV4 on NVIDIA Jetson AGX Xavier TVM 132
Table 58: ResNet50 (Xavier NX) ... 133
Table 59: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Xavier NX 134
Table 60: MobileNetV3 (Xavier NX) .. 134
Table 61: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Xavier NX
 ... 135
Table 62: YoloV4 (Xavier NX) ... 135
Table 63: mAP accuracies for YoloV4 on NVIDIA Jetson Xavier NX .. 136
Table 64: ResNet50 (Orin NX) .. 136
Table 65: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Orin NX 137
Table 66: MobileNetV3 (Orin NX) .. 137
Table 67: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Orin NX .. 138
Table 68: YoloV4 (Orin NX) ... 138
Table 69: mAP accuracies for YoloV4 on NVIDIA Jetson Orin NX ... 138
Table 70: ResNet50 (TX2) ... 139
Table 71: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson TX2 140
Table 72: MobileNetV3 (TX2) ... 140
Table 73: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson TX2 141
Table 74: YoloV4 (TX2) .. 141
Table 75: mAP accuracies for YoloV4 on NVIDIA Jetson TX2... 141
Table 76: ResNet50 (Nano) ... 142
Table 77: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Jetson Nano 143
Table 78: MobileNet (Nano) ... 143
Table 79: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Jetson Nano 143
Table 80: YoloV4 (Nano) ... 144
Table 81: mAP accuracies for YoloV4 on NVIDIA Jetson Nano .. 144
Table 82: ResNet50 (GTX1660) .. 145
Table 83: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA GTX-1660 146
Table 84: MobileNetV3 (GTX1660).. 146
Table 85: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA GTX-1660 146
Table 86: YoloV4 (GTX1660) ... 146
Table 87: mAP accuracies for YoloV4 on NVIDIA GTX-1660 ... 147
Table 88: ResNet50 (V100) ... 148
Table 89: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Tesla V100.......................... 148
Table 90: MobileNetV3 (V100) ... 149
Table 91: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Tesla V100 149
Table 92: YoloV4 (V100) .. 149
Table 93: mAP accuracies for YoloV4 on NVIDIA Tesla V100 ... 150
Table 94: ResNet50 (A100) ... 151

D3.3 Version 1.1

178

Table 95: Top-1 and Top-5 accuracies for ResNet50 on NVIDIA Tesla A100 151
Table 96: MobileNetV3 (A100) ... 152
Table 97: Top-1 and Top-5 accuracies for MobileNetV3small on NVIDIA Tesla A100 152
Table 98: YoloV4 (A100) .. 152
Table 99: mAP accuracies for YoloV4 on NVIDIA Tesla A100 ... 153
Table 100: Peak performance of the DPU configurations used for evaluation at a clock
frequency of 300 MHz and 200 MHz ... 154
Table 101: Evaluation of ResNet50 on the Trenz UltraSOM+ ZU15EG FPGA system 156
Table 102: Evaluation of ResNet50 on the Avnet Ultra96-v2 FPGA system 157
Table 103: Top-1 and Top-5 accuracies for ResNet50 using the Xilinx DPU on UltraScale+
 ... 158
Table 104: Evaluation of YoloV4 on the Trenz UltraSOM+ ZU15EG FPGA system 158
Table 105: Evaluation of YoloV4 on the Avnet Ultra96-v2 FPGA system 159
Table 106: mAP accuracies for YoloV4 using the Xilinx DPU on UltraScale+ 159
Table 107: Evaluation of MobileNetV2 on the Trenz UltraSOM+ ZU15EG FPGA system 160
Table 108: Evaluation of MobileNetv2 on the Avnet Ultra96-v2 FPGA system 160
Table 109: Top-1 and Top-5 accuracies for MobileNetV3 using the Xilinx DPU on UltraScale+
 ... 161
Table 110: Resource requirements and peak performance of the DPU configurations used
for evaluation.. 162
Table 111: Evaluation of ResNet50 on the Versal AI Core Series VCK190 Evaluation Kit ... 162
Table 112: Top-1 and Top-5 accuracies for ResNet50 on the Versal AI Core Series VCK190
Evaluation Kit .. 163
Table 113: Evaluation of YoloV4 on the Versal AI Core Series VCK190 Evaluation Kit 163
Table 114: mAP accuracies for YoloV4 on the Versal AI Core Series VCK190 Evaluation Kit
 ... 163
Table 115: Evaluation of MobileNetV3 on the Versal AI Core Series VCK190 Evaluation Kit
 ... 164
Table 116: Top-1 and Top-5 accuracies for MobileNetV3 on the Versal AI Core Series VCK190
Evaluation Kit .. 164

D3.3 Version 1.1

179

8 Abbreviations
AccDNN: Accelerator Core Compiler for Deep Neural Network

AI: Artificial Intelligence

AIoT: Artificial Intelligence of Things

ALU: arithmetic logic unit

AP: Average Precision

API: Application Programming Interface

ASIC: Application Specific Integrated Circuit

AVX: Advanced Vector Extensions

B: Bytes

CAN: Controller Area Network

CGRA: Coarse-Grained Reconfigurable Array

CPU: Central Processing Unit

DBB: Data Backbone

DL: Deep Learning

DLA: Deep Learning Accelerator

DMR: Data Memory Router

DPU: Deep Learning Processor

DSP: Digital Signal Processor

FPGA: Field Programmable Gate Array

FPS: Frames Per Second

GPU: Graphics Processing Unit

GUI: Graphical User Interface

GOPS: Giga Operations Per Second

HDMI: High Definition Media Interface

IoT: Internet of Things

IoU: Intersection over Union

IP-Core: Intellectual Property core

IPS: Inferences Per Second

IR: Intermediate Representation

ISA: Instruction Set Architecture

JIT compilation: Just-In-Time compilation

J: Joule

D3.3 Version 1.1

180

MAC: Multiply-Accumulate

mAP: mean Average Precision

MPU: Multiprocessing SIMD Unit

NLP: Natural Language Processing

NPU: Neural Processing Unit

OCT: Optical Coherence Tomography

ONNC: Open Neural Network Compiler

PCIe: Peripheral Component Interconnect Express

PDM: Pulse-Density-Modulation

PE: Processing Elements

PLE: Programmable Layer Engine

RAM: Random-Access Memory

RECS: Resource Efficient Cluster Server

RPC: Remote procedure call

RTL: Register-Transfer Level

SHAVE: Streaming Hybrid Architecture Vector Engine

SIMD: Single Instruction, Multiple Data

SPU: Scalar Processing Unit

SOC: System On Chip

SOTA: State-Of-The-Art

SRAM: Static random-access memory

TCM: Tightly Coupled Memory

TCP: Transmission Control Protocol

TIR: Tensor Intermediate Representation

TOPS: Trillion Operations Per Second

TPU: Tensor Processing Unit

TVM: Tensor Virtual Machine

USB: Universal Serial Bus

VPU: Vision Processing Unit

VRAM: Video Random Access Memory

VTA: Versatile Tensor Accelerator

	Executive Summary
	1 Introduction
	2 Deep Learning Tool Sets
	2.1 Deep Learning deployment stack
	2.1.1 From training to deployment
	2.1.2 Dataset preparation
	2.1.3 Model preparation and training
	2.1.4 Model optimization
	2.1.5 Model compilation and deployment

	2.2 Deep Learning Frameworks
	2.2.1 TensorFlow
	2.2.1.1 General information
	2.2.1.2 Description
	2.2.1.3 TensorFlow children frameworks and enhancements
	2.2.1.3.1 Keras
	2.2.1.3.2 Sonnet
	2.2.1.3.3 TensorFlow Lite
	2.2.1.3.4 TensorFlow.JS
	2.2.1.3.5 TensorFlow Addons
	2.2.1.3.6 TensorFlow Model Garden
	2.2.1.3.7 TensorFlow Model Optimization Toolkit
	2.2.1.3.8 ONNX conversions

	2.2.2 PyTorch
	2.2.2.1 General information
	2.2.2.2 Description
	2.2.2.3 PyTorch children frameworks and enhancements
	2.2.2.3.1 Distiller
	2.2.2.3.2 PyTorch Mobile
	2.2.2.3.3 PyTorch Vision and Audio
	2.2.2.3.4 Detectron2

	2.2.2.4 ONNX conversions

	2.2.3 MXNet
	2.2.3.1 Description
	2.2.3.2 MXNet children frameworks and enhancements
	2.2.3.2.1 GluonCV
	2.2.3.2.2 GluonNLP
	2.2.3.2.3 MXBoard

	2.2.3.3 Other deep learning frameworks

	2.3 Deep Learning Compilers
	2.3.1 Apache TVM
	2.3.1.1 General information
	2.3.1.2 Description
	2.3.1.2.1 Relay Intermediate Representation language
	2.3.1.2.2 Compilation flow
	2.3.1.2.3 Running the model

	2.3.1.3 Features
	2.3.1.4 Supported targets and acceleration libraries

	2.3.2 TensorFlow Lite
	2.3.2.1 General information
	2.3.2.2 Description
	2.3.2.2.1 TFLite FlatBuffers
	2.3.2.2.2 TFLite Model Converter
	2.3.2.2.3 TFLite Interpreter and inference

	2.3.2.3 Features
	2.3.2.4 Supported targets

	2.3.3 OpenVINO
	2.3.3.1 General information
	2.3.3.2 Description
	2.3.3.3 Supported targets

	2.3.4 ONNX Runtime
	2.3.4.1 General information
	2.3.4.2 Description
	2.3.4.3 Features
	2.3.4.4 Supported targets and acceleration libraries

	2.3.5 ONNC
	2.3.5.1 General information
	2.3.5.2 Description
	2.3.5.3 Supported targets

	2.3.6 Glow
	2.3.6.1 General information
	2.3.6.2 Description
	2.3.6.2.1 Compilation flow
	2.3.6.2.2 Model optimizations
	2.3.6.2.3 Running the model

	2.3.6.3 Features
	2.3.6.4 Supported targets

	2.4 ONNX Compatibility
	2.4.1 General information
	2.4.2 ONNX conversion support grid

	2.5 Deep Learning Models
	2.5.1 VEDLIoT Model Zoo
	2.5.1.1 Bert
	2.5.1.2 ResNet
	2.5.1.3 DeeplabV3+
	2.5.1.4 YoloV4
	2.5.1.5 Mask R-CNN
	2.5.1.6 MobileNetV3
	2.5.1.7 EfficientNet
	2.5.1.8 EfficientDet
	2.5.1.9 ShuffleNetV2

	3 Evaluation of DL Accelerators
	3.1 Methodology
	3.1.1 Metrics
	3.1.2 Performance Measurements
	3.1.2.1 Models
	3.1.2.2 Performance
	3.1.2.3 Toolflow

	3.1.3 Power Measurements
	3.1.3.1 Manual
	3.1.3.2 Integrated

	3.1.4 Accuracy
	3.1.4.1 Classifier Accuracy
	3.1.4.2 Object Detection Accuracy

	3.1.5 Kenning
	3.1.5.1 Deployment flow
	3.1.5.2 Kenning structure
	3.1.5.3 Model preparation
	3.1.5.3.1 The kenning.core.dataset.Dataset classes
	3.1.5.3.2 The kenning.core.model.ModelWrapper classes
	3.1.5.3.3 The kenning.core.compiler.ModelCompiler classes

	3.1.5.4 Model deployment and benchmarking on target devices
	3.1.5.4.1 The general communication protocol
	3.1.5.4.2 The kenning.core.runtimeprotocol.RuntimeProtocol classes
	3.1.5.4.3 The kenning.core.runtime.Runtime classes

	3.1.5.5 ONNX conversion
	3.1.5.6 Running the benchmarks
	3.1.5.6.1 Running model training on host
	3.1.5.6.2 Benchmarking trained model on host
	3.1.5.6.3 Testing ONNX conversions
	3.1.5.6.4 Running compilation and deployment of models on target hardware
	3.1.5.6.4.1 Render report from benchmarks

	3.1.5.7 Adding new implementations

	3.2 Deep Learning Platforms
	3.2.1 Graphics Processing Unit
	3.2.2 NVIDIA Jetson
	3.2.3 Deep learning inference on CPUs
	3.2.4 Dedicated AI Accelerators for Ultra-Low-Power
	3.2.4.1 MAXIM MAX78000
	3.2.4.2 Ambient GPX-10
	3.2.4.3 Kneron KL520/KL720
	3.2.4.4 XMOS Xcore.ai
	3.2.4.5 GreenWaves Technologies GAP8 and GAP9
	3.2.4.6 Kendryte K210
	3.2.4.7 NDP120

	3.2.5 Dedicated AI Accelerators
	3.2.5.1 Tensor Cores
	3.2.5.2 Google Coral
	3.2.5.3 Intel Myriad X
	3.2.5.4 Coherent Logix HX40416
	3.2.5.5 Hailo-8
	3.2.5.6 Sophon BM1880
	3.2.5.7 Blaize El Cano
	3.2.5.8 Infer X1

	3.2.6 IP-Cores for ML-Acceleration
	3.2.6.1 NVIDIA Deep Learning Accelerator (NVDLA)
	3.2.6.1.1 Features

	3.2.6.2 Versatile Tensor Accelerator (VTA)
	3.2.6.3 AccDNN
	3.2.6.4 VSORA AD1028
	3.2.6.5 Andes NX27V
	3.2.6.6 LeapMind Efficiera
	3.2.6.7 Ceva NeuPro
	3.2.6.8 Mipsology Zebra
	3.2.6.9 Ceva SensPro2
	3.2.6.10 Xilinx DPU
	3.2.6.11 Xilinx FINN-R
	3.2.6.12 Think Silicon Neox V
	3.2.6.13 Imagination Technologies Series4
	3.2.6.14 SiFive VIU7-256
	3.2.6.15 SiFive VIS7
	3.2.6.16 ARM Ethos-N78
	3.2.6.17 ARM Ethos-U55
	3.2.6.18 ARM Cortex-A55

	3.2.7 Comparison of AI Accelerators

	3.3 Accuracy Results
	3.3.1 ResNet50
	3.3.2 MobileNetV3small
	3.3.3 YoloV4
	3.3.3.1 Recall-Precision Gradients

	3.4 Evaluation Results
	3.4.1 x86 Baseline
	3.4.1.1 Peak Performance
	3.4.1.2 Toolflow
	3.4.1.3 Results

	3.4.2 Intel Myriad X
	3.4.2.1 Peak Performance
	3.4.2.2 Toolflow
	3.4.2.3 Results

	3.4.3 Google Coral TPU (M.2)
	3.4.3.1 Peak Performance
	3.4.3.2 Toolflow
	3.4.3.3 Results

	3.4.4 Google Coral TPU
	3.4.4.1 Coral Dev Board
	3.4.4.2 Peak Performance
	3.4.4.3 Toolflow
	3.4.4.4 Results

	3.4.5 Hailo.AI Hailo-8
	3.4.5.1 Peak Performance
	3.4.5.2 Toolflow
	3.4.5.3 Results

	3.4.6 NXP i.MX8M Plus
	3.4.6.1 Peak Performance
	3.4.6.2 Toolflow
	3.4.6.3 Results

	3.4.7 NVIDIA Jetson AGX Orin
	3.4.7.1 Peak Performance
	3.4.7.2 Toolflow
	3.4.7.3 Results

	3.4.8 NVIDIA Jetson AGX Xavier
	3.4.8.1 Peak Performance
	3.4.8.2 Toolflow
	3.4.8.3 Results (15 W Mode)
	3.4.8.4 Results (30 W Mode)

	3.4.9 NVIDIA Jetson AGX Orin (TVM)
	3.4.9.1 Peak Performance
	3.4.9.2 Toolflow
	3.4.9.2.1 ResNet50
	3.4.9.2.2 MobileNetV3
	3.4.9.2.3 YOLOv4

	3.4.9.3 Results

	3.4.10 NVIDIA Jetson AGX Xavier (TVM)
	3.4.10.1 Peak Performance
	3.4.10.2 Toolflow
	3.4.10.2.1 ResNet50
	3.4.10.2.2 YOLOv4
	3.4.10.2.3 MobileNetV3

	3.4.10.3 Results

	3.4.11 NVIDIA Jetson Xavier NX
	3.4.11.1 Peak Performance
	3.4.11.2 Toolflow
	3.4.11.3 Results

	3.4.12 NVIDIA Jetson Orin NX
	3.4.12.1 Peak Performance
	3.4.12.2 Toolflow
	3.4.12.3 Results

	3.4.13 NVIDIA Jetson TX2
	3.4.13.1 Peak Performance
	3.4.13.2 Tool Flow
	3.4.13.3 Results

	3.4.14 NVIDIA Jetson Nano
	3.4.14.1 Peak Performance
	3.4.14.2 Toolflow
	3.4.14.3 Results

	3.4.15 NVIDIA GTX1660
	3.4.15.1 Peak Performance
	3.4.15.2 Toolflow
	3.4.15.3 Results

	3.4.16 NVIDIA Tesla V100
	3.4.16.1 Peak Performance
	3.4.16.2 Toolflow
	3.4.16.3 Results

	3.4.17 NVIDIA Tesla A100
	3.4.17.1 Peak Performance
	3.4.17.2 Toolflow
	3.4.17.3 Results

	3.4.18 Xilinx Ultrascale FPGAs
	3.4.18.1 Peak Performance
	3.4.18.2 Tool Flow
	3.4.18.3 Results
	3.4.18.3.1 ResNet50
	3.4.18.3.2 YoloV4
	3.4.18.3.3 MobileNetV2

	3.4.19 Xilinx Versal AI Core Series
	3.4.19.1 Peak Performance
	3.4.19.2 Tool Flow
	3.4.19.3 Results
	3.4.19.3.1 ResNet50
	3.4.19.3.2 YoloV4
	3.4.19.3.3 MobileNetV3

	3.5 Comparison of DL Accelerators
	3.5.1 ResNet50
	3.5.2 MobileNetV3 Small
	3.5.3 YoloV4

	4 Conclusion
	5 References
	6 List of Figures
	7 List of Tables
	8 Abbreviations

