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Executive Summary  
The deliverable, “Final report on wireless communication infrastructure”, reports the final 
state of the evaluation, testing and integration of the wireless technologies Wi-Fi and 
LoRaWAN into the u.RECS and Secure IoT Gateway. 

New requirements regarding improved stability and the technological advancements of the 
used frameworks of the Secure IoT Gateway required code refactoring and infrastructure 
improvement. We set our initial focus onto the hardening and refactoring of the codebase, 
besides evaluating and specifying wireless integration scenarios and technologies inside this 
Task. Building upon these improved foundations, this report showcases  the completion of 
the successful LoRaWAN and Wi-Fi integration, also documenting the steps taken towards 
hardening the Secure IoT Gateway and further advancing it towards a tangible product. With 
the knowledge gained through over a yearlong deployment in production environments at 
customer sites, and the collaboration with Siemens Electric Motor Condition Classification 
Use-Case within VEDLIoT, we were able to further expand the feature-set of the Secure IoT 
Gateway. We improved firewall and routing management, which greatly improved the 
usability and adaptiveness of the system in  real deployment scenarios. 

In addition to that, the integration of the u.RECS as a LoRaWAN device has been successfully 
accomplished on a hardware and software level. It allows its usage coupled with Secure IoT 
Gateway LoRaWAN infrastructure or other LoRaWAN stacks like The Things Network. 
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1 Introduction 
This deliverable is based on the first report D4.2 [1] and documents the development work 
of Task 4.5, starting with the evaluation process and the resulting development steps taken 
for integrating wireless technologies (LoRaWAN, Wi-Fi) into the u.RECS hardware platform 
and the Secure IoT Gateway.  

The general aim of the Secure IoT Gateway is securing network-based communication to 
counteract the current lack of network security multiple IoT devices offer. Generally, the 
work is partly based on work performed within the LEGaTO [2] project, which aimed at wired 
Ethernet-based communication. The final project report documenting the initial 
development of the Secure IoT Gateway can be found in the LEGaTO use case deliverable 
[3]. When it comes to developing IoT devices, security and sufficient encryption of data 
traffic is often overlooked, due to hardware limitations of embedded devices [4]. It is also 
common for IoT devices to send usage statistics or similar information to the manufacturer 
for analysis. If privacy about device usage is highly valued, this may be of concern. The listed 
problems led to the development of the Secure IoT Gateway - an easy-to-use VPN solution 
that encapsulates IoT device traffic, shields the network from sniffing unencrypted data and 
restricts unwanted communication to the manufacturer’s servers. Besides securing the 
network, it also provides convenient features for secure communication among network 
devices over the Internet. Wireless communication is essential in IoT infrastructures, as 
sensors often have to be placed in inaccessible or inadequately connected places. Thus, the 
integration of wireless technologies into the u.RECS hardware platform and the Secure IoT 
Gateway is one of our goals within VEDLIoT. The Secure IoT Gateway aims to provide a 
wireless infrastructure, whilst the u.RECS acts as a wireless end device. Figure 1 shows an 
example scenario where communication is secured by the Secure IoT Gateway, with the 
u.RECS as a LoRaWAN end-device.  

To enable VPN connections between IoT devices, we supply a variety of so-called “IoT 
Bridges”. These are small ARM-based embedded devices with dual Ethernet ports to which 
IoT devices connect. From there on, the communication will be secured via VPN. Besides the 
IoT Bridges, we have an optional infrastructure component “Local Gateway” — hosting VPN 
servers necessary for securing connections from IoT Bridges directly inside the local 
customer network. VPN endpoints are also provided by the Cluster Gateway, allowing 
remote connections secured with VPN accessible from the Internet. This also enables the 
central routing of multiple Local Gateways from different company sites for a specific 
customer, as well as direct connections from IoT Bridges. IoT Bridges and Local/Cluster 
Gateways are controlled by a multi-client capable web application called “Network Cockpit”, 
deployed in the cloud. This allows for easy management of the solution’s components from 
a customer's perspective.  
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Figure 1: Communication infrastructure and component overview of the Secure IoT Gateway 

The diverse layout of networks and their respective requirements for different throughputs, 
power availability and connection methods for different hosts, led to the line-up of IoT 
Bridge models showcased in Figure 2. Three Ethernet-based IoT Bridge models are currently 
available, each with its own use case — determined by the maximum network throughput 
and power consumption. Figure 2 shows the IoT Bridge hardware line-up of the Secure IoT 
Gateway with the newly added IoT Bridge LoRa. The integration work done in this Task also 
led to the support for Wi-Fi in the IoT Bridge 10 and IoT Bridge 50 models. 

 

Figure 2: IoT Bridge hardware line-up of the Secure IoT Gateway 
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2 Evaluation of Wireless Technologies 
This chapter describes the evaluation process of wireless technologies suitable for 
integration into the u.RECS and Secure IoT Gateway. The proposal lists LoRa [5] and 5G [6] 
as possible wireless technologies, but other options were also evaluated. 5G provides high 
bandwidth and high-range transmissions. However, integrating cellular 5G into the Secure 
IoT Gateway product was discarded, due to the high cost and approval time regarding 
licensing private usage in the EU. Because the Secure IoT Gateway operates as a wireless 
infrastructure provider, licensing our own 5G gateways would be inevitable. 

The u.RECS already contains Wi-Fi and Bluetooth capabilities provided by the BMC, which 
are optimal for high bandwidth, low range applications, as shown in Figure 3. To complement 
the existing wireless technologies, we settled for LPWAN (Low Power Wide Area Network) 
in the u.RECS. Wireless technologies with unlicensed frequencies are preferred because the 
Secure IoT Gateway supplies private base stations/gateways for the chosen technology. 
SigFox [7] and LoRa operate in unlicensed frequencies, which makes them possible 
candidates for integration. The downside of SigFox comes from the lack of private network 
deployment. SigFox is a public network, which relies on the usage of already existing 
infrastructure. We settled for LoRa as integration candidate regarding the Secure IoT 
Gateway and the u.RECS. It complements the existing wireless technologies (Wi-Fi and 
Bluetooth) of the u.RECS by providing long-range, low-bandwidth transmissions, as shown 
in Figure 3. To ensure a good balance between range and bandwidth, the Secure IoT Gateway 
implements Wi-Fi and LoRa. The Secure IoT Gateway IoT Bridge line-up already contains Wi-
Fi-capable hardware, thus making the decision easy. Besides the technical benefits of the 
chosen standards, LoRa and Wi-Fi are popular technologies in the IoT sector. This increases 
the number of potential customers for the Secure IoT Gateway, due to the high 
compatibility. 

 

 
Figure 3: Range to bandwidth comparison of wireless technologies, © UnitingDigital.com 
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When it comes to LoRa, the integration was achieved by using the LoRaWAN [8] standard. 
LoRaWAN stands for “Long Range Wide Area Network'' and classifies as an LPWAN. It is built 
on top of the physical LoRa standard and provides the Medium Access Control (MAC) layer 
to form a star topology network. LoRaWAN is suitable for low-bandwidth, high-range 
applications while consuming the smallest amount of power in the LPWAN sector. The 
physical LoRa communication can achieve transmission ranges up to multiple kilometres, but 
this is only the case in optimal external conditions. The bandwidth varies from 0.3 to 11 
kbit/s, depending on the SF (Spreading Factor). Further technical details regarding 
LoRaWAN and Wi-Fi will be presented in the upcoming integration Chapters 3 and 4. 
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3 Wi-Fi Integration into the Secure IoT Gateway 
Figure 4 shows the point of use for Wi-Fi technology within the Secure IoT Gateway. We are 
using the IoT Bridge 10 and IoT Bridge 50 as Wi-Fi access points because they already have 
the required hardware integrated. An IoT Bridge acts as an access point for one or more IoT 
devices and encrypts the traffic from there on. 

 
Figure 4: Communication infrastructure of the Secure IoT Gateway with Wi-Fi 

As shown in Figure 4, IoT Bridges with Wi-Fi functionality behave as access points for IoT 
devices. The outbound connection to the Local Gateway is still established over Ethernet. 
The OpenWRT [9] operating system runs on all IoT Bridge platforms in our line-up, including 
the newly added IoT Bridge LoRa, which will be relevant in Chapter 4 (LoRaWAN Integration). 
To configure the access point on an IoT Bridge, the current IoT Bridge API of the Network 
Cockpit was adjusted accordingly. Further details are described in Section 3.1. Besides 
altering the API on the IoT Bridges to configure OpenWRT to accept and manage Wi-Fi 
configurations, the frontend and backend of the Secure IoT Gateway’s Network Cockpit had 
to be extended. These changes are described in further detail in the upcoming sections. 
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3.1 Extension of the API 
OpenWRT — the IoT Bridge operating system — provides a UCI (Unified Configuration 
Interface) [10], which stores the system’s configuration as key/value pairs. Due to the 
renewed backend API documented in the Section 5.1, the API of the IoT Bridges had to be 
adjusted. The new backend changed the request structure of the REST API, making 
communication between the components more efficient. By implementing the 
configuration queue system described in the Section 5.1, the API of the IoT Bridges does not 
impact the performance of the system anymore. In the previous API revision, the complete 
stored configuration was fetched every time a component requested the REST API of the 
Network Cockpit. This approach impacted the performance of the system, due to the 
continuous key/value comparison between the locally stored UCI data and the newly 
fetched configuration.  

UCI allows the necessary Wi-Fi-related key/value pairs to be set. Thus, the API interfacing 
UCI can control the needed configurations remotely from the Network Cockpit. In order to 
apply a configuration related to a Wi-Fi interface, the API detects the changes and reloads 
the adapter automatically upon configuration. Development of the locally deployed 
controller software for the IoT Bridges was written in Lua, due to its lightweight nature and 
strong support within OpenWRT systems. We developed an OpenWRT package that can be 
installed with Opkg [10] on the IoT Bridges, which contains all Secure-IoT-Gateway-related 
functionalities. Besides installing the Secure IoT Gateway package via repository 
management, we also build OpenWRT from source on our Jenkins server, thus creating a 
flashable image file with the latest changes and versions. 

3.2 Extension of Frontend 
For managing Wi-Fi related configurations of an IoT Bridge, a new section inside the settings 
window was added. This will only show up when the selected component is marked as a Wi-
Fi capable device. As of right now, this would include the IoT Bridge 10, 50 and LoRa. The tab 
displays the necessary fields for access point configuration to the customer. Wi-Fi is disabled 
per default, but the customer can change that by accessing the slider shown in Figure 5. 
When enabled for the first time, the default SSID will be the IoT Bridge name. The PSK is 
generated randomly, but we recommend entering a new PSK created by the customer. The 
“Apply” button passes the settings through backend user-input checks and stores the inputs 
in the configuration queue for the selected device. Device settings are later retrieved by the 
configured IoT Bridge in fixed intervals. The custom controller software for OpenWRT, as 
described in Section 3.1, handles the change of configuration on the hardware component. 
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Figure 5: Screenshot of the Network Cockpit wireless settings popup 

4 LoRaWAN Integration 
This chapter describes the integration process of LoRaWAN into the Secure IoT Gateway and 
u.RECS. As previously described in Chapter 2, LoRaWAN is the MAC layer on top of the 
physical LoRa standard. With the help of LoRaWAN gateways, a star topology network is 
formed. LoRaWAN end devices are able to connect to the network by utilizing OTAA (Over 
The Air Activation) or ABP (Activation By Personalization) [11]. This will be relevant in the 
upcoming LoRaWAN integration Section 4.1.1 of the Secure IoT Gateway. 

 

 
Figure 6: Default LoRaWAN architecture 

The LoRaWAN standard specifies the usage of network servers, which interconnect the 
deployed LoRaWAN gateways. Application servers are used to allow the incoming and 
outgoing LoRaWAN data from the IoT devices and applications as shown in Figure 6. 
LoRaWAN uses two 128-bit AES encryption layers on the payload transmitted in the 
network. This ensures end-to-end encryption from the IoT device to the application server 
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and vice versa, making LoRaWAN a secure wireless technology. OTAA and ABP define the 
key handling necessary for creating the AES layers between the network components. 

The u.RECS acts as a LoRa end device, whilst the Secure IoT Gateway provides the LoRaWAN 
communication infrastructure. Because the technology was used in two independent ways 
throughout the documented task, the chapter is split into the different integration scenarios 
of u.RECS and Secure IoT Gateway. 

4.1 Secure IoT Gateway as LoRaWAN Infrastructure Provider 
The Secure IoT Gateway is capable of providing a LoRaWAN infrastructure, which can be 
used by various IoT devices. Different scenarios for implementing LoRaWAN into the 
existing structure of the Secure IoT Gateway were evaluated, with the conclusion of 
discarding the use of a LoRaWAN server. This is further described in the following section 
4.1.1. For supplying the infrastructure, the use of a new local component is necessary. 
Section 4.1.2 shows the evaluation and testing of LoRaWAN gateway hardware, resulting in 
the addition of the IoT Bridge LoRa product line-up. The necessary steps for the LoRaWAN 
integration are documented in Sections 4.1.3 and 4.1.4. 

4.1.1 Overview of the Communication Infrastructure 
We decided to discard the usage of LoRaWAN servers, thus terminating the LoRaWAN 
network at the point of the IoT Bridge Lora. This was necessary because evaluation showed 
it was not possible to run LoRaWAN server stacks in parallel to the OPNsense operating 
system due to incompatibility issues. This is further described in the evaluation Section 4.1.2. 
All LoRaWAN traffic is terminated and forwarded using MQTT (Message Queuing Telemetry 
Transport) [12] at the newly introduced IoT Bridge LoRa, which makes the use of a separate 
LoRaWAN server obsolete. By using MQTT forwarding on the IoT Bridge LoRa, all 
functionalities except OTAA are still given. MQTT is a messaging protocol commonly used in 
the IoT sector due to its low bandwidth requirements and M2M (Machine-to-Machine) 
topology. ABP is used as a joining protocol for LoRaWAN end devices due to the LoRaWAN 
stack termination on the IoT Bridge LoRa.  

 

 
Figure 7: LoRaWAN architecture of the Secure IoT Gateway 

Figure 6 showed the possible integration scenario with the LoRaWAN stack, contrary to the 
architecture we settled on, as shown in Figure 7. A centralized MQTT Broker handles the 
communication and allows access to data via the publish/subscribe principle. As written 
before, we decided on MQTT forwarding because evaluation showed that it is not possible 
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to reliably run a LoRaWAN server on the Local Gateway in parallel to the OPNsense [13] 
operating system. With MQTT forwarding, customers can register LoRaWAN ABP end 
devices inside the newly created LoRa management interface of the network cockpit as 
explained in Section 5.2. The system behaves like a normal LoRaWAN implementation, the 
only exception being the missing OTAA functionalities. Each registered end device has its 
own MQTT topic, which can be accessed by the applications. The MQTT broker is provided 
by the Local Gateway and can later be accessed by the applications using the LoRaWAN 
device data. 

To register devices inside the network, ABP credentials can be set inside the LoRaWAN 
management interface inside the Network Cockpit for the specified gateways. ABP 
credentials include the AES keys used for encrypting the payload of the LoRaWAN 
transmissions. In order to configure the LoRaWAN-related settings, the existing API on the 
IoT Bridges was extended. It is now capable of performing LoRaWAN specific configurations, 
necessary for ABP decryption and MQTT forwarding. For every new LoRaWAN device, the 
corresponding ABP credentials (Device Address, Network Session Key, Application Session 
Key) and an MQTT topic need to be set in the configuration. 

 

 
Figure 8: Detailed view of the LoRaWAN components and their interaction 

 
Figure 8 shows the complete structure of the MQTT forwarding method in the Secure IoT 
Gateway environment. The IoT Bridge LoRa decrypts/encrypts the payload transmitted over 
LoRaWAN from the IoT devices. The decrypted payload is sent over to the MQTT Broker 
deployed on the Local Gateway over a TLS secured MQTT connection, which ensures the 
encrypted communication. In the previous deliverable [1] we specified a VPN encryption 
between IoT Bridge LoRa and MQTT Broker, but the implementation turned out to be 
redundant, and impacted the performance of the LoRa gateway, thus settling with the 
standard TLS implementation that MQTT offers. Applications can interface with the MQTT 
broker and schedule uplink packets or collect the downlink packets from the IoT devices 
registered to the IoT Bridge LoRa. Every IoT device has its own MQTT topic, which allows the 
incoming data to be separated for each IoT device. To ensure configuration of the newly 
introduced technologies, the API of the Secure IoT Gateway components had to be 
extended. This is further described in Section 4.1.3. 
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4.1.2 Hardware Selection and Evaluation 
In order to use the LoRaWAN technology in the scope of the Secure IoT Gateway, the IoT 
Bridge LoRa was added to the hardware line-up. It consists of a Dragino LPS8 [14] , an open 
source LoRaWAN Gateway which runs a customized version of the OpenWRT operating 
system. This was crucial for integration into the existing project architecture because the 
product line-up already contains OpenWRT-based devices. This ensured a smooth 
integration into the existing VPN and API structure used by the Secure IoT Gateway. The IoT 
Bridge LoRa contains a Semtech SX1308 baseband chip and two Semtech SX1257 transceiver 
modules, which allow for multi-channel LoRaWAN transmissions. The hardware was first 
tested with The Things Network (TTN) [15]  and multiple Dragino LHT65 [16] temperature 
sensors. TTN is an open-source LoRaWAN server solution, which created the largest public 
LoRaWAN network as of now. The Secure IoT Gateway aims to provide a standalone 
LoRaWAN solution, which requires a local implementation of the LoRaWAN infrastructure. 
This includes the implementation of a LoRaWAN network and application server. Open-
source solutions like ChirpStack [17] or TTN provide the necessary software for handling the 
LoRaWAN server infrastructure. Both solutions were tested on the Local Gateway running 
the OPNsense operating system with limited success. It is impossible to run the LoRaWAN 
server stack parallel to the OPNsense system without cutting down on crucial OPNsense 
functionalities. This was due to dependency incompatibilities (the most severe being 
OpenSSL) with the current FreeBSD version on which the OPNsense system is based. Later 
the decision was made to discard the usage of LoRaWAN servers, which led to evaluating 
the MQTT forwarding method as already described in Section 4.1.1. 

4.1.3 API Extension 
To allow LoRaWAN-related configurations to be made by the Network Cockpit, the API had 
to be extended. This was done on top of the existing API structure, which had been improved 
in the scope of this project, as described in the Section 5.1. The API on the OpenWRT-based 
IoT Bridges was extended to handle the configuration of the necessary LoRaWAN-related 
settings if deployed on the IoT Bridge LoRa. Besides handling LoRa-related configurations, 
a local log-parsing and statistics collection application was developed for the IoT Bridge 
LoRa. It gathers relevant information about LoRa PHY statistics like SNR, RSSI, packet count 
and RX/TX packets of specific LoRaWAN devices. The collected statistics data is sent 
securely over HTTPS to the REST API of the Network Cockpit, and later visualized in the 
frontend of the Network Cockpit as described in Section 4.1.4. Development of the control 
and statistics application for the LoRa Bridge was done in Lua as well, due to its lightweight 
nature and strong support for OpenWRT, which also runs on the IoT Bridge LoRa. In 
conclusion, the IoT Bridge LoRa controller software was built on top of the optimized API 
structure described in Section 5.1. It was adjusted to support the LoRa-specific management 
parameters and statistics, which are later controllable via the Network Cockpit frontend. 
The API counterpart on the Network Cockpit side was also expanded to handle LoRaWAN-
related configuration management and statistics. 

 

  



D4.5 Version 2.0 
 

15 
 

4.1.4 Extension of Network Cockpit Frontend 
To configure and monitor the newly introduced components that allow the LoRaWAN 
infrastructure of the Secure IoT Gateway, new UI elements had to be integrated into the 
Network Cockpit. These were added to the new UI structure described in Section 5.2. The 
Network Cockpit handles the LoRaWAN end-device management and the IoT Bridge LoRa-
related configurations separately. The customer can configure the IoT Bridge LoRa in the 
Device Manager, where all Secure IoT Gateway components are shown. LoRaWAN end 
devices are handled separately on a new page because they are not part of the configurable 
system's infrastructure. 

 

 
Figure 9: LoRa settings menu in the Network Cockpit frontend 

In order to configure the IoT Bridge LoRa, the customer can use the conventional settings 
dialogue of the components table. This was implemented by adding a new tab into the 
settings dialogue of the IoT Bridge LoRa, which contains the needed settings for gateway 
configuration. Customers can change the frequency plan according to their location, as well 
as the preferred MQTT Broker for application access as shown in Figure 9. MQTT access is 
granted via username and password, which are changeable over the Local Gateway 
configuration menu inside the Network Cockpit. When the Secure IoT Gateway’s Network 
Cockpit detects the usage of the IoT Bridge LoRa, a new menu is accessible to the customer, 
which contains the LoRaWAN device management, as shown in Figure 10. 



D4.5 Version 2.0 
 

16 
 

 
Figure 10: LoRaWAN console inside the Network Cockpit frontend 

Monitoring data on the registered LoRaWAN devices is displayed in the extendable section 
of the table shown in Figure 10. The Secure IoT Gateway provides the following LoRaWAN 
end device monitoring data: 

• Device address of the LoRaWAN end device for identification 
• Packet counter of up/downlink packets per device 
• The last used SF (Spreading Factor) and bandwidth of the transmission 
• Last RSSI (Received Signal Strength Indicator) and SNR (Signal-to-Noise Ratio) 
• MQTT topic for application access 

 
Each LoRaWAN device can be configured by the provided settings button. This allows the 
customer to set the end device metadata, like device name and location, as well as the ABP 
credentials. The settings are accessible via the modal popup, which unifies the configuration 
layout with the regular component settings. The settings menu is shown in Figure 11. 

 
Figure 11: LoRaWAN device settings menu in the Network Cockpit frontend 
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4.2 u.RECS as LoRaWAN End Device 
LoRaWAN provides a simple yet practical interface for managing and monitoring the u.RECS 
in an edge environment. Sensor information like temperature and power consumption, as 
well as direct management actions like node power control are supported. The 
functionalities covered by the LoRaWAN interface incorporate BMC related actions by 
default. The interface is also accessible for installed nodes on the u.RECS carrier via the 
internal Ethernet, which enables user access to the LoRaWAN network. To access the 
interface, the BMC provides a REST API to the nodes present on the u.RECS carrier. The 
u.RECS inherits the role of the LoRaWAN device, which communicates with a LoRaWAN 
application server. An Espressif ESP-32 WROVER-IE was used as management controller 
(BMC) for the u.RECS, as later described in the chip selection Chapter 4.2.2. The built-in web 
interface of the BMC enables access to the LoRaWAN API by authenticating over HTTP Basic 
Auth. The API usage is further described in Section 4.2.3, as well as the more detailed 
explanation of the technical background in Section 4.2.1. 

4.2.1 Overview of the Communication Infrastructure 
The communication infrastructure describes LoRa related components and their 
interactions necessary for transferring data between the u.RECS and an application. The 
u.RECS acts as a conventional LoRaWAN device, which allows usage of off-the-shelf 
application servers like TTN or ChirpStack. To differentiate between packets from different 
modules, the LoRaWAN Frame Port (FPort) byte is set as a module identifier. It allows for a 
total of 223 different application-specific ports to be used. The LoRaWAN specification 
states that FPort 0 and 224–255 are used for internal management communication. FPort 1 
will be reserved for the BMC, while the remaining 222 Ports can be used by different 
modules. Each module that uses the HTTP REST API has a fixed port in the 2-223 range 
assigned. Our first idea regarding module identification and separation was to assign the 
FPort to an API Key on the BMC, as described in the first deliverable [1]. Since this would 
imply a proprietary software component on the application server side of the LoRaWAN 
stack, we discarded this design choice. The proprietary software would have been necessary 
to map the API Key to FPort assignment on the customer’s application endpoint, thus 
introducing unnecessary complexity to the system. We chose to let the modules freely select 
the desired FPort directly but reserved FPort 1 for BMC-related communication. The actual 
implementation of the LoRaWAN API of the BMC is documented in Section 4.2.3. 

 

 

Figure 12: LoRaWAN communication infrastructure of the u.RECS 

The communication structure shown in Figure 12 displays a high-level view of the 
component interactions necessary for LoRaWAN communication for the u.RECS. Module 
specific applications can schedule or retrieve LoRaWAN data by using different FPorts, which 
was tested during development with The Things Network. 
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4.2.2 Chip Selection and Integration 
A Semtech SX1276 [18] based chip (HopeRF [19]) was selected for integration into the 
u.RECS platform as LoRaWAN transceiver. It provides the needed functionalities for LoRa 
MAC layer integration, which is used as a LoRaWAN end device. The provided SPI interface 
of the LoRa chip is directly connected to the BMC, an Espressif ESP32 WROVER-IE, which is 
responsible for the basic monitoring and management functionalities of the u.RECS. Those 
functionalities are also accessible via the LoRaWAN interface, which is further described in 
Section 4.2.3. 

In order to create the MAC layer on top of the physical LoRa standard, a modified version of 
the LMIC (LoraWAN MAC in C [20]) library is used on the ESP32. 
 

 

Figure 13: Block diagram of the u.RECS [21] 

Having the LoRa transceiver connected to the BMC has some advantages for the u.RECS 
architecture. On the one hand, the BMC can act as a switch providing LoRaWAN 
communication to both processing modules (SMARC 2.1 and Nvidia Jetson Nano) and on the 
other hand, it can be used to remotely control and monitor the system over the air. This 
enables power-saving features like wake-up from sleep modes for the processing modules 
and low-power modes where only the ESP32 is running and all other peripherals, e.g. Gigabit 
Ethernet or USB3, are switched off. 

The LMIC library for the Semtech SX1276 on the ESP32 generates a MAC layer on top of the 
physical LoRa standard, providing easy packet-based IP communication. In the switch mode, 
the BMC can route these packets to the processing modules via the Gigabit Ethernet 
interface. 

4.2.3 API Definition 
The API allows u.RECS modules to access LoRaWAN functionalities of the u.RECS, as 
described in Section 4.2.1., The API in the schema described in Figure 14 is used in order to 
schedule or retrieve LoRaWAN packets. The FPort can later be used to identify the message 
sender and receiver. Besides supporting the API for external LoRaWAN functionalities, the 
BMC of the u.RECS is also able to send out monitoring data as described in Figure 15. 
Currently we only support the change of node power states as downstream payload on the 
BMC, as shown in Figure 16, but it is planned to expand on the LoRaWAN control capabilities 
on the BMC in the future. The previous deliverable [1] defined the API schema with an API 
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Key authentication in the HTTP Packet body. This was now replaced with the FPort inside 
the URI path, due to the change of design stated in Section 4.2.1 . Overall authentication at 
the API is done with HTTP Basic Auth. Figure 14, Figure 15 and Figure 16 are screenshots 
from the RECS Wiki [22], documenting the LoRaWAN related API. 

 

Figure 14: Screenshot from the u.RECS wiki showing the LoRaWAN REST API 

 

Figure 15: Upstream message format for BMC related monitoring 

https://recswiki.christmann.info/wiki/doku.php?id=doc_urecs:software_interface
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Figure 16: Downstream message format for Node power control 

5 Secure IoT Gateway Improvements 
The Secure IoT Gateway improvements described in this document build the foundation for 
the newly added wireless functionalities in this project. A new database structure, backend 
and frontend were introduced to the Network Cockpit. The IoT Bridge and Local Gateway 
API have also been renewed in order to improve the system's stability and allow the new 
wireless infrastructure to be integrated seamlessly. By using the new tech stack of “CIM 
elements” — the in-house developed Node.js library from Christmann — new UI components 
were introduced, necessary for creating the wireless configuration interface inside the 
Network Cockpit as described in Section 5.2. The backend was also altered to process the 
new configurations necessary for wireless integration, as described in Section 5.1. Besides 
the integration of the wireless technologies, the Secure IoT Gateway was also hardened and 
got new features necessary for successful exploitation and product usage. The steps taken 
to increase the TRL from 6 to 7 are further described in Section 5.3. In order to achieve better 
user experience, we added new features due to the insights and feedback we got from 
integrating the Secure IoT Gateway in real working environments. The changes related to 
the testing feedback are further described in Sections 5.2 and 5.3. 

5.1 Change of Backend API 
The backend API of the Secure IoT Gateway manages the communication and configuration 
between the components (IoT Bridges, Local Gateways and Network Cockpit). The previous 
structure of the API was renewed to increase the stability and simplicity of the 
communication between the locally deployed components and the network cockpit. Each 
locally deployed component had its configurations stored as separate fields inside the 
database. This approach was discarded in the renewed API version, due to the lack of 
flexibility when new configurations need to be integrated. The JSON field type provided by 
prisma [23] (a Node.js based Object Relational Mapper) is now used to store the key/value 
pairs of the device configuration, which ensures a constant structure of the database 
schema. Furthermore, we introduced a queue system to improve the efficiency of supplying 
locally deployed components with the configuration created by the systems backend logic. 
Previously, the complete stored configuration was passed to the requesting device, which 
impacted the performance of the system as described in Section 3.1. The new structure 
provides only the changes made in relation to the already existing configuration of the local 
component. 
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Figure 17: Configuration flow diagram for the Secure IoT Gateway 

Figure 17 shows a high-level description of the integrated backend concept regarding the 
configuration handling of the Secure IoT Gateway. The backend system interfaces with the 
queue and stores the device configuration based on the settings made by the customer in 
the frontend. Components are now able to apply configurations locally by requesting the 
queued configurations at the API endpoint of the Network Cockpit. 
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5.2 Refactoring of the Network Cockpit Frontend 
Our company owned Node.js module collection “CIM elements” was used to develop the 
Nuxt.js based UI. The previous CIM elements version had reached its end-of-life cycle and 
missed some features for a proper UI integration of the wireless configuration features, so 
an update of the current UI and tech stack was necessary. Besides missing or still incomplete 
UI elements provided by CIM elements in the prior version, it also had instability issues, 
which were fixed in the now-used revision. To prevent visual cluttering of the Networks 
Cockpit Web Interface when adding the wireless features, a more user-friendly UI structure 
was implemented. The basic structure is still present in the current frontend revision, but 
the configuration and monitoring interfaces were completely renewed. The new CIM 
elements version offers better user management functionalities, necessary for handling the 
customer accounts of the cloud-based Network Cockpit service. The overall stability of the 
web interface was also greatly improved by using the newer version, due to the incomplete 
and experimental state of the first used version. 

When it comes to the UI integration, the main navigation layout has changed slightly 
compared to the previous version of the Network Cockpit described in the Legato 
deliverable [3]. 

 

 
Figure 18: Screenshot of the Deployed Devices page 

 

Figure 18 shows the “Deployed Devices” page, where customers can see all relevant 
monitoring data of the selected device in the extendable device table. Deployed Devices is 
the most relevant view in the Network Cockpit from a customer perspective because it 
allows the registration of new components via the “Add Component” button shown at the 
top of Figure 18. Besides registration and monitoring, the selected devices can be 
configured in the shown view. A search bar and type filter were introduced to handle large 
component quantities and improve usability from a customer's perspective. As shown in 
Section 3.2, the configuration of components like IoT Bridges and Local Gateways are now 
handled in a separate popup window. 
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Figure 19: Screenshot of the device settings menu 

The tab view shown in Figure 19 allows the device configuration to be separated into the 
different logical sections. The displayed sections and their content depending on the type 
of device selected. A Local Gateway or IoT Bridge 100 for instance, would not have the 
wireless section displayed. 

Firewall related management is accessible over the Zones menu in the navbar. A Zone 
represents a communication unit inside the shielded network provided by the Secure IoT 
Gateway. Here, the customer is able to group different IoT Bridges together, routing the 
different subnets of the shielded hosts together. When creating a Zone, all ports are blocked 
by default inside the Zone, thus lowering the risk of potential security hazards inside the 
network. The user must manually allow the necessary ports inside the Zone or use the newly 
added feature of host detection and port scanning, as shown in Figure 20. 
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Figure 20: Screenshot of the Zone Settings UI 

The port scanning of the shielded IoT devices eases the Zone setup, and the user can directly 
identify the relevant ports inside the communication unit he wants to create. Zones can 
overlap by design, allowing a single IoT Bridge and its shielded hosts to join multiple Zones. 
This can be useful if certain devices should be included on a global Zone topology. Zones 
allow for an easy way to group and connect different hosts, while maintaining a high level 
of network security. Routes and firewall rules are abstracted conveniently, allowing the user 
to easily setup a secure communication infrastructure. Zones in a productive environment 
are further described in Section 5.3, where we describe the deployed Secure IoT Gateway 
for the Siemens Electric Motor Condition Classification Use-Case. 

Besides Zone management, we also implemented Route Rule management, which can be 
found as a separate navbar entity inside the Network Cockpit. This feature was identified as 
a critical part of the application when we collaborated with the Siemens Electric Motor 
Condition Classification Use-Case and deployed the Secure IoT Gateway at a customer’s site. 
Due to the highly locked-down nature of the Secure IoT Gateway network topology, no 
external communication was possible to networks outside of the internal VPN tunnels and 
shielded host subnets. Route Rule Settings allow certain IoT Bridges and Zones, which can 
be selected in the “Members” Tab in Figure 21, to communicate with external networks. This 
allows devices to bypass the VPN encryption and communicate with remote networks 
outside of the Secure IoT Gateway ecosystem. We generally do not advise setting up these 
bypass rules, but the deployment inside productive networks showed that at least a few 
hosts in the network rely on external communication. The possible network settings for 
bypass rules are shown in Figure 21. 
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Figure 21: Screenshot of the Route Rule Settings menu 

5.3 System Hardening and TRL Increase 
Hardening the Secure IoT Gateway and increasing the TRL of the project from 6 to 7 was one 
of our main goals inside VEDLIoT. We deployed the Secure IoT Gateway inside two 
production environments, collecting user feedback and further improving the system upon 
the gained insights in the timespan of multiple months. A customer from Christmann was 
equipped with twelve IoT Bridge 100, connecting remote networks of separate company 
locations over the cluster gateway. This deployment presented a challenge because this was 
out of the typical usage scheme of singular host shielding of the system. The deployment 
required large, shielded subnets that were out of the generation schema that the Secure IoT 
Gateway provides for the IoT Bridges, requiring manual configurations for some parts of the 
network infrastructure. It was still possible to deploy a slightly modified version of the 
system, which allowed us to collect user feedback. When working with the Siemens Electric 
Motor Condition Classification Use-Case, we could deploy the system in its intended IoT 
scenario. 
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Figure 22: Deployment overview for the Siemens Motor Condition Classification Use-Case 

Figure 22 shows the current deployment of the Secure IoT Gateway components inside the 
Motor Classification Use-Case. We gave our partners full control of the system, creating a 
customer admin account for Siemens on the production deployment of the Secure IoT 
Gateway. From there on, the partners were able to configure the devices and tailor the Zone 
and IoT Bridge configurations to their needs. In this specific deployment, two Wi-Fi-enabled 
IoT Bridge 50 are in use, which are linked together via a Zone in the Network Cockpit. Figure 
22 illustrates the different system components and their required protocols. The Zone, 
which incorporates the deployed IoT Bridges, allows exclusive communication over the 
MQTT and HTTP / HTTPS Ports of the system. The deployment at Siemens made us aware of 
the problem, that some hosts may need to bypass the strict communication rules enforced 
by the Secure IoT Gateway network topology. Therefore, we implemented the Route Rule 
Settings, as described in Section 5.2, due to the external inaccessibility of the hosts during 
the development of the motor classification system from our partners. 

In preparation for the deployment at the different customer sites, we had to re-build the 
testbed to accommodate a productive Secure IoT Gateway instance. All instances required 
to run the Secure IoT Gateway were split into a development and productive deployment, 
which are run on a Proxmox virtualization server at Christmann. A new domain was bought, 
and a separate Nginx Server was configured to split the different systems and make them 
publicly available later. 

One development goal, as stated in the previous deliverable, was to implement automatic 
firmware upgrades for the hardware components, further improving the security of the 
system. This was only partially possible. We would like to have an OTA update path for our 
firmware to further increase the robustness of the system. Right now, firmware updates 
must be manually deployed by flashing the devices with a new image. A Jenkins build server 
was set up for automatic staging of OpenWRT builds for our hardware platforms. OTA 
Updates of IoT Bridge and Local Gateway firmware is still a key element that will be further 
developed in the scope of a market-ready product. In the scope of VEDLIoT, we rather 
focused on integrating the new requirements for firewall and routing related management, 
which were identified by the feedback from our production rollouts.  
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6 Conclusion 
One major focus of this Task was the improvement and hardening of the Secure IoT Gateway, 
further driving product-oriented development of the system. Different wireless 
technologies have been evaluated. Wi-Fi and LoRaWAN were selected as suitable 
technologies for the Secure IoT Gateway and u.RECS. Integrating LoRaWAN on the u.RECS 
allows for a reliable far-edge communication path, suitable for remote deployments of the 
u.RECS hardware. The Secure IoT Gateway is now able to provide a LoRaWAN infrastructure, 
as specified in the first deliverable [1] of this task. During this Task, we were able to 
successfully implement both wireless technologies into the Secure IoT Gateway and u.RECS. 
Besides the successful integration of the wireless technologies, we also improved the 
Secure IoT Gateway substantially by adding new features like Route Rules and Zones, easing 
the usage, and further hardening the system. The Secure IoT Gateway has been rolled out in 
productive environments since 2022, where we gained useful insights and increased our TRL. 
Since the integration of Wi-Fi and especially LoRaWAN caused some structural changes, the 
backend of the Secure IoT Gateway had to be refactored to fit the new requirements. This 
included the implementation of an API to configure both wireless technologies on the IoT 
Bridges. In addition to that, the web interface had to be adapted to allow easy configuration 
by administrative users. The usability and consistency, as well as the maintainability of the 
Secure IoT Gateway web interface, were also improved.  
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