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Executive Summary  
The final report on cognitive IoT hardware platform and microserver development describes 
the architecture of the VEDLIoT hardware platform, refining and detailing the overview of 
the platform, which was reported in D2.2. The document reports the final state of the work 
on the hardware platform. The VEDLIoT hardware platform covers the entire spectrum of 
IoT systems, from embedded implementations to cloud-based systems. While this report 
discusses the improvements made to the cloud platforms RECS|Box and t.RECS, the primary 
emphasis is placed on the u.RECS platform. This platform, developed entirely within 
VEDLIoT, serves as the crucial facilitator for deep learning applications at the far edge.. It 
supports a wide range of low-power microservers based on industry-established COM 
standards such as NVIDIA Jetson, SMARC, CM4 and AMD Kria. In addition, the architecture 
offers flexible interfaces to include additional accelerators, e.g. via USB or M.2, as well as a 
wide range of communication and sensor interfaces. Besides the RECS server systems, 
microserver developments within VEDLIoT are discussed in Chapter 4, complementing 
available microservers from the 3rd party providers. 
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1 Introduction 
This deliverable deals with the detailed design of the VEDLIoT hardware platform, 
particularly the server systems u.RECS, t.RECS, and RECS|Box shown in Figure 1, as well as 
the different microservers, developed and used in the project. As the general concept of the 
platform has already been described in deliverable D2.2, this deliverable focuses on the 
specific architecture details for both, platforms and microservers. Furthermore, as the 
VEDLIoT hardware platform is an open platform, also relevant third party development are 
mentioned, which are either already available on the market or will be available soon. The 
deliverable describes not just the hardware architecture but also presents firmware and 
mechanical integration aspects. 

 

Figure 1: Overview of the VEDLIoT project. This deliverable (D4.4) details platform and microserver developments in 
WP4. 

The rest of this deliverable is structured as follows: Chapter 2 gives an overview of the 
VEDLIoT hardware platform, in particular the developments regarding the LP Baseboard 
Orin NX for the RECS|Box, as well as the t.RECS developments. Chapter 3 provides a 
comprehensive insight into the u.RECS architecture, discussing interfaces, communication, 
firmware aspects, and notable advances in deep learning acceleration, showcasing the 
platform's capabilities in pushing the boundaries of DL applications. Chapter 4 delves into 
the development of new microservers, specifically focusing on ARVSOM and VERSAL Edge.ai 
COM. This section provides a detailed examination of the intricacies of these microserver 
technologies, shedding light on their advancements and role in shaping the landscape of 
microserver development.  
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2 VEDLIoT Hardware Platform 
The VEDLIoT hardware platform is a joint base for the developments within this project. A 
wide range of AIoT applications can be addressed using a flexible communication 
infrastructure and exchangeable microservers. Figure 2 shows the RECS platforms covering 
application domains from embedded/far-edge to cloud computing. All platforms commonly 
target heterogeneous computing with tightly coupled microservers. The cloud computing 
platform RECS|Box consists of either 3 rack units (Deneb) or 2 rack units (Durin) and aims for 
high-density applications using over 100 microservers with high-bandwidth communication 
requirements. t.RECS houses up to 3 microservers and focuses on edge computing scenarios 
with low-latency demands like VEDLIoT's SmartMirror [1] use-case or 5G base stations in the 
automotive [1] use-case. As a new development from scratch, u.RECS rounds off the range 
of the RECS family towards low-power and compact embedded computing. 

 

  

Figure 2: Overview of RECS platforms, including the new u.RECS developed within VEDLIoT 

RECS|Box and t.RECS, the platforms available at the beginning of VEDLIoT, have already 
been described in detail, in Deliverable D2.2 [2]. This chapter focuses on the development 
since Deliverable D4.1 [3] and addresses hardware extensions and re-designs, which put 
RECS|Box (section 2.1), t.RECS (section 2.2) and their common firmware and management 
software (section 2.3) beyond the state of an early prototyping system. Showcasing these 
systems in Bielefeld testbed and Christmann testbed as well as using it in the automotive 
use case raises TRL-level to TRL6. 

2.1 RECS|Box  
RECS|Box is the cloud computing system of the RECS family. A more in-depth description is 
available in Deliverable D2.2, Chapter 3.1. RECS|Box provides the highest integration density 
and compute performance in the RECS family, being the high-end platform when it comes 
to scaling up applications. A key feature used in the past is the ability to populate the same 
microservers in the whole range of computing systems, e.g. COM Express modules can be 
plugged into the t.RECS as well as the RECS|Box Durin and Deneb. This accelerates porting 
of applications from the edge to the cloud. In VEDLIoT, a big focus is put on the new far-
edge platform u.RECS, which comes with smaller microserver form factors like SMARC [4] 
and NVIDIA Jetson NX [5]. To deliver fast scaling capabilities, as done in the past, the existing 
LP Baseboard that hosts 16 NVIDIA Jetson TX2 is modified to host 16 NVIDIA Jetson Orin 
NX. This is also of interest for the SMARC form factor, but unfortunately, the mechanical 
characteristics of SMARC require a basic re-design of the LP Baseboard, which isn't the case 
for the Orin NX.  

2.1.1 LP Baseboard Orin NX 
In Deliverable D4.1 this Baseboard was named LP Baseboard Xavier NX. But since the NVIDIA 
Orin NX supports the native RECS|Box supply voltage of 12 V we decided to simplify the 
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design and skip the 5 V regulators that would have been needed for the NVIDIA Xavier NX. 
Apart from that the LP Baseboard Orin NX as described in D4.1, it is derived from the existing 
LP Baseboard. A significant improvement of the new Baseboard is that the Orin NX modules 
are capable of PCIe Gen.3, which doubles the PCIe communication bandwidth from 16 Gbit/s 
to 32 Gbit/s. The mechanical dimensions of Orin NX modules are slightly smaller than that 
that of the TX2, which ensures that the integration density of 16 modules can be kept on the 
new PCB. Figure 3 shows the LP Baseboard that can carry up to 16 NVIDIA Jetson TX2.  

 

Figure 3: RECS|Box LP Baseboard assembled on mechanical carrier 

The assembled LP Baseboard consist of two PCBs (Master, Slave) and the mechanical carrier. 
The LP Baseboard Master is longer and carries the backplane connectors on that extra space. 
An additional connector in between the two PCBs connects the LP Baseboard Slave.  

 

Figure 4: Rendering of LP Baseboard Orin NX 

The rendering of the new LP Baseboard Orin NX (see Figure 4) shows the Baseboard with 
the connectors for the Jetson NX series as well as on Jetson Orin NX inserted to one slot of 
the Baseboard. 
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Figure 5: Block diagram of LP Baseboard Master PCB 

The block diagram in Figure 5 shows all communication paths and management signals on 
the Master PCB. The Slave isn't shown here because it looks very similar except not including 
the management CPU and backplane connectors. The architecture of the LP Baseboard is 
kept reusing as much as possible from the existing design. As seen in Figure 6, all interfaces 
connected to the NVIDIA Jetson TX2 on the LP Baseboard can be equally connected to the 
NVIDIA Orin NX modules on the LP Baseboard Orin NX.  
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Figure 6: Comparison of interfaces provided by Jetson TX2 and Xavier NX/Orin NX 

The following list shows the key features of the LP Baseboard Orin NX: 

• Up to 16 NVIDIA Jetson Orin NX modules 
o Each connected to PCIe-Switch via PCIe x4 Gen.3 
o Direct PCIe Host-2-Host communication (32 Gbit/s) 
o Virtualized 10 GbE interface via PCIe-Switch 

• Separate GbE management network 
• iKVM and KVM from each module 
• M.2 Storage attached via PCIe-Switch 
• Power monitoring of each module 

 

2.1.2 Challenges 
The LP Baseboard design within VEDLIoT encountered difficulties due to the unavailability 
of Nvidia Orin NX modules until March 2023, resulting in modification of the initially planned 
design schedule. This was compounded by the need for NVMe storage for each module, 
adding to the existing challenges. We have been seeking multiple solutions for the NVMe 
issue. One approach involves utilizing SR-IOV to create a virtual environment for sharing 
NVMe resources efficiently among the Nvidia Orin NX modules. Additionally, we have 
considered a design change, which involves removing the LP Baseboard Small that 
accommodates 8 modules. This alteration aims to integrate 8 physical NVMe slots, ensuring 
adequate external storage for the remaining 8 modules. Despite these challenges, we've 
completed the design phase for the LP Baseboard Orin NX. 

2.2 t.RECS 
Deliverable 2.2 focused on the overall system architecture, including audio/video,  
peripheral USB support and the board management. This section discusses more details on 
the communication infrastructure and the different possible heterogeneous combinations. 
Recently, a new revision of t.RECS was manufactured, addressing several issues with the 
power supply and the system's overall stability (see Figure 7).  
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Figure 7: Current revision of the t.RECS PCB with three microservers attached 

2.2.1 PCIe communication infrastructure 
Figure 8 shows the t. RECS's high-speed, low-latency communication infrastructure between 
the three different microservers. t.RECS supports one COM-HPC [6] microserver in the type 
D format (160x160mm) and two microservers following the COM-HPC client specification. A 
dedicated PCIe Switch interconnects all three microservers with 8 PCIe Gen.3 lanes each and 
allows for a highly flexible interconnection of the microservers, which can be reconfigured 
at run-time.  

Figure 9 a) and b) show two possible configuration options that leverage the switched PCIe 
interconnects. A classical CPU-based clustering is depicted in a), where each microserver is 
operated as a PCIe root complex (RC). As a unique feature of the PCIe switch, all three 
microservers can exchange data by a host-2-host communication. A CPU-centric approach is 
drawn in b) including two accelerators connected via PCIe as endpoints (EP). 

The configurations c) and d), depicted on the right side of Figure 9, leverage the direct high-
speed interconnections between neighbouring microservers resulting in a ring-topology. In 
c) these interconnections are used as PCIe interconnects, where in d) the protocol can be set 
to use more low-level protocols like the AMD Aurora [7] protocol. The Aurora protocol 
interconnects FPGAs with less overhead, resulting in higher bandwidth and lower latency 
than the packet-based PCIe.  
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Figure 8: t.RECS PCIe communication architecture, based on two independent infrastructures:  
Switched PCIe and direct interconnection to neighbouring modules 

  

 

Figure 9: Selected t.RECS configurations of different and partially heterogeneous target architectures.  
All depicted connections are based on 8 bi-directional lanes 

 

2.2.2 Supported Microservers 
t.RECS uses the COM-HPC [6] standard, officially released in January 2021. Since this 
standard is still emerging, only a few microservers are currently available off-the-shelf. 
Figure 10 lists the microservers that are available for the t.RECS at the end of the VEDLIoT 
project. As a member of the standardization committee, Bielefeld University works closely 
with various manufacturers. Consequently, it was provided with engineering samples of 
COM-HPC modules with x86 CPUs from Intel. FPGA modules were developed together with 
Trenz Electronic [8], another Bielefeld University partner. Among the FPGA modeules is a 
Client module Size B with AMD UltraScale+ FPGA. Another Trenz module with Intel FPGA 
(Server Size D) is expected in 2024. 

To compensate for the availability problems, Bielefeld University developed adapter PCBs 
that map COM Express to COM-HPC and thus ensure the broad availability of modules. No 
GPU-based modules have been planned so far. A COM-HPC to Xavier AGX adapter was 
already built since the NVIDIA Xavier AGX modules are highly relevant for VEDLIoT, 
especially for the Smart Mirror use-case. 
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Figure 10: Supported Microserver and target architectures of t.RECS 

Within VEDLIoT the NVIDIA Orin AGX modules became available. The COM-HPC to Xavier 
AGX adapter could be reused for integration of the Orin AGX into the t.RECS system. Table 
1 shows a brief comparison of both NVIDIA Jetson AGX modules. NVIDIA's benchmarks show 
a performance increase of 6x for AI applications, when upgrading from the Xavier to the 
Orin, which makes the microserver highly interesting for VEDLIoT. The Xavier AGX adapter 
board needed some changes to support the Orin modules. One of the significant differences 
regarding interfaces are the doubled PCIe lanes, allowing the Orin to simultaneously 
communicate in parallel via the PCIe switch and the direct connectors. 

Table 1: Brief comparison of Jetson AGX Xavier [9] and its successor Jetson AGX Orin [10] 

 Jetson AGX Xavier Jetson AGX Orin  

CUDA/ tensor cores 

(architecure) 

512/64 (Volta) 2048 / 64 (Ampere) 

CPU 8x NVIDIA Carmel ARMv8.2 12x Nvidia ARM Cortex A78A 

v8.2@2GHz 

PCIe 8x PCIe Gen4 2x8 (or 1x8 + 2x4) Gen4 

Memory 64 GByte, 256 Bit LPDDR4 

136 GByte/s 

32GByte, 256 Bit LPDDR5,  

204 GByte/s 

Deep Learning Accelerators 2x NVDLA 2x NVDLA v2.0 

Technology/ Transistors 20nm/ ~7 billion 8nm /~17 billion 

Storage 32 GByte eMMC 64 GByte eMMC 

 

2.2.3 Microserver configurations for VEDLIoT 
The interchangeability of the t.RECS's microserver offers excellent advantages for VEDLIoT, 
especially to adapt to different use-cases. The Smart Mirror use-case [1] benefits 
considerably from this feature. Figure 11 shows how the Smart Mirror hardware 
configuration can be extended by newer and additional components in several iterative 
development steps. The current base configuration with two PCIe-coupled Xavier AGX as 
shown in Figure 11 a. One module takes care of the sensor capturing and video input, control 
logic and the face recognition neural network. Additional neural networks for object- and 
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gesture detection are off-loaded to the second Xavier AGX. In the current work, these neural 
networks are being mapped to an AMD UltraScale+ FPGA with the expectation of being 
significantly faster and at the same time more energy efficient (configuration in Figure 11 
b). A second FPGA can also be added using the switched PCIe interconnects. In addition, the 
NVIDIA Jetson Orin AGX provides an efficiency increase, as well as an performance increase 
(configuration in Figure 11 c). Since the Orin has additional PCIe lanes [10], these can also be 
interconnected directly, without the interconnected PCIe switch, which results in a 
reduction of the power consumption by about 10 Watts (Figure 11 d-f ). 

 

Figure 11: Selected implementation variants of the Smart Mirror using the t.RECS communication infrastructure. a) 
- c) include the central PCIe switch, d) - f) are with direct PCIe interconnects between microservers 

2.3 Management and Firmware 
This section briefly describes the current development status of the RECS|Box and t.RECS 
server systems and then focuses on the achievements reached within VEDLIoT.  

The RECS|Box and t.RECS server systems both include an integrated management system 
that allows the user to control the installed microservers and monitors them. Both systems 
share most of the management functionality. The firmware binary is the same for both 
systems. The firmware dynamically detects the hardware during boot and adapts 
accordingly. 

The main functionality of the management system is as follows: 

• Allow control of compute nodes: 
o On/Off, Reset 
o Basic configuration 
o Configuration of internal switching (VLANs) 
o Configuration of PCIe infrastructure (sharing PCIe functions) 
o Fan management 

• Monitor sensors and other data: 
o Temperatures 
o Power consumption, Voltages 
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o Power supplies 
o Fan speeds 
o Data provided by OS running on compute nodes (RECSDaemon) 

• Allow access to nodes via Keyboard, Video, Mouse: 
o Via Front Panel (HDMI, USB) or via network (iKVM) 

• Provide interfaces for monitoring and control: 
o WebGUI 
o REST-API 
o Redfish 
o IPMI 
o Grafana/Prometheus 

To achieve these goals, each of the Baseboards and Backplanes (in the case of the RECS|Box) 
and the t.RECS include an embedded microprocessor that runs Linux and manages all the 
components on the respective board. One of these processors additionally runs the main 
management software, called RECS_Master. While in the RECS|Box this is runnning on the 
first backplane of the system, in the edge server it is running on the baseboard itself. The 
RECS_Master is communicating with the rest of the Firmware programs and is providing the 
management interfaces for the user. For regular manual administrative usage, a WebGUI 
[11] is provided that allows access to all user-changeable settings and all monitoring and 
control functionality. In addition to that, an IPMI interface is offered by the chassis 
controller. Furthermore, there is a self-defined RESTful API [12], which allows retrieval of all 
measured sensor values and basic control of the nodes. Additionally, a Redfish API [13] is 
available, including all monitoring and control features of the aforementioned RESTful API 
and also allows for controlling the PCIe infrastructure. The software architecture is further 
detailed in Chapter 2.3.2 when describing the changes necessary for the t.RECS. 

Within VEDLIoT, a Prometheus [14] exporter, together with a Grafana dashboard, were 
added to the capabilities of the RECS_Master [15] to allow advanced monitoring with these 
popular tools. The big advantage of the Prometheus exporter compared to other APIs is that 
it dynamically exports its own metrics and thus, additional metrics can be added or removed 
during run-time after changing or hotplugging hardware. This allows to export only metrics 
of those microservers that are plugged in. As the RECS|Box has a modular approach and 
every RECS|Box can be equipped with different base boards and microserver configurations, 
this approach is of high relevance. Using traditional monitoring tools, that don't support the 
export of dynamic metrics, needs regular manual changes of the configuration, resulting in 
unnecessary additional work.  

The Prometheus export API can be enabled and disabled in the Web Interface. Once it is 
enabled, all metrics relevant are available via https://<host>/metrics/ and can be added as 
an endpoint in Prometheus. 

A (truncated) Prometheus export looks like this: 

# HELP recsbox_fan_rpm Fan RPM 
# TYPE recsbox_fan_rpm gauge 
recsbox_fan_rpm{FanName="Back 1",} 4432.0 
recsbox_fan_rpm{FanName="PSU 1",} 5376.0 
recsbox_fan_rpm{FanName="Back 3",} 4411.0 
recsbox_fan_rpm{FanName="Back 2",} 4496.0 
# HELP recsbox_recsdaemon_sensors Diverse OS-level sensors from the RECS Daemon 
# TYPE recsbox_recsdaemon_sensors gauge 
# HELP recsbox_psu_status PSU Status 
# TYPE recsbox_psu_status gauge 
recsbox_psu_status{PSUName="PSU 1",} 1.0 
# HELP recsbox_node_power_usage_watts Node Power Usage 
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# TYPE recsbox_node_power_usage_watts gauge 
recsbox_node_power_usage_watts{NodeName="Node 2-3",PowerType="Total",} 18.79768073 
recsbox_node_power_usage_watts{NodeName="Node 2-3",PowerType="PEG",} 0.0 
recsbox_node_power_usage_watts{NodeName="Node 2-2",PowerType="PEG",} 0.0 
recsbox_node_power_usage_watts{NodeName="Node 2-1",PowerType="PEG",} 0.0 
recsbox_node_power_usage_watts{NodeName="Node 2-3",PowerType="Node",} 18.79768073 
recsbox_node_power_usage_watts{NodeName="Node 2-1",PowerType="Total",} 16.2074491 
recsbox_node_power_usage_watts{NodeName="Node 2-2",PowerType="Node",} 20.0557932 
recsbox_node_power_usage_watts{NodeName="Node 2-1",PowerType="Node",} 16.2074491 
recsbox_node_power_usage_watts{NodeName="Node 2-2",PowerType="Total",} 20.0557932 
… 

 

Prometheus needs very little configuration to automatically parse all information and 
write it into a database. This makes all metrics easily accessible. The ‘scrape config’ for the 
metrics looks like this: 
 
  - job_name: 'RECS_Master' 
    scrape_interval: 1s 
    scrape_timeout: 1s 
    static_configs: 
     - targets: ['<host>'] 
    basic_auth: 
      username: 'user' 
      password: 'password' 
 

It is recommended to use Grafana as a graphical dashboard to read out these captured 
metrics from a Prometheus server. A pre-build Grafana dashboard is publicly available at the 
Grafana website [16]. It can be integrated in Grafana using the "Import" function. The 
dashboard automatically reads the available metrics from Prometheus and dynamically 
adapts to the number of available microservers. It is divided in the two parts “Nodes” and 
“Chassis” to structure the monitoring data, see Figure 12. 

 

Figure 12 - Grafana Dashboard for RECS|Box and t.RECS 

The REST API, which was originally developed in previous projects [17] [18], was enhanced 
within VEDLIoT. It now contains even more detailed monitoring data. A comprehensive 
documentation can be found at [12]. 



D4.4  Version 1.0 
 

  16 
 

The RECS|Box and t.RECS systems include a switched KVM1 infrastructure to allow direct 
access to each of the installed microservers. It is either possible to connect physical monitor, 
mouse and keyboard or to access the Microservers via iKVM (KVM over Ethernet). The iKVM 
solution is based on the VNC protocol, as this is a very popular protocol for remote access 
and many clients are available. 

Within VEDLIoT, an HTML 5 noVNC-Client was integrated in the WebGUI to further improve 
the remote management capabilities of the microservers within the RECS|Box and t.RECS 
platforms via iKVM. With this client, it is possible to access one microserver of a baseboard 
(or the t.RECS, respectively) at a time. The microserver to be accessed via iKVM can be 
selected in the WebGUI or by using the REST or Redfish APIs. The noVNC client in the 
WebGUI can then be opened and shows the current video output stream of the selected 
microserver and passes the keyboard and mouse control signals back to it. A detailed 
description of the iKVM subsystem can be found in [18]. 

 

Figure 13 - NoVNC-Client integration in the WebGUI 

In addition to the KVM and iKVM capabilities, the RECS_Master features access to the serial 
console of each microserver. An embedded serial console client is integrated in WebGUI. 
Besides the standard input and support for copy and paste actions, it allows resizing the 
console window and selection of different code pages. Alternatively, it is also possible to 
start an embedded telnet server and connect to the selected microserver via an external 
client like e.g. PuTTY [19]. 

 

1 Keyboard, Video and Mouse 
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The monitoring system of the RECS|Box and t.RECS servers usually works with a sensor 
update rate in the order of 1 Hz. While this is certainly fast enough for monitoring the health 
status of the system, it does not allow characterizing the energy consumption of 
computational kernels running on the microservers. To be able to do this a much higher 
sampling frequency for certain signals in a given timeframe is realized via a 'Oscilloscope 
mode'. When this mode is enabled by the user, the baseboard hosting of the selected 
microserver samples the respective ADC channels with the maximum available sample rate. 
Instead of just computing average, minimum and maximum values of the data, it is 
completely stored in a ring buffer where it can later be retrieved for analysis. The sample 
rate available to the user is hereby increased to up to 1 Mega Samples per Second (MSPS). 
Within VEDLIoT, a comprehensive control panel for this 'Oscilloscope mode' was integrated 
to the WebGUI to ease the fine-grained monitoring/characterization of the RECS|Box and 
t.RECS servers, e.g., for application profiling. 

The control panel shown in Figure 14 can be opened by clicking a button on the management 
page of a node in the system. The dialogue then allows setting up the trigger mode to either 
automatically sample one buffer after the other, trigger each time a certain condition is met 
or trigger once that condition is met. A channel to be checked for the trigger condition can 
be selected. This channel is then checked for either rising above a given threshold, falling 
below it or both. The trigger level and position relative to the sample buffer can also be set. 
As the hardware has no special circuit for triggering, this is a software trigger only. But for 
the intended purpose of analyzing computational kernels, the trigger delay is small enough 
to show the desired results. Currently, the sampling rate is fixed, but a zoom- and a range 
control allow displaying parts of the current sample buffer in more detail. Finally, the raw 
sample buffer data can be downloaded as a simple CSV file for further analysis in other 
programs. Future planned improvements are selection of channels to be sampled, thus 
increasing the sampling rate (as the maximum sampling rate is shared between all active 
channels). Also the size of the sample buffer should be adjustable, and the scaling of the Y-
axis could be improved, as the size of each division is currently based on the raw ADC value, 
leading to odd values like "3.13 A/div" instead of the usual 1/2/5 scaling known from regular 
oscilloscopes. 

 

Figure 14 - Oscilloscope control panel integration in the WebGUI 
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In addition to the main features described above, the RECS_Master was further enhanced 
within VEDLIoT. A fan control mechanism was implemented to manage the fan speed 
automatically based on the system temperature. For a better user experience, a persistent 
node configuration was implemented to store data per microserver like its boot mode, 
power state, KVM mode and serial console code page. Also, the power supplies now support 
an auto-on configuration to boot the system automatically. Furthermore, the WebGUI now 
features a notification system to keep the user updated on health events, errors or other 
information. 

The improvement of robustness and reliability of the RECS|Box and t.RECS software systems 
was also a major focus of the software development. For this, a code-review of the whole 
RECS_Master management software was done. Several bugs as well as other programming 
flaws and potential security risks were eliminated. Simultaneously, the code-base was 
refactored, now utilizing the latest Java and third-party library features with the focus to 
enhance maintainability as well as performance. 

An additional security control layer was implemented in the RECS_Master to enhance 
security and unify permission control for all access methods to the management software 
(WebGUI, REST API, Redfish API, IPMI). Also, by redesigning the communication between the 
RECS_Master and the Ethernet switch management software, the robustness of the system 
was enhanced. 

Furthermore, the automated testing was heavily improved by implementing numerous 
additional tests. Advanced integration tests were developed to cover the whole 
RECS_Master software stack from the low level firmware interfaces up to the user APIs and 
the client-side web browser Javascript logic in the continuous integration testing pipeline. 

2.3.1 RECS |Box and LP Baseboard NX 
Within the VEDLIoT project, the firmware and management software was prepared to 
support baseboards with the NVIDIA Jetson Xavier NX microservers. Similar to already 
existing baseboard types (COM-Express, NVIDIA Jetson Tegra X2), monitoring and control 
of the attached microservers is possible. This includes power control, configuring the 
Ethernet and PCIe communication infrastructure as well as advanced monitoring of power 
and temperature sensors. The goal of this effort was the seamless integration of the LP 
Baseboard NX with its microservers into the RECS|Box management software, also 
supporting all available interfaces. 

From a firmware standpoint, the LP Baseboard NX and the older LP Baseboard are extremely 
similar, allowing reuse of most of the existing code. As the board has a different combination 
set at the ID GPIO pins, the common bootloader can detect the new type of board and load 
an appropriate Device Tree file, which is mainly a copy of the LP baseboards' file. It also sets 
the "board_type" parameter in the Linux kernel command line arguments appropriately, 
allowing software starting later in the boot process to detect that it's running on the new 
LP Baseboard NX. Most of the components (e.g. the 10 G Switch manager and the PCIe 
switching manager) simply use the same configuration as the LP Baseboard. The main 
firmware program distinguishes between the two baseboard types to be able to report the 
correct node types to the RECS_Master, but as this software is written in C++, this was easily 
possible to inherit from the existing LP baseboard class. Node control (e.g. Power 
sequencing) is the same for both the Jetson TX2 and the Xavier NX. From the software 
perspective, the main difference is the 5V power supply of the Xavier NX microservers that 
lead to a small change in the calculation of the module power usage. 
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2.3.2 t.RECS 
The t.RECS uses the same components for the management CPU, Ethernet switch and PCIe 
switch as the RECS|Box does. Thus, it makes sense to re-use the same software components 
as well. However, as now all functions are integrated on one board instead of split between 
Baseboards and Backplanes as in the RECS|Box, some changes where necessary. From a 
software standpoint, the t.RECS is implemented as a RECS|Box baseboard. Changes include 
added support for controlling and monitoring fans (which in the RECS|Box are connected to 
the backplane), a different power management microcontroller (which in the RECS|Box is 
located on a separate Power Distribution Board) and some new driver classes for hardware 
that have changed for the newer hardware (e.g. the ADC for measuring currents). As the 
firmware program is a modular C++ software, existing classes (e.g. for fan control) could 
simply be re-used to add the new features. Another difference of the t.RECS compared with 
the RECS|Box is that the RECS_Master is running on a Baseboard instead of a Backplane (as 
there is none). To achieve this, the t.RECS includes an M.2 slot that hosts a SATA SSD. The 
RECS_Master and its Linux Filesystem are stored on this drive. 

Figure 15 shows the components of the monitoring system and their interaction. The 
RECS_Master and the firmware program, which is a regular Linux executable, share the 
monitoring and control functionality between them. The firmware program is handling low-
level hardware access like setting pins, controlling the compute modules, reading sensors, 
etc. The RECS_Master is talking to the firmware program via Apache Thrift, querying its data 
and giving instructions for changing the system state. The RECS_Master then aggregates 
data and provides all the user-facing interfaces like the WebGUI and APIs. The RECS_Master 
also directly monitors the power supplies and handles the user interface on an optional small 
LCD screen for direct control on the chassis. 

 

 

Figure 15 - Architecture of the management system 

 

"CPSS" is the vendor-specific management software for the Ethernet switch used in the 
t.RECS and RECS|Box. It configures and manages the switches via PCIe and contains an 
external interface that is used by the RECS_Master to monitor and control the switches, e.g. 
setting up VLANs for the different ports. CPSS was also changed to initialize the PHYs on the 
t.RECS as necessary. 

The "MCPU driver" is necessary to configure the advanced functionality of the PCIe switch. 
The firmware program can interact with this driver via SysFS files, e.g. for connecting Single 
Root – I/O Virtualization (SR-IOV) functions to the compute modules as instructed by the 
RECS_Master. 
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The t.RECS also includes iKVM functionality, allowing access to the Keyboard, Video and 
Mouse of each compute module via Ethernet. The protocol used for this in the RECS|Box and 
t.RECS is known as "VNC" (technically RFB). As the open-source implementation of this 
protocol is licensed under GPL, the iKVM software was written as a separate program to 
avoid licensing issues. It captures video images from the selected compute module, 
processes them and makes them available via the RFB protocol. In the opposite direction it 
accepts mouse and keyboard input via RFB and forwards it to a virtual USB mouse and USB 
keyboard, that are provided by the management CPU's USB gadget functionality. 

During the project, the support of the t.RECS server platform within the RECS_Master 
management software was also further improved. As the t.RECS has no integrated power 
supplies supporting Power Management Bus (PMBus), an enhanced configuration 
mechanism was implemented to also support ATX power supplies. 

On the frontend side, the development goal was that the t.RECS can be controlled and 
monitored in the same manner like the RECS|Box (see screenshot in Figure 16). This includes 
all features listed at the beginning of this section. This has been achieved by adapting the 
RECS_Master backend and the respective views in the WebGUI to match the differing 
requirements. 

As an additional feature of the t.RECS WebGUI, the node composition wizard was enhanced 
to feature templates for handling common PCIe communication scenarios (e.g. connecting 
a PCIe device to a node exclusively). 

 

Figure 16 – Screenshot of t.RECS control view in the RECS_Master Web UI 

All interface capabilities of the RECS_Master management software have been adapted to 
support the t.RECS, allowing for easy integration into external software environments and 
applications. 

When more different COM-HPC modules became available in the project, some had issues 
turning on in the t.RECS. Debugging this led to hardware- and configuration fixes as well as 
improved power sequencing in the firmware so that all tested modules now start in the 
t.RECS. Other configuration changes fixed problems with the USB-C ports and improved link 
up reliability between the modules and the PCIe switch. 
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The ADC originally used in the t.RECS was not fast enough for the “Oscilloscope mode” to 
be really useful and thus was replaced with a different one using a PCB that can be soldered 
to existing connections on the t.RECS PCB. The software was updated to now use this new 
ADC, which is the same as previously used in the RECS|Box. The accuracy of the power 
measurements was increased by implementing calibration functions that allow correcting 
for offsets and linearity of the sense circuitry. These settings are then stored on the 
nonvolatile memory and loaded on booting the system. 
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3 Detailed u.RECS architecture 
After the VEDLIoT use-cases were analyzed in WP2, the requirements for the new hardware 
platform were defined [2]. It was determined that the current RECS family is not suitable for 
the VEDLIoT use-case requirements. The smallest form factor available, the t.RECS, is not 
only mechanically too large but also consumes too much power for far-edge use cases. 
Therefore, the family needed to be extended. This has been achieved through the 
development of the u.RECS-baseboard. Figure 2 shows the current RECS family, including 
the newly developed u.RECS. 

It was necessary that the u.RECS retained some of the RECS family features. Furthermore, it 
needed to be flexible, modular, adaptable and easily expandable. Like the RECS family so 
far, the u.RECS uses a module-based approach. This makes it possible to directly support 
various ML accelerators and Computer-on-Module (COM). Additionally, it is possible to 
combine these modules and extend them with PCIe-based accelerators. 

The overview of the u.RECS is presented in Figure 17. The two integrated module slots 
support the SMARC 2.1 standard and the NVIDIA Jetson NX form factor. An overview of the 
ML accelerators and COMs that can be installed in these slots is given in the following 
Sections. In addition to the two module slots, an M.2 slot and an mPCIe slot are integrated, 
which can be used to add further accelerators or communication methods, such as 5G, to the 
u.RECS. Furthermore, communication options, such as Ethernet or PCIe, and energy 
measurement methods are integrated on the board, to make the u.RECS a perfect fit for the 
VEDLIoT use-cases. In addition to the overview, Figure 18 shows a detailed block diagram of 
the u.RECS architecture. 

 

Figure 17 Overview of u.RECS system 
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Figure 18: u.RECS Architecture 

To manage the different modules and functions on the u.RECS, a board management 
controller (BMC) is used. An ESP32 was chosen, which is characterized by its low cost, low 
power consumption and good software support. It also provides its own WLAN and 
Bluetooth interface, in addition a LoRaWan radio module is connected to the ESP. It is, 
therefore, possible to access the management interface of the u.RECS via a variety of 
interfaces. The BMC is able to change the power states of the different modules and parts 
of the communication infrastructure on the u.RECS.  

It is still possible to access the management interface through its own WLAN interface or a 
connected LoRaWan radio module even if the Ethernet switch is powered off. Another key 
feature of the BMC is to measure the energy consumption of the modules, this is made 
possible by an ADC connected via SPI and corresponding current measurement modules. 

In the following Sections, the specific communication possibilities are described and the 
management and monitoring functionalities are introduced. Furthermore, an overview of 
the power supply and the power budget is given, and finally, an outlook on the mechanical 
integration and pictures of the system are presented. 

 

3.1 Supported Microservers 
Support for the SMARC 2.1 standard gives the u.RECS access to a wide range of supported 
COMs and ML accelerators, as SMARC-Modules are available on the market through 
different module manufacturers, such as Congatec or AD-Link. The SMARC slot can be 
equipped with, among others, the following types of system (cf. Figure 19): 

• ARM CPU (e.g., i.MX 8) 
• x86 CPU (e.g., Atom CPU) 
• FPGA (e.g., Xilinx Zynq UltraScale+) 
• ML accelerator (e.g., Vedliot Versal SMARC module) 
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Figure 19 Overview of the supported Microservers for the u.RECS 

Out of the box, the Jetson NX slot only supports NVIDIA Jetson NX and Nano modules. The 
Orin NX has the same form factor as the Jetson NX but additionally needs higher supply 
voltage and dedicated NVMe storage as also discussed in section 2.1. u.RECS was extended 
with variable supply voltage and separate M.2 NVMe connector enabling Orin NX support. 
The NVIDIA modules are all based on ARM systems and integrate a tightly coupled NVIDIA 
graphics accelerator. The Xavier NX combines its Volta-based GPU with a six-core Carmel 
ARM®v8.2 CPU. In the new Orin NX generation, this is upgraded to an Ampere GPU in 
combination with an eight core Arm® Cortex®-A78AE. 

To increase the usability of the Jetson NX slot, an adapter to the Raspberry PI CM4 standard 
is foreseen. This would allow the installation of, e.g., a low-cost RPi CM4 module or the 
ARVSOM board from Antmicro. Furthermore, considering the popularity of the Raspberry 
PI, it can be assumed that this standard will become increasingly popular and more modules 
supporting it will be introduced to the market. 

3.2 Expansion Interfaces 
There are a number of additional ML accelerators that can be equipped in or connected to 
an M.2 or mPCIE slot (cf. Figure 19). Additionally, it is possible to connect accelerators via 
USB 3.0 and access them from one of the compute modules. Furthermore, with the u.RECS 
it is possible to measure the energy of an accelerator connected via USB. Accelerators 
supported this way include: 

• Intel Myriad X 
• Hailo-8 
• Google Coral Edge TPU 
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Figure 20 Possible PCIe Connections between Microservers 

As shown in Figure 18, the SMARC and Jetson modules can communicate among each other 
and with the outside via Ethernet. They also feature a switchable USB port with energy 
measurement capability, to which, e.g., an external accelerator can be connected. PCIe is 
another option for communication on the u.RECS, it connects the two modules and the M.2 
slot. To allow different configurations without increasing the power consumption, a passive 
PCIe connector is used instead of the previously presented implementation in Deliverable 
D2.2 of a PCIe mux. This design is described further in the following subchapter. Depending 
on the configuration, the module on the Jetson, SMARC or M.2 is, therefore, a PCIe root 
complex (PCIe host) or PCIe endpoint (PCIe device). An overview of the different possible 
configurations is given in Figure 20. 

3.3 Communication 
As mentioned in previous chapters, one form of communication between modules is Gigabit 
Ethernet. In contrast to the larger members of the RECS family, GbE is the fastest ethernet-
based interface for communication on the u.RECS, due to low cost and high efficiency. 

The Ethernet switch has seven ports, it connects the modules and the RJ45 ports via copper 
standard 1G_BaseT and the BMC (ESP32) is interfaced via single-ended ethernet standard 
RGMII. Additionally, a single pair Ethernet (SPE) connection is available for the automotive 
use case, as well as the ability to connect two Gigabit Ethernet cameras with Power over 
Ethernet (PoE). To achieve this, an additional SPE-Phy is connected to the SGMII port of the 
switch, and the power supply for PoE on the RJ45 ports was implemented.  

Furthermore, the IEEE1588 [20] standard should be supported. This enabled the use of the 
Precision Time Protocol (PTP) and, thereby, the realization of time-synchronous Ethernet. 
As a result of these requirements, the choice of chips was very limited, and in addition, due 
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to the chip crisis during Covid-19 pandemic, chips of this type have been rarely available on 
the market. This significantly delayed the manufacturing of the u.RECS within VEDLIoT. 

 

 

Figure 21 Ethernet Connections on the u.RECS 

 

In the larger version of the RECS platform, PCIe-based connection of the modules was 
realized using a multiplexer. However, this requires a number of additional ICs, which 
increases the power consumption, and is a problem for far-edge platforms like the u.RECS. 
Therefore, the usefulness of the mux-based design was re-evaluated. One of the main 
advantages of the mux-based solution is that the PCIe topology can be changed electrically 
at run-time without physical user intervention. However, this is not an advantage for the 
u.RECS, since changing the configuration of the PCIe connections would only be done in 
combination with a module swap. Therefore, a passive approach is taken for switching the 
PCIe connections. To facilitate the manual reconfiguration of the PCIe topology, the PCIe 
lanes of the different modules are consolidated on a connector. With the so-called "PCIe 
Communication Brick (COM-Brick)" it is then possible to connect the modules as required 
(see Figure 22). It is possible to cover all necessary connections with three different COM-
Bricks (COM1, COM2 and COM3), illustrated in the figure similar to click bricks. The user, 
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therefore, not only has to change the module but also select the appropriate COM-Brick. 
However, no additional energy is consumed, as this solution is passively implemented. 

 

 

Figure 22 Layout of the PCIe Communication Brick 

 

The SMARC and Jetson module provide additional interfaces (cf. Figure 18). Both modules 
are equipped with a dedicated USB and HDMI port to simplify initial system setup and 
increase overall ease of use. In addition, serial camera interfaces (CSI) are provided for each 
module, allowing one or more cameras to be connected directly to the modules. Beyond 
that, there is a GPIO connector that shares the GPIO pinout of the Raspberry Pi Modules. 
This connector has SPI, I2C, CAN and UART interfaces, among others. There are also plans to 
implement a CAN header for the Jetson NX that adapts to a sub-D9 connector which is used 
in automotive evaluation systems. This and 5G communication are requirements arising 
from the automotive use case.  

In the u.RECS, 5G communication is provided by a mPCIe expansion card. Such cards are 
available, e.g., from the manufacturer QUECTEL. This allows for the NVIDIA Jetson NX to 
serve as a gateway for the other devices connected via Ethernet. 

 

3.4 Management & Monitoring 
The u.RECS can be powered in two different ways: via a barrel connector or a USB Type-C 
connector. One of the most common ways in the industry to power a Mini-ITX board is the 
barrel connector. Therefore, this is also supported in the u.RECS. In addition, the widely used 
method of powering laptops and cell phones via USB-C is also supported. This allows for the 
u.RECS to be powered with any standard USB-C laptop power adapter, or using an USB-C 
power bank with sufficient power. The USB-C port of the u.RECS supports the USB power 
delivery (USB PD) standard [21].  

 

  

SMARC 2.1

FPGA
x86

ARM

Nvidia
Xavier

Jetson NX

M.2 M-Key
Accelerator / Storage

COM2 COM3

COM1



D4.4  Version 1.0 
 

  28 
 

Table 2 u.RECS power budget overview 

Power Budget    

54 V PoE Power 

(560 mA 30 W) 

 

20 V – 9V Jetson Orin NX 

(4A 30 W) 

 

5 V Jetson 

(4 A 20 W) 

SMARC  

(5 A 25 W) 

3.3 V M.2  

(3 A 10 W) 

mPCIe  

(3 A 10 W) 

2.5V KSZ9477S 

(0.3 A) 

 

1.5V mPCIe  

(0.5 A) 

 

1.2V KSZ9477S  

(1.3 A) 

 

1.0V Dp83tg720s  

(0.2 A) 

 

 

The USB PD standard specifies different power levels that can be supplied. When analyzing 
the power budget of the u.RECS, it was determined that the 60 W mode satisfies the 
requirements. The USB-C PD controller negotiates a voltage of 20 V with the power supply, 
from which a maximum current of 3 A can be drawn. From this supplied 20 V, other voltages 
are generated, including 5 V and 3.3 V for the modules as well as other voltages for the 
communication infrastructure. As discussed in section 3.1 a variable power supply for the 
Jetson NX slot was implemented, providing higher voltages to the Orin NX module enabling 
high performance modes of the module. Table 2 provides detailed information on the 
individual voltages and the required power. The voltages that are required for the Switch 
and Phy are sequenced in hardware, this is done to use less pins on the BMC. 
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Figure 23 u.RECS power supply overview 

To evaluate the energy efficiency in the use cases, the various components on the u.RECS 
are measured in terms of energy. Due to hardware limitations, these measurements are only 
performed once every second. The different consumption measurements can be accessed 
via the BMC using the web GUI. Figure 23 gives an overview of the voltage levels. The gray 
boxes are points where the voltage can be measured and turned on or off if required. The 
energy for the following components can be measured: 

• t.RECS total power 
• Jetson  
• SMARC 
• One USB port 
• M.2 Slot 
• mPCIe Slot 
• Switch and SPE-Phy 

Additionally, an oscilloscope mode for the modules is foreseen. This mode allows for the 
energy measurement to be performed at a higher rate than the usual one second cycle. 
Although this can only be done for one module at a time, it is very useful to analyze the 
energy efficiency of an algorithm more precisely, by evaluating the different parts of an 
algorithm individually. To implement this, the firmware will use the DMA controller of the 
ESP32 to directly write ADC samples to a memory buffer. 

Considerably effort is being made to measure the energy consumption of the modules and 
the communication infrastructure. The idea is that these measurements could provide a 
more holistic view of a distributed ML problem in terms of energy consumption. Figure 24 
gives an example of how such an analysis might look like. The diagram on the left side shows 
the distribution of energy consumption of an example system with different topologies. In 
the diagram next to it the performance in terms of frames per second (FPS) is plotted. Using 
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such an analysis of a distributed ML system it is possible to quickly identify the most efficient 
topology. 

 

 

Figure 24 Envisaged diagrams for comparing the energy efficiency of modules 

The firmware can connect to the publicly available “The Things Network” (TTN) via the 
LoRaWAN module on the u.RECS. When configured it will send out a status message 
containing e.g. Jetson/SMARC module status, power usage, temperatures and fan speeds in 
regular intervals. The status message is in binary form using as little bytes as possible. 
Therefore, a so called “Payload formatter” for TTN was written that converts the message 
back into separate fields for further processing. 

 

3.5 Mechanical Integration 
The modules that the u.RECS accommodates have a direct influence on the form factor. A 
test arrangement of the modules showed that the Mini-ITX [22] standard would be a suitable 
candidate for the u.RECS. This is a widely used form factor with numerous different cases 
available on the market. This allows for different chassis to be purchased, at a reasonable 
price without the need for expensive custom designs. 

Therefore, the Mini-ITX standard was chosen as the form factor for the u.RECS. Additionally, 
with its 170 by 170 mm footprint, the Mini-ITX standard is just large enough to accommodate 
all the components of the u.RECS, without wasting any space while remaining small enough 
for edge application. Figure 25 shows the DIN-rail mountable Mini-ITX case, that 
accommodates the u.RECS. 
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Figure 25 Mini-ITX case that can be mounted on a DIN-rail [23] 

The u.RECS board was, therefore, developed according to the Mini-ITX standard. Figure 26 
shows the board outline with the matching mounting holes. On one edge of the board is the 
area for the slot bracket, here a number of connectors are placed to be able to use the crucial 
interfaces when the chassis is closed. It should also be noted that there is only 3 mm of space 
under the PCB towards the chassis. Therefore, no components should be placed on the 
bottom side that violates this restriction. 

 

Figure 26 Board outline of the u.RECS 

Figure 27 shows front and back view of the actual u.RECS inside the Mini-ITX case. It is visible 
that the connectors for both modules have been placed on the board and the required 
interfaces have been positioned in the area of the slot brackets. Some interfaces are only 
accessible when the u.RECS is not used in a Mini-ITX case (see also Figure 17). This is a 
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deliberate design decision, as it is likely that in situations where these interfaces are needed, 
a user-specific chassis is required. 

              

Figure 27 Front and back view of the u.RECS inside Mini-ITX case 

3.6 Firmware architecture 
As described in the previous subchapters, the management microcontroller is an ESP32. It is 
well-known in the maker community due to its low price point, its integrated WiFi, Bluetooth 
Low Energy and Ethernet support [24]. Therefore, it has a broad software support with lots 
of different libraries that help us in the software development. 

The main tasks and implemented features of the management microcontroller are: 

- Power management for the SoC modules 
- Ethernet Switch configuration and monitoring 
- WiFi configuration 
- Power, voltage, temperature and health monitoring for all relevant devices 
- PoE status monitoring 
- Chassis fan management 
- Provide Web GUI for management and monitoring 
- Provide REST API for management and monitoring 
- Provide LoRa interface and easy sign-on for The Things Network [25] for 

management and monitoring 
- Tunneling of LoRa functionality to HTTP REST interface 
- Easy update of the u.RECS firmware 
- Basic user management & authentication 

 
The basic firmware of the ESP32 is based on the Espressif ESP-IDF development framework 
[26] and Platform.IO [27]  The code-structure is object-oriented and as much as possible 
similar to the RECS_Master code structure of the RECS|Box and t.RECS firmware. But as we 
need to develop the firmware for the EPS32 in C++ (not it Java like the RECS_Master), the 
whole firmware needs to be developed from scratch. Still, the look and feel of the Web GUI 
as well as the REST-API is as close as possible to the RECS_Master, but reduced to the 
minimal function set to keep it small and reactive.  

The power management and power sequencing of the SoC modules are being implemented 
as documented in the SoC datasheets of the Nvidia Jetson Xavier NX [5] and of the SMARC 
standard [28]. Both standards are publicly available after registration. For the Nvidia Jetson 
Xavier NX module, there is a small 8-Bit microcontroller on the eval board that does the 
power sequencing, but we wanted it to be directly managed by the ESP32 to have it under 
full control and get rid of the extra microcontroller. The SMARC standard allows users to 
select various boot sources which have been implemented. Still, as there are different 
vendors, some microservers behave differently and we needed to adapt the firmware from 
time to time to get all microserves to boot up correctly. 
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The Gigabit Ethernet switch needs a correct power sequencing and a basic configuration to 
function as desired. This is all done via an SPI connection between the ESP32 management 
microcontroller and the Ethernet chip. It is planned to also store user-specific settings and 
restore them after power-cycle. The major configuration that can be changed are the VLAN 
settings of the Ethernet switch. Our default is that all Ethernet ports share the VLAN 1. 

The Web GUI has been developed from scratch and features a very simple look and feel, 
similar to the RECS|Box and t.RECS websites. It has some nice graphs to show the last 60 
seconds of sensor readings like power consumption of the SoC modules and temperatures. 
The management interface is either available via WiFi or Ethernet, the IP address can be 
either assigned via DHCP or static. Included in the webserver is the REST API which is publicly 
defined at the Christmann recswiki website [29]  As the REST API behaves like the well-
known RECS|Box and t.RECS REST APIs, Kenning can directly be used for all types of RECS 
hardware. 

A major security issue of nearly all IoT devices is the old and not maintained firmware. 
Christmann plans to support the u.RECS firmware for the next years and implemented an 
automatic 1-Button Updater into the firmware. It retrieves the latest firmware from the 
Christmann webserver, checks integrity and flashes it onto the u.RECS in a second partition. 
If the firmware update should break anything, a rollback mechanism restores the last state. 
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4 VEDLIoT Microserver 
4.1 COTS Microservers 
Within VEDLIoT, we use a mix of commercially available microservers from the market and 
self-developed microservers to ideally fit the needs of the individual applications and to 
reach highest energy efficiency. Due to the modular design of the RECS systems, this is easily 
possible. In early stages, we have been able to simply use evaluation systems from different 
vendors, build up a first mockup and later just swap the microservers to our own platforms 
to enable the full advantages of tight integration, communication, power measurements, 
ML accelerators, etc.  

A comprehensive description of the used microserver form factors like COM Express, COM 
HPC, SMARC 2.1, Xilinx Kria K26, Nvidia Xavier AGX, Nvidia Jetson NX and Raspberry Pi 
Compute Module has been provided in chapter 4 of D2.2 (Hardware platform architecture). 
In addition, a list of available microservers is presented in D7.4 (Final report on testbed 
deployment and maintenance) [30], also several accelerators have been described in detail 
in D3.3 (Evaluation of the DL accelerator designs) [31].  Since then, the following 
microservers and accelerators were purchased and are available for testing, development 
and optimization inside the VEDLIoT consortium. Some of them have already been worked 
on very intensively, like the FPGA-based SMARC module Seco SM-B7 which has been chosen 
as the base for the DL accelerator design as described in D3.2 (Initial report on the DL 
accelerator design) [32].  

Name Company Description 

GPU-based 
  

Xavier NX 16GB NVIDIA Computer on Module + Carrier 

Orin NX 16GB NVIDIA Computer on Module + Carrier 

ASIC-based 
  

Hailo-8 M.2 Hailo M.2 2280 AI accelerator module 

AI Core XM 2280 AAEON M.2 2280 AI Edge Computing Module with 2x Intel 
Movidius Myriad X VPU 

ARM   

ROM-5722 Advantech SMARC 2.1 Module with NXP i.MX 8M Plus with ARM 
4-Core Cortex-A53 / M7 + NPU 

conga-SMX8-Plus Congatec SMARC 2.1 Module with NXP i.MX 8M Plus with ARM 
4-Core Cortex-A53 / M7 + NPU 

x86   

SOM‐2532 Advantech SMARC Module with Intel Atom x6425E 16GLPDR4 
32GeMMC 

SMARC-sXAL4 E2 Kontron SMARC Module with Intel Atom x7 E3950, 8GB 
LPDDR4, 32 GB eMMC pSLC 

COM HPC Server D Congatec COM HPC Server Size D Microserver with Intel D-
1746TER (Icelake D LCC) 

FPGA-based 
  

SM-B71 SECO SMARC Module with Ultrascale+ ZU4EG Quad 
Core+GPU @1,30GHz, PS DRAM 2 GB, PL DRAM 
512M, eMMC 4 GB 
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4.2 Tentative Microservers 
In this section, different possible microserver designs are presented. During the runtime of 
the project the availability of electronic components was a pressing worldwide issue which 
we tried to deal with as best as possible. Therefore, we didn’t only propose one or two 
microservers that we planed to build, but multiple promising candidates (cf. D4.1). Finally, 
only two candidates could be selected due to real available chips within the timeframe of 
the project.  The bases for this selection are the benchmarking activities performed within 
WP3 and displayed in deliverable D3.3. In this section we are showing the microserver 
candidates that were envisioned but couldn’t be realized within the project. 

4.2.1 HX40416 (SMARC) 
The Coherent Logix HX40416 is an accelerator based on a communication matrix that 
consists of data memory routers (DMR) and processing elements (PE) which is called HyperX 
architecture by the manufacturer. A detailed insight of the accelerator is given in Deliverable 
D3.1 Section 7.5.4. A training was performed that provided hands-on experience using the 
smaller already available HX40408 to assess its performance further. Unfortunately, 
Coherent Logix wasn’t able to provide samples of the HX40416 in time for the development 
of a microserver. 

4.2.1.1 Module Overview 
The HX40416 was foreseen as SMARC module to be compatible with the u.RECS system. The 
chip is optimized for high energy efficiency by using only the minimum necessary peripherals 
needed for operation. As shown in Figure 28, the only peripherals will be 4x LPDDR4, real-
time clock, GbE Phy and USB to SATA converter. Not shown is the power management of the 
system, which is obligatory. 

 

Figure 28: Blockdiagram of the forseen SMARC module showing the main components 

Due to the military background of the Coherent Logix accelerator, the communication 
interfaces are different from commercial embedded products. E.g. USB is not implemented 
in the RISC-V processing system of the chip. This makes it difficult to implement all interfaces 
of the SMARC2.1 standard. The module would lack USB2.0 and the second Ethernet port, 
also some UART, SPI and I2C interfaces would not be connected. But still, it could provide 
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adequate interfaces for the success of the project, like CSI for the connection of cameras 
and GbE for external communication. 

The following list shows the key features of the HX40416 SMARC module: 

• Coherent Logix HX40416 
o 4x RISC-V SiFive 54 @ 1500 MHz 
o 416 Processing Elements (2,496 GMACS INT16 @ 1500 MHz) 
o 20 Mbyte SRAM 

• 4x LPDDR4-3200 32-bit (4x 12.8 GByte/s) 
• Battery-powered RTC 
• Communication: PCIe x4 Gen.3, GbE, USB3.0 
• Video: CSI, LVDS, HDMI 

 
 

4.2.1.2 Device Configuration 
Similar to an FPGA, not all interfaces are connected to the processing system of the chip. In 
this case the RISC-V has quite limited communication capabilities as shown in Figure 29. All 
high-speed interfaces are directly attached to the communication matrix of the ML 
accelerator. An advantage can be a CSI camera stream directly feeding the processing 
elements, while a disadvantage is the higher complexity utilizing a PCIe or USB3.0 interface 
from the RISC-V.  

 

Figure 29: Blockdiagram of the Coherent Logix HX40416 showing I/O connections [33] 

Already at design time of a module it must be taken into account were to physically attach 
the high-speed I/O interfaces to save valuable resources in the ML accelerator. E.g. PCIe and 
USB3.0 should be placed close to the RISC-V processing system in order to keep the latency 
inside the DMR matrix as low as possible. 
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4.2.1.3 Software 
The HX40416 needs separate software for the processing system and the ML accelerator. 
The RISC-V based processing system is capable of running a small Linux operating system. 
This can be booted from an SD-Card via the SDIO interface inside the processing system. 
Once the chip is powered, it boots automatically and becomes available via the Ethernet 
interface. The RISC-V can then program the ML accelerator and attach the high-speed I/O 
interfaces. Coherent Logix provides a proprietary toolchain to compile neural nets from 
TensorFlow models. 

 

4.2.2 NXP i.MX 95 + Hailo-8 accelerator (SMARC) 
In addition to the other envisioned microservers, a SMARC based microserver with a Hailo-8 
accelerator seems to be a very good choice for several use cases, based on our recent 
benchmarks of the Hailo-8 ML accelerator. The benchmarks confirm that the Hailo-8 chip is 
one of the most attractive ML accelerators at the market at the moment, but only available 
as separate M.2 cards – not on a module together with a CPU/SoC. Therefore, we are in close 
contact with the company Hailo, negotiating to potentially get the chips and hardware 
development support to build an ML accelerated microserver. 

4.2.2.1 Module Overview 
Figure 30 shows the block diagram of an envisioned SMARC microserver with a NXP i.MX 95 
SoC as the host and a Hailo-8 ML accelerator that is coupled via PCI Express. Both chips will 
reside on the same SMARC module. The NXP i.MX 95 is planned to become available 
beginning of 2023, the Hailo-8 accelerator is already available. 

To verify the performance and energy efficiency expectations as well as the general 
architectural design, we plan to build up this scenario with the purchased M.2 Hailo-8 
accelerator and a similar SoC chip on a SMARC module that will become available soon and 
compare it against the other alternatives. 

This design has two disadvantages, compared to the other designs: The NXP i.MX 95 has only 
one PCIe lane which is used to connect the Hailo-8, but the Hailo-8 could be attached with 
four lanes, so there might lead to a small performance drop in data-intensive applications. 
The other disadvantage is, that the only available PCIe lane is used to connect the Hailo-8 
chip and thus there is no free PCIe lane to satisfy the SMARC external PCIe interface. 
Therefore, we might change the NXP i.MX 95 later to a comparable module that has more 
PCIe lanes. 
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Figure 30: i.MX95 + Hailo-8 SMARC microserver 

4.2.2.2 Software 
From a software point of view, both the NXP i.MX 95 and the Hailo-8 need to be supported. 
We expect to get a standard Linux on the NXP SoC up and running quite easily, potentially 
with the support from NXP. Once the NXP SoC is up and running, the Hailo-8 accelerator 
should appear as PCIe device and can be used the same way as the M.2 attached accelerators 
can be used. The Hailo-8 software has already been used by UNIBI in a first evaluation test. 

The core of the Hailo-8 software environment is the Hailo Runtime (HailoRT). It not only 
contains the firmware and driver for the module, but also includes a virtual python 
environment containing all the packages, tools and fully functional examples required to 
perform inference on the Hailo-8 accelerator. In addition to the python environment, the 
run-time also provides a C/C++ interface and corresponding examples. The Hailo model 
optimizer provided by the HailoSDK is required to prepare a new network for use with the 
Hailo-8. This python-based tool enables users to optimize, quantize and finally compile, e.g., 
Tensorflow or ONNX models for the Hailo-8. 

In addition to the run-time and SDK, an extensive model zoo is also available [34]. It contains 
a large number of different models that are compatible with the Hailo-8. The models contain 
among others, Resnet50, MobileNet v3 and Yolo v4. With the included Python script, these 
models can on the one hand be easily optimized and compiled for use on the Hailo-8, and on 
the other hand, their respective performance can be measured when executed on the 
module. 

4.3 Realized Mircoservers 
4.3.1 AVRSOM 
In this section we introduce ARVSOM, Antmicro's fully open-source system-on-module 
powered by the RISC-V architecture and featuring the StarFive JH7100 SoC. As a Founding 
Member of RISC-V International, Antmicro has played a pivotal role in shaping the RISC-V 
ecosystem from its early days. The ARVSOM open-source hardware shown in Figure 31 
delivers unparalleled openness, reusability, and functionality across diverse verticals. 
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Figure 31 Front side of the ANTMIRCO AVRSOM module 

It is compatible with Scalenode [35] – Antmicros’s open hardware baseboard targeting the 
server room and other applications. Together they form an easily scalable compute platform 
for building robust runners for CI and similar workloads, as well as creating custom, open 
source hardware and software based systems for edge AI applications, which Antmicro has 
been building for its customers for more than a decade. 

Designed to cater to a wide range of use cases and providing unmatched flexibility, ARVSOM 
stands as the latest testament to Antmicro's proficiency in developing practical and easily 
modifiable technologies within the realm of open source. 

4.3.1.1 Module Overview 
Sitting at the heart of ARVSOM is the StarFive JH7100 system-on-chip - the first Linux-
capable RISC-V SoC that is intended for mainstream, general-purpose edge applications and 
is expected to be used in millions of devices to be built on the open source RISC-V ISA. The 
module is offering the following spec: 

• RISC-V U74 dual-core with 2MB L2 cache @ 1.5 GHz 
• Vision DSP Tensilica-VP6 for computing vision 
• NVDLA Engine 1 core (configuration 2048 MACs @ 800MHz  – 3.5 TOPS) 
• Neural Network Engine (1024MACs @ 500MHz – 1 TOPS) 
• VPU – H.264/H.265 decoder up to 4Kp60, dual-stream decoding up to 2Kp30 
• JPEG encoder/decoder 
• Audio Processing DSP and sub-system 

Module's design is available in GitHub repository [36] and is licensed on the permissive 
Apache-2.0 license. Among other platforms such as the u.RECS, the ARVSOM module is 
compatible with Antmicro's Scalenode  - rack-optimized baseboard for computing modules. 
Scalenode baseboard with ARVSOM module eases building RISC-V computing clusters. 
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The main part of the module is the StarFive JH7100 SoC, a block diagram showing the 
internal connections of the module can be seen in Figure 32. The module is pin compatible 
with Raspberry Pi Compute Module 4 (CM4). It provides the following communication 
interfaces exposed on dual DF40 board-to-board connectors: 

• HDMI 
• Gigabit Ethernet 
• USB 3.0 
• 2x MIPI CSI-2 (2 lanes each) 
• I2C 
• MIPI DSI (4 lanes) 
• SD/SDIO/eMMC 
• 26 GPIOs 

The module provides 8 GByte of LPDDR4 RAM memory (2x4 GByte) and 32 MByte QSPI NOR 
Flash memory. 

 

 

Figure 32 Block diagram of the ARVSOM 

4.3.2 VERSAL Edge.AI COM (SMARC) 
The AMD Versal series is the latest generation of reconfigurable architectures, introduced 
by AMD, called Adaptive Compute Acceleration Platforms (ACAP). The Versal ACAPs 
combine an ARM processing system with a programmable logic fabric and a variety of I/O 
interfaces. Additionally, new DSP engines and optional AI engines are integrated, together 
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with a dedicated network on chip infrastructure that ties all components together. The 
combination of flexibility of the programmable logic and compute power in the DSP or AI 
engines makes the Versal architecture a perfect choice for VEDLIoT as a complement or 
successor of the current UltraScale+-based FPGA modules. This section describes intrinsics 
of the new VERSAL Edge.AI COM shown in Figure 33. 

   

Figure 33: Front- and Backside of the VERSAL Edge.AI COM 

4.3.2.1 Module Overview 
The small to mid-range Xilinx Versal [37] devices can be integrated into the SMARC module, 
which is compatible to the u.RECS system. The wide variety of I/O interfaces, the Versal 
offers, allows to directly connect nearly all interfaces the SMARC standard specifies, as 
shown in Figure 34. Main peripherals on the module are the RTC and 8 GB of LPDDR4 
memory. Within VEDLIoT the AMD Versal VE2302 was chosen from requirements of the use-
cases. The VE2302 is the smallest Versal that is large enough to support the DPU IP-core 
described in deliverable D3.3. It enables the execution of large AI-models like the YOLO 
model [38] used in the Smart-Mirror use-case. The module comes with the following 
specification: 

• AMD Versal VE2302 
o Dual-core Arm® Cortex®-A72, 48 KB/32 KB L1 Cache w/ parity & ECC; 1 MB 

L2 Cache w/ ECC 
o Dual-core Arm Cortex-R5F, 32 KB/32 KB L1 Cache, and 256 KB TCM w/ECC 
o 256 KB On-Chip Memory w/ECC 
o 34 AI Engine-ML 
o 464 DSP Engines 
o 329.000 System Logic Cells 

• 8 GB LPDDR4 memory 
• 64 MB QSPI Flash 
• uSD-Cardholder 
• Real-Time-Clock 
• Board Management Controller STM32F103 
• JTAG Debug Header 
• SMARC interfaces 

o 2x Gigabit-Ethernet via KSZ9031 PHY 
o HDMI via ANX9804 RGB->HDMI Inverter 
o PCIe x4 Gen.4 
o 4x USB 2.0 via USB Hub USB2514B 
o CSI x2/x4 
o 2x I2C 
o CAN 
o SDIO 



D4.4  Version 1.0 
 

  42 
 

o UART 
o CAN 

 

 

Figure 34: Block-diagram of the VERSAL Edge.AI SMARC module showing the main components 

4.3.2.2 Architecture Overview 
The Xilinx Versal architecture consists of five main components: a processing system, a 
programmable logic, DSP and AI engines, a network on chip and the I/O interfaces as shown 
in Figure 35. Like the Zynq Ultrascale+ architecture the processing system is based on ARM 
cores. In the Versal ACAPs, these are a dual-core Cortex-A72 application processing unit and 
a dual-core Cortex-R5 real-time processing unit. The programmable logic provides the 
typical FPGA resources like LUTs, Flip-Flops, Block-RAM and UltraRAM blocks. The DSP 
engines offer various operations like a multiplier and an accumulator; new with the Versal 
architecture are three-element vector fixed-point dot-product, complex multiply-
accumulate and single-precision floating-point multiplier and adder. The AI engines are 
organized in a 2D-array. Each AI engine consists of a SIMD and a VLIW processor, a 32KB 
memory that is shared between neighboring engines and a stream interface. The I/O part 
offers interfaces like memory controller, Ethernet, UART, MIPI and others. Finally, the 
network on-chip offers a high bandwidth connection between all these components. 
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Figure 35: High-level architecture of the AMD Versal devices [37] 

4.3.2.3 Tool-flow 
The development of applications for the Versal chips is integrated into the AMD tool-flow 
for FPGAs and AMD SoCs using Vivado [39] and Vitis [40], which is already used for the Zynq 
Ultrascale+ SMARC module. The ML flow is integrated into the Vitis-AI flow used for the 
AMD DPUs. Matching to the new Versal architecture, AMD also provides a new DPU version 
that utilizes the AI engines to achieve a better performance in comparison to the DPU 
utilizing only PL resources. 

The Linux system running on the ARM processing system can be booted from an SD card 
over SDIO and accessed via Ethernet. As with other AMD SoCs, the processing system can 
then configure the programmable logic as well as the DSP or AI engines. This makes the 
system highly flexible since new configurations can be loaded at run-time from the SD card 
or over the Ethernet interface. 

4.3.2.4 Firmware 
The Versal Edge.AI COM features a “board management controller" (BMC) that, coordinates 
power sequencing, provides additional interfaces and surveils the power budget of the 
system. It is the low-level interface, that is available on the SMARC connector, while the 
Versal is powered-off. It handles all side-band signals, e.g. Power-On request and reset. In 
addition, it monitors different supply rails for, e.g. CPU and RAM The captured data is 
available either from the OS running on the Versal or via I2C from an external management 
system like the one built into the u.RECS. Other monitored parameters include 
temperatures of different critical components on the module and the tacho signal of a 
connected fan. 

A Board Support Package (BSP) for the Versal on the microserver modules is already 
available. It is based on a customized Linux kernel accompanied by an appropriate Device 
Tree, including the microserver module's additional hardware, e.g. the GbE PHYs. As such, 
the end-user of the module can work with a familiar Linux operating system as a starting 
point. 
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5 Conclusion 

This document describes the architecture of the VEDLIoT hardware platform, refining and 
detailing the overview of the platform that was reported in Deliverable D2.2. The VEDLIoT 
hardware platform covers the full range of IoT systems, from embedded or far-edge 
deployments, all the way up to cloud-based systems. This allows to use the platform for 
hybrid use-cases such as the VEDLIoT automotive use-case, requiring components in the 
cloud/near-edge, as well as in the embedded/far-edge domain.  

For the cloud system, the RECS|Box, an extension of the low-power microserver platform to 
support newer microservers, such as the Jetson Orin NX, was designed. This allows the 
deployment of very dense scale-out systems with up to 144 microservers. In addition to this, 
the t.RECS system is available, as outlined in Section 2.2, providing a flexible platform for 
small cloud or near-edge use-cases, integrating a powerful communication infrastructure 
with capabilities similar to those of the RECS|Box, however, in a smaller form factor.  

The novelty in VEDLIoT is the introduction of the u.RECS platform to the RECS family. This is 
a flexible modular platform that supports multiple, heterogeneous microservers in a 
compact form factor for energy efficient solutions. It supports a wide range of low-power 
microservers based on industry-establish COM standards such as NVIDIA Jetson, SMARC, 
CM4 or AMD Kria. In addition, the architecture offers flexible interfaces to include additional 
accelerators, e.g. via USB or M.2, as well as a wide range of communication and sensor 
interfaces. The u.RECS platform enabled the support for complex Deep Learning tasks with 
high energy-efficiency implementations that can make it feasible to deliver the required 
features at the far-edge. 

Apart from the platforms, microserver developments within VEDLIoT came up with two new 
modules, the ARVSOM and the AMD Versal Edge.AI COM. They provide a significant boost 
in energy efficiency compared to existing solutions is archived by developing microservers 
with a special focus on ML or DL. 
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