

ICT-56-2020 - Next Generation Internet of Things

D 4.6
Final report on FPGA infrastructure,

RISC-V system and accelerators

Document information

Contract number 957197

Project website www.vedliot.eu

Dissemination Level Public

Nature Report

Contractual Deadline 31.10.2023

Author Karol Gugala (ANT)

Contributors Marco Tassemeier (UOS), Mario Porrmann (UOS), René

Griessl (UNIBI),

Reviewers Pedro Trancoso (CHALMERS), Marcelo Pasin (UNINE)

The VEDLIoT project has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement No 957197.

http://www.vedliot.eu/

D4.6 Version 1.0

2

Changelog

V 0.1 2023-07-10 Outline of the document

V 0.2 2023-08-20 SoC generator and AIG description

V 0.3 2023-09-21 FPGA processing infrastructure description

V 0.5 2023-10-05 Version for internal review

V 0.6 2023-10-20 Incorporation of the feedback from the reviewers

V 1.0 2023-10-29 Finalisation

D4.6 Version 1.0

3

Table of Contents

Executive Summary .. 4

1 Introduction .. 5

2 Reconfigurable Communication Infrastructure .. 6

2.1 u.RECS .. 6

2.2 t.RECS ... 7

3 FPGA processing infrastructure for Cognitive IoT ... 9

3.1 System Architecture .. 9

3.1.1 Hardware Platforms .. 9

3.1.2 FPGA SoC Infrastructure ... 10

3.1.3 Dynamic Reconfiguration of Accelerators ... 11

3.2 Software Architecture ... 13

3.3 Development Environment .. 14

3.4 Example Implementations .. 14

4 SoC generator overview.. 18

4.1 External components integration ... 18

4.2 Accelerator integration ... 20

4.2.1 Accelerator on the bus .. 20

4.2.2 RISC-V tightly coupled accelerator ... 21

5 Configurable Accelerator Interface Generator ... 22

5.1 FastVDMA .. 22

5.2 Demosaicer cores as an example .. 23

5.3 Accelerator Interface Generator ... 23

5.3.1 Generating bitstream from target device.. 24

5.3.2 Customization ... 24

5.4 Test system overview and tests .. 25

6 VEDLIoT SoC .. 27

6.1 Example targets ... 27

6.1.1 Zynq Video Board ... 27

6.1.2 Arty A7 ... 28

7 Conclusion ... 30

8 References .. 31

9 List of Figures ... 32

10 List of Tables ... 33

D4.6 Version 1.0

4

Executive Summary

In the chapters below, we will provide an overview of the efforts towards enabling the use
of efficient low-power accelerators with the SoC system developed within the VEDLIoT pro-
ject. The document provides a summary of the work done in tasks 4.4, 4.6 and 4.7 within the
project. It is the final version of the first report, provided in deliverable D4.3 [1].

In Task 4.4, the reconfigurable communication infrastructure for the RECS systems is devel-
oped. Additionally, the basic FPGA infrastructure has been developed, supporting a wide
range of different FPGA devices and FPGA boards inside the RECS systems. The architecture
especially serves as a basis for the accelerator developments in WP3. With a script-based
approach, new accelerators can be easily integrated into the system and the base architec-
ture can be flexibly retargeted to new hardware platforms. Evaluations of the design have
been performed using the u.RECS testbed. A special feature of the infrastructure is its sup-
port for partial dynamic reconfiguration, which has been evaluated using the Xilinx DPU ac-
celerators from WP3.

In Task 4.6 open source SoC generator software has been extended to support FPGA targets
used within the project including hardened ARM CPUs available on AMD/Xilinx chips. Periph-
eral cores available within the generator have been refactored so that they utilize less FPGA
resources and provide better performance in typical AI related tasks (e.g. higher data
throughput).

In Task 4.7 an open source system allowing seamless generation of interfaces for instantiat-
ing AI accelerators has been developed. The system allows to easily configure and generate
data mover interfaces needed to instantiate an accelerator and use it with a bigger system.
The Accelerator Interface Generator (AIG) comes with software needed to control the data
mover providing the data to and receiving from an accelerator. Example integration of the
AIG with the SoC generator improved in T4.6 has been developed and released as open
source software on a permissive Apache-2.0 license.

D4.6 Version 1.0

5

1 Introduction

With the interest in AI technologies rapidly increasing in recent years, there has been a no-
table increase in demand for AI-related solutions throughout all other technology sectors.

AI-specific hardware is no exception to this trend, with the rise in Edge AI solutions, as they
allow for data processing locally, resulting in more efficient use of processing power and
safety and privacy risks reduction when compared to AI solutions operating in the cloud.

Developing AI solutions for the edge, however, requires interdisciplinary, often hardware-
specific knowledge. This may often render such a pursuit after Edge AI inaccessible, espe-
cially to individuals and small companies.

In this light, it should be easy to recognize the importance of making edge AI more accessible
by providing open source, vendor independent frameworks that simplify and automate the
process of deploying AI models onto edge devices.

Chapter 2 provides an overview of the reconfigurable communication infrastructure of the
RECS hardware platforms that are developed in VEDLIoT. Based on this, Chapter 3 focuses
on the basic FPGA infrastructure for the cognitive IoT platforms in VEDLIoT. This provides
the basis for the integration of FPGA-based machine learning accelerators into the VEDLIoT
hardware platforms, especially the newly developed u.RECS. Support for partial dynamic re-
configuration of FPGAs is integrated to increase the flexibility and energy efficiency of the
system. This enables the adaptation of accelerators to changing requirements at runtime.

Chapter 4 provides overview of the open source soft SoC generator. The generator can be
used for development of the RTL logic for the hardware platforms described in the previous
chapter. Following that, chapter 5 describes an open source Accelerator Interface Generator
– a project developed within VEDLIoT speeding up integration of memory mapped hardware
accelerators with larger systems. Chapter 6 presents examples of SoC generated for both
pure FPGA and FPGA SoC systems. The examples show usage of the Accelerator Interface
Generator for integrating an accelerator logic.

Chapter 7 concludes the document and is followed by Chapter 8 listing document refer-
ences.

D4.6 Version 1.0

6

2 Reconfigurable Communication Infrastructure

In distributed systems, where tasks can be dynamically exchanged between processing sys-
tems, the communication needs to be adaptable to the application, providing the requested
bandwidth and latency requirements without wasting power for unused capabilities. There-
fore, the hardware used in the VEDLIoT project has reconfigurable communication struc-
tures. The far edge system u.RECS can be statically reconfigured during setup of the appli-
cation and the larger RECS servers can dynamically reconfigure their communication struc-
ture during run-time. The u.RECS and the t.RECS are the main systems used in VEDLIoT. This
chapter shows example setups of communication within these two platforms.

2.1 u.RECS

The u.RECS is a small far edge system for IoT applications. It can host two processing mod-
ules and up to two PCIe-based accelerators. The form factor of the processing module can
be SMARC 2.1 or NVIDIA Jetson Nano [2]. The FPGA module described in Chapter 2.1.1 can
be directly plugged into the SMARC 2.1 slot. In order to populate a second FPGA into the
system, an adapter is needed to convert from NVIDIA Jetson Nano to SMARC 2.1 or Xilinx
Kria [3]. The result is a multi-FPGA system with multiple ways of communication. The block
diagram in Figure 1 shows the two main communication technologies, PCI Express and Giga-
bit Ethernet.

Figure 1 Block diagram of the u.RECS system

Gigabit Ethernet is the basic communication system that connects the compute modules,
the BMC and external devices for easy access and data exchange. It is static, but therefore
ensures that the modules are always accessible. The PCI Express structure is a flexible infra-
structure for determined use cases. In Figure 2, three different COM-Bricks are shown. A
COM-Brick is a PCB that can be plugged on the u.RECS, providing a specific routing for the
PCI Express lanes.

D4.6 Version 1.0

7

Figure 2 COM-Bricks for high-speed communication

Exchanging these COM-Bricks leads to different PCI Express topologies of the system. For
Brick “COM1”, the two modules are attached to each other; direct communication is possible
if one module can be a PCI Express Endpoint. This is especially true for FPGA-based modules.
The Bricks “COM2” and “COM3” are used to attach an M.2-based accelerator to either the
SMARC or the NVIDIA module.

A special case is the usage of the “COM1” Brick when two FPGAs are populated. These de-
vices are not bound to the PCI Express communication protocol, they can use lightweight
protocols with less overhead. Most of the FPGA vendors support low-level protocols like
AURORA [4]. Changing the protocol can improve bandwidth and latency for FPGA-to-FPGA
communication.

2.2 t.RECS

The t.RECS is the edge server system of the RECS family. It can host up to three microservers
of the new COM-HPC [5] formfactor, two of them are COM-HPC Client and one is COM-HPC
Server based. The block diagram in Figure 3 shows the communication infrastructure of the
t.RECS. Like for the u.RECS, the main communication is Ethernet based, but in this case it is
10 Gigabit Ethernet.

Figure 3 Block diagram of the communication infrastructure of the t.RECS edge server

D4.6 Version 1.0

8

The high-speed communication of the t.RECS is also based on PCI Express. In Figure 4, pos-
sible routing configurations of the PCI Express communication are shown. The standard con-
figuration is shown in part a) of the figure. All microservers are connected using a PCI Ex-
press root complex to the PCI Express switch. This is the normal operation mode. It provides
virtual network interfaces to the Linux systems and builds up a TCP/IP based communication
channel between all connected hosts. In addition, the t.RECS supports direct FPGA-to-FPGA
communication as shown in b). FPGAs can be connected in a ring topology using the same
low-level protocols as mentioned in the u.RECS section. This direct communication is routed
via separate physical lanes. It can be switched on by activating the transceivers in the FPGAs.
In this configuration the PCI Express switch is switched off to save power. If the application
is in need for even more communication bandwidth, the PCI Express switch can be used in
parallel as shown in c). This configuration provides the highest bandwidth but will also con-
sume the most power.

Figure 4 Possible configurations of the PCI Express infrastructure

D4.6 Version 1.0

9

3 FPGA processing infrastructure for Cognitive IoT

The design of FPGA-based accelerators is one of the key developments in VEDLIoT. This
chapter describes the results of Task 4.4, based on the intermediate results discussed in
Chapter 2 of deliverable D4.3 [1]. Since D4.3 is a confidential deliverable, parts of the de-
scription are repeated here. In Task 4.4, the FPGA processing infrastructure is developed,
which serves as a basis for the efficient integration of new accelerators into the u.RECS plat-
form. High-level requirements for the FPGA base infrastructure have been identified from
various perspectives:

● From a hardware perspective, support for the RECS platform, mainly the u.RECS sys-
tem, is the focus, including support for the available I/O interfaces for scalable sys-
tems, leading to multi-FPGA architectures. In order to maximize flexibility and reuse
of the developments, the design shall be easily retargetable to different FPGAs and
systems, first of all the various RECS platforms that are available in VEDLIoT.

● From a software perspective, Linux will be used as the operating system for recon-
figurable SoCs with integrated processor cores. This enables easy integration of new
interfaces and easy interaction with the hardware accelerators.

● From a development perspective, a block-based design is envisioned, enabling easy
adaptation of the architecture as well as easy integration of new ML accelerators
without or with minimal changes in the low-level hardware descriptions.

● With respect to resource efficiency, support for dynamic reconfiguration of FPGAs is
foreseen, enabling the exchange of hardware components (e.g., ML accelerators) at
runtime. This will allow the user to switch between implementations with different
power/performance tradeoffs depending on the actual requirements.

This chapter summarizes the architectural concepts, focusing on the developed system ar-
chitecture for FPGAs, the software architecture and the development environment.

3.1 System Architecture

The FPGA base design developed in VEDLIoT primarily targets the RECS platform described
in D4.1 [6], focusing on the u.RECS system. Due to its modular structure, u.RECS supports a
wide variety of FPGAs available on SMARC modules [7]. Based on the design decisions, de-
scribed in D2.2 [8], Xilinx Zynq UltraScale+ MPSoCs will be used as the primary targets for
FPGA developments in VEDLIoT.

3.1.1 Hardware Platforms

For the FPGA designs targeting the u.RECS, we focus on SMARC modules, first of all the
SECO RUSSELL (formerly codenamed SM-B71). It can be equipped with a wide variety Xilinx
Zynq UltraScale+ SoCs, with devices, ranging from ZU2CG to ZU5CG, ZU2EG to ZU5EG, and
ZU4EV to ZU5EV MPSoCs [9]. The SMARC module that is used for the base design, described
in the following, hosts a Xilinx UltraScale+ ZU4EG. Like all Zynq UltraScale+ devices, the
MPSoC integrates a processing system (PS), tightly coupled to an FPGA fabric (PL, program-
mable logic). The PS comprises a quad-core Arm Cortex-A53 application processing unit, a
dual-core Arm Cortex-R5 real-time processing unit and additional units including memory
controllers, I/O interfaces and interfaces to the PL. The PL contains 88k 6-input look-up ta-
bles (LUTs), 176k Flip-Flops (FFs), 728 DSP Slices, 4.4 Mbit embedded BRAM and 13.5 Mbit
embedded URAM. In addition to the MPSoC, the SMARC module provides 2 GByte DDR4-

D4.6 Version 1.0

10

2400 memory, connected to the processing system and 512 MByte DDR4-2400 memory di-
rectly attached to the programmable logic.

While the FPGA design currently focuses on Zynq MPSoCs with integrated Arm processors,
the developed design also supports Xilinx FPGAs without embedded processor cores. In this
case, a RISC-V processing system based on the soft processing system developed in VEDLIoT
can take over the tasks of the Arm PS. This will further increase the flexibility of the system,
as discussed in the subsequent chapters.

3.1.2 FPGA SoC Infrastructure

The FPGA architecture has been developed as a block-based design that contains the neces-
sary infrastructure for external communication and hardware accelerator integration. The
requirements for external communications interfaces are based on the u.RECS integration.
Figure 5 provides an overview of the interfaces that are supported. Some of the interfaces
are connected directly to the processing system of the MPSoC while others are implemented
in the PL.

Figure 5 Block diagram of the FPGA base design including the supported interfaces

The PCIe interface connects the different compute modules and accelerators on the u.RECS.
With its direct connection to the processing system, this enables a low latency and high-
bandwidth connection, e.g., for scalable multi-FPGA systems. Likewise, the Gigabit Ethernet
interface is also connected to the PS, allowing for easy integration of network connectivity.
USB is also provided with a tight integration into the PS. The interfaces need appropriate
drivers for easy access from the applications. Hence, a Linux OS is running on the Arm cores,
providing the required software stacks.

In contrast to the interfaces discussed above, the following interfaces are implemented in
the FPGA fabric. This enables direct processing of incoming data in the FPGA fabric with min-
imum latency and without occupying compute time on the processing system. This is partic-
ularly useful for handling video data streams, such as received from a camera via the CSI
interface or an outgoing video stream, transferred via the HDMI interface. Our design also
integrates a memory controller directly connected to the external DDR4 PL memory. Such a
controller is especially interesting for accelerators with high memory requirements. This

SMARC Module
SoC

FPGA-FabricProcessing System

HDMI

CSI

PCIe x4

GigE

USB

DDR
(PS)

Memory
Subsystem

Interrupt
Controller

Dual/Quad Arm
Cortex- A53

Dual Arm
Cortex-R5

I/O Interfaces

AX
I Accelerator(s)

AXI

AXI-Lite

AXI-Lite

GPIO, UART

DDR
(PL)

Xilinx/ LiteX
Memory Ctrl

eMMC

Flash

SD

GPIO, UART
I/O Ctrl

SATA

Clk

Platform Mgmt,
System Funct. &
Configuration

HDMI

CSI

D4.6 Version 1.0

11

memory is not shared with the processing system and can be used by accelerators to store
intermediate results or parameters for ML accelerators that do not fit in the FPGA internal
memory. These interfaces require reconfigurable resources on the FPGA fabric; hence, they
are only integrated into the design when required by the application.

For the integration of the ML accelerators, the block design offers an infrastructure consist-
ing of different AXI1 interfaces, several clock sources with different frequencies and an in-
terrupt controller. The AXI interfaces include AXI-light interfaces which are used to control
connected IP-cores and to read and write from and to control registers. Other AXI interfaces
are used for high-bandwidth communication with the DDR memory of the processing system
via a DMA unit. These can be used for data transfer from the processing system to the FPGA
fabric or vice versa. Additionally, both DDR memories (connected to PS and PL) can be used
for data exchange between different accelerators.

3.1.3 Dynamic Reconfiguration of Accelerators

An important advantage of FPGAs compared to application-specific integrated circuits
(ASICs) is their reconfigurability, enabling highly optimized designs for specific application
scenarios (e.g., a specific neural network implementation). However, this reconfigurability
comes with a significant overhead in terms of power and gate/interconnect delays when
compared to domain-specific architectures, e.g., for machine learning, fabricated in the same
technology node. This overhead is significantly reduced by the integration of embedded pro-
cessors and fixed-function units (like DSP blocks and embedded memories) in modern
FPGAs. An additional method to increase the resource efficiency of reconfigurable architec-
tures is partial dynamic reconfiguration. Partial, because only a part of the FPGA design will
be exchanged, e.g., an accelerator. Dynamic, because the reconfiguration can be performed
at runtime, without interfering with calculations in other parts of the FPGA design. In VED-
LIoT, partial dynamic reconfiguration will be utilized in particular to switch between differ-
ent ML accelerators. Dynamic reconfiguration can be used to enable the system to automat-
ically adapt to changing environmental conditions, like weather changes, when running a
neural network on camera data. Another use case for dynamic reconfiguration are mobile
systems that run on battery power: based on the current energy budget, accelerators with
different power, performance, and accuracy footprints can be selected at runtime. Further-
more, the hardware can be reconfigured to suit an adaption on application level. For in-
stance, we can switch between lane detection and parking assistants in automotive applica-
tions.

Dynamic reconfiguration of accelerators can be performed on different granularities. In gen-
eral, the base design consists of a static part that is only configured once, at power-up, and
one or more partially reconfigurable modules. Partial reconfiguration in the VEDLIoT FPGA
design can be performed on different levels of granularity, utilizing the toolchain for partial
reconfiguration, provided by Xilinx. Three different approaches can be utilized with the de-
veloped base design in VEDLIoT:

● A single reconfigurable region
● Multiple reconfigurable regions
● Hierarchically organized reconfigurable regions

1 Advanced eXtensible Interface

D4.6 Version 1.0

12

The three approaches provide different levels of flexibility. While a single region can be re-
alized with minimal development overhead, the hierarchical approach provides maximum
flexibility and potentially the highest resource efficiency. In the simple case, the design con-
tains one partial reconfiguration region (PR-region) that hosts a single monolithic accelera-
tor design. Partial reconfiguration will exchange the complete accelerator for another one.
This makes it necessary to stop the currently running calculations on the accelerator and to
disconnect its interfaces from the rest of the design to prevent unintended signals on the
connected communication interfaces. The configuration of the hardware in the PR-region
can then be overwritten with a new accelerator design. Finally, after the disconnection to
the interfaces is released, the calculations on the new accelerator can be initiated, e.g., by
the embedded CPU. In this implementation, a PR-region can also be utilized by different in-
dividual accelerators, i.e., one big accelerator or several small accelerators can be used. But
the important design constraint is, that in this case, all accelerators need to be exchanged;
there is no possibility to have individual accelerators up and running, while others are recon-
figured.

To circumvent these shortcomings, multiple individual PR-regions can be used to further in-
crease the flexibility of the system. In this case, multiple accelerators can be running in par-
allel, utilizing individual PR-regions. Therefore, individual accelerators can be replaced at
runtime. The process of reconfiguring one accelerator is similar to the process in a design
with just one PR-region, as discussed above. The main difference is that since there are indi-
vidual PR-regions, while reconfiguring one accelerator, the calculations on the other accel-
erators do not have to be suspended. A drawback compared to the approach utilizing a sin-
gle PR-region is based on the fact that the number and size of PR-regions is defined at design
time. This means that the flexibility of using and exchanging individual small accelerators
comes at the cost of constraining the maximum size of the accelerators. This is due to the
fact that two or more PR regions cannot be combined to host one accelerator, because in-
ternal signals of the accelerator would have to cross the boundaries of PR-regions, which is
not supported by the design tools.

Figure 6 Block diagram of the FPGA base design supporting partial dynamic reconfiguration

Considering the disadvantage of the approach discussed above, hierarchical PR-regions can
be integrated in the base design for VEDLIoT, if required. Hierarchical PR-regions allow large

SMARC Module
SoC

FPGA-FabricProcessing System

HDMI

CSI

PCIe x4

GigE

USB

DDR
(PS)

Memory
Subsystem

Interrupt
Controller

Dual/Quad Arm
Cortex- A53

Dual Arm
Cortex-R5

I/O Interfaces

AX
I

AXI-Lite

GPIO, UART

DDR
(PL)

Xilinx/ LiteX
Memory Ctrl

eMMC

Flash

SD

GPIO, UART
I/O Ctrl

SATA

Platform Mgmt,
System Funct. &
Configuration

HDMI

CSI

Clk

A
X

I C
B

A
X

I –
Li

te
 C

B

Di
sc

on
ne

ct

Accelerator

Di
sc

on
ne

ct

Accelerator

Accelerator

PR-Region

PR-RegionDFX

D4.6 Version 1.0

13

monolithic PR-regions to be separated into smaller Sub-PR-regions with their own inter-
faces. These Sub-PR-regions can be used individually or can be flexibly combined to host
accelerators with larger hardware demands. Figure 6 provides an overview of a base design
with two PR-regions, one of which is separated into two Sub-PR-regions.

In the Xilinx tool flow, partial reconfiguration is referred to as Dynamic Function eXchange
(DFX). The DFX controller IP, depicted in the block diagram in Figure 6, provides the required
management functions. When a trigger for partial reconfiguration occurs, the DFX controller
loads the corresponding partial bitstreams from memory and delivers them to the internal
configuration access port [10].

3.2 Software Architecture

The Arm cores of the processing system are running PetaLinux, a Linux version for Xilinx
SoCs, which is based on Yocto [11]. This Linux environment contains the needed software
infrastructure for the I/O interfaces that are directly connected to the processing system,
like Gigabit Ethernet, PCIe, and USB. Hence, easy access to the u.RECS platform and its in-
terfaces is provided by means of the common Linux commands. Us-ers can utilize the com-
plete features of the operating system, including, e.g., multi-threading support, which is of
vital importance for efficient accelerator integration, as shown in D3.3 [12].

Additionally, the Linux system contains drivers for communication with the FPGA accelera-
tors via AXI. Additionally, the Xilinx runtime libraries offer the possibility to call accelerators
via a Xilinx OpenCL API as shown in Figure 7. In this case the data transfers and the calcula-
tions are managed by Xilinx OpenCL functions. The code shows an example for the interac-
tion with an accelerator (called Accel_1), requiring start addresses for two arrays, used as
data inputs, and one array for the results. After setting the arguments of the accelerator,
the processing system schedules three operations: (1) the transfer of the input data to the
accelerator memory, (2) the execution of the accelerator, and finally (3) the transfer of the
results back to the processing system.

 // Set in and output buffer for the accelerator
 Accel_1.setArg(0, in1_buf);
 Accel_1.setArg(1, in2_buf);
 Accel_1.setArg(2, out_buf);

 // Schedule transfer of inputs to device memory, execution of the accelerator
 // Transfer of outputs back to host memory
 q.enqueueMigrateMemObjects({in1_buf, in2_buf}, 0);
 q.enqueueTask(Accel_1);
 q.enqueueMigrateMemObjects({out_buf}, CL_MIGRATE_MEM_OBJECT_HOST);

 // Wait for all scheduled operations to finish
 q.finish();

Figure 7 Example of calling an accelerator via Xilinx OpenCL functions

As discussed in D3.3 [12], multithreading is often required to efficiently utilize an accelera-
tor, e.g., providing dedicated tasks for pre- and postprocessing. Although this is certainly
possible in the provided Linux environment, the development of a multithreaded program
poses additional challenges to the developer. To ease the deployment of accelerator imple-
mentations, a generic, customizable template for the necessary software parts was devel-
oped. It enables the execution of the necessary pre- and post processing steps and calls to

D4.6 Version 1.0

14

the accelerator using OpenCL calls. The code is generic in the sense that it can be easily
adapted to different accelerators. Pre- and post processing functions can be customized by
the user as well as the number of threads. Using the template with various parameters for
the number of threads and different accelerator implementations enables easy semi-auto-
mated design space exploration.

3.3 Development Environment

The base design was created with the Xilinx Vitis Core Development Kit (2022.2) in the Vi-
vado block design environment. It includes all major components of the FPGA infrastructure
and external communication interfaces, as discussed above. The block design can be config-
ured to include only the components required for a specific hardware platform or applica-
tion. The block design is converted to a Vitis platform, easing the integration of custom ac-
celerators and interfaces. The base block design does not contain any accelerator. For cre-
ating the Vitis platform, all connections and interfaces that are potentially used by acceler-
ators and other FPGA IP cores, which are integrated into the design in a later step, have to
be defined in the base design. This includes the AXI and AXI-light interfaces, the interrupt
inputs of the interrupt controller and the different clocks that are provided by the base de-
sign. When dynamic reconfiguration of accelerators is foreseen, this base design represents
the static design; i.e., this part of the design will only be configured once at power-up and
will remain unchanged, regardless of the dynamically loaded accelerators.

As mentioned above, the base design needs to be adapted to match the target application
requirements as well as the used FPGA and FPGA platform. This results in a wide variety of
different configurations, which can hardly be handled by hand. Therefore, we have devel-
oped a scripting environment, managing all aspects of the implementation. All necessary
calls to the Vitis build system are automated, enabling an easy transition to new platforms.
This is achieved with dedicated configuration files that contain the required information
about the targeted hardware platform as well as the application-specific information. The
script is based on an Avnet HDL reference design [13]. It automatically builds the complete
hardware platform as well as the software infrastructure, including the configuration of the
processing system in the base block design and the PetaLinux system. Changes to the FPGA
base design, like additional interfaces, located in the FPGA fabric, can be done directly in the
script. Configurations of the processing system (e.g., activation and configuration of specific
PS interfaces like Ethernet MDIO configuration or DDR memory timings) and I/O constraints
of the external interfaces implemented in the FPGA fabric are provided by specific board
files for the used FPGA platform. The Linux system is configured by means of a Yocto layer
added to PetaLinux build process.

3.4 Example Implementations

Utilizing the approach discussed above, modified designs can be easily built, integrating new
accelerators or changing interfaces. Additionally, the designs can be flexibly retargeted to
new FPGAs or FPGA boards with different interface connections and external hardware com-
ponents (e.g., changes in the attached DDR memory). In VEDLIoT, this is especially used for
an easy transition between the different FPGA devices in the RECS system.

D4.6 Version 1.0

15

Figure 8 FPGA architecture with integrated DPU

When integrating a new accelerator, the connections of the different interfaces of the ac-
celerator to the corresponding interfaces of the base design are done automatically. Some
interfaces can be connected to different targets, like the clock, for which different clock
frequencies can be chosen. In this case, a configuration file is used to define the intended
connections. Figure 8 shows a base design, integrating an accelerator based on the Xilinx
Deep Learning Processor Unit (DPU), which is discussed in detail in D3.2 [14]. For illustration,
the components of the base design have been grouped in colours.

The DPU is connected to the processing system using three AXI connections for data and
instruction exchange and an additional AXI-Lite interface for controlling the DPU. If needed,
for example, by other accelerators, additional AXI interconnects are automatically added to
the design. Additional signals that are connected to the DPU are two clocks, which are re-
quired by the IP core and the corresponding reset signals. For this example, the number of
additional system components is minimized in order to maximize the available resources for
DPU integration. For external communication, two UART IP cores are integrated in addition
to the Gigabit Ethernet interface of the processing system. The latter is primarily used for
communication with the board during performance evaluation. The interrupt logic multi-
plexes the various interrupt sources of the design. The integrated system management IP
core also enables on-chip voltage and temperature measurements. Embedded SRAM with
configurable size can be used for internal data storage.

The accelerators can be flexibly exchanged supporting the accelerators developed in VED-
LIoT as well as other open-source accelerators or different variants of the Xilinx DPU. As an
example, Table 1 provides an overview of the resource requirements of the base design,
integrating three different DPU configurations, namely B512, B2304, and B4096. All designs
have been implemented for a DPU clock frequency of 300 MHz. Additional details on the
performance of the implementations are provided in deliverable D3.2 [14]. As can be seen,
the base design requires less than 10% of the available look-up tables (LUTs) and flip-flops
(FFs). For the embedded SRAM, four BRAM blocks are used; the size of this memory can be
configured by the user. No embedded UltraRAM (URAM) and DSP blocks are used by the
base design.

DPUCZDX8G_1

DPUCZDX8G_v1_0

S_AXI_CONTROL

aclk

ap_clk_2

ap_rst_n_2

aresetn

M_AXI_GP0

M_AXI_HP0

M_AXI_HP2

interrupt[0:0]

axi_bram_ctrl_0

AXI BRAM Controller

BRAM_PORTA

BRAM_PORTB

S_AXI

s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_0_bram

Block MemoryGenerator

BRAM_PORTA rsta_busy

BRAM_PORTB rstb_busy

axi_ic_zynq_ultra_ps_e_0_S_AXI_HPC0_FPD

AXIInterconnect

M00_AXI

S00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

axi_ic_zynq_ultra_ps_e_0_S_AXI_HP0_FPD

AXIInterconnect

M00_AXI

S00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

axi_ic_zynq_ultra_ps_e_0_S_AXI_HP1_FPD

AXIInterconnect

M00_AXI

S00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

axi_intc_0

AXI InterruptController

interrupt

irq

s_axi

s_axi_aclk

s_axi_aresetn

intr[31:0]

axi_intc_0_intr_1_interrupt_concat

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

In6[0:0]

In7[0:0]

In8[0:0]

In9[0:0]

In10[0:0]

In11[0:0]

In12[0:0]

In13[0:0]

In14[0:0]

In15[0:0]

In16[0:0]

In17[0:0]

In18[0:0]

In19[0:0]

In20[0:0]

In21[0:0]

In22[0:0]

In23[0:0]

In24[0:0]

In25[0:0]

In26[0:0]

In27[0:0]

In28[0:0]

In29[0:0]

In30[0:0]

In31[0:0]

dout[31:0]

clk_wiz_0

ClockingWizard

clk_out1

clk_out2

clk_out3

resetn clk_out4

clk_in1 clk_out5

clk_out6

clk_out7

locked

irq_const_tieoff

Constant

dout[0:0]

MDIO_ENET0_0
MDIO_ENET2_0
gpio
UART_0_0
SER0_RTS
SER0_TX

SER0_CTS
SER0_RX
SER2_CTS
SER2_RX

SER2_RTS
SER2_TX

proc_sys_reset_0

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_1

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Processor SystemReset

proc_sys_reset_2

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_3

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_5

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_6

Processor SystemReset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

ps8_0_axi_periph

AXIInterconnect

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

S00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

rst_ps8_0_100M

Processor SystemReset

proc_sys_reset_4

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

AXIUART16550

S_AXI

UART

ctsn

rtsn

sin

sout

ip2intc_irpt

s_axi_aclk

s_axi_aresetn

freeze

ser2

AXIUART16550

UART

ctsn

rtsn

sin

sout

ip2intc_irpt

S_AXI

s_axi_aclk

s_axi_aresetn

freeze

system_management_wiz_0

System Management Wizard

ser0

S_AXI_LITE

Vp_Vn

s_axi_aclk

s_axi_aresetn

ip2intc_irpt

channel_out[5:0]

eoc_out

alarm_out

eos_out

busy_out xlconcat_0

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

dout[5:0]

zynq_ultra_ps_e_0

Zynq UltraScale+MPSoC

S_AXI_HPC0_FPD

S_AXI_HP0_FPD

S_AXI_HP1_FPD

maxihpm0_lpd_aclk

saxihpc0_fpd_aclk

saxihp0_fpd_aclk

saxihp1_fpd_aclk

pl_ps_irq0[5:0]

M_AXI_HPM0_LPD

MDIO_ENET0

MDIO_ENET2

GPIO_0

UART_0

emio_enet0_enet_tsu_timer_cnt[93:0]

pl_resetn0

pl_clk0

Processing
System DPU Clock and Reset

Logic
AXI

Interconnect Interrupt Logic Internal SRAM I/O System Mgmt

D4.6 Version 1.0

16

Table 1 Resource requirements of the base design in combination with three DPU configurations, implemented on
Xilinx Zynq UltraScale+ ZU4EG

 DPU Configuration

Resources B512 B2304 B4096

C
o

m
p

le
te

 D
es

ig
n LUTs 34,456 39.2% 47,107 53.6% 56,685 64.5%

FFs 43,557 24.8% 78,215 44.5% 107,732 61.3%

DSPs 110 15.1% 422 58.0% 690 94.8%

BRAMs 13.5 10.5% 61 47.7% 81 63.3%

URAMs 16 33.3% 40 83.3% 48 100%

B
as

e
D

es
ig

n

LUTs 8,439 9.6% 8,434 9.6% 8,456 9.6%

FFs 10,205 5.8% 10,205 5.8% 10,205 5.8%

DSPs 0 0% 0 0% 0 0%

BRAMs 4 3.1% 4 3.1% 4 3.1%

URAMs 0 0% 0 0% 0 0%

D
P

U

LUTs 26,017 29.6% 38,673 44.0% 48,229 54.9%

FFs 33,352 19.0% 68,010 38.7% 97,527 55.5%

DSPs 110 15.1% 422 58.0% 690 94.8%

BRAMs 9.5 7.4% 57 44.5% 77 60.2%

URAMs 16 33.3% 40 83.3% 48 100%

An example of a dynamically reconfigurable design, implementing the base design with sup-
port for runtime reconfiguration and a B512 DPU placed in the partially reconfigurable re-
gion, is depicted in Figure 9. In the layout, the PR region is highlighted in blue; PS and static
design are marked in green. At runtime, the DPU can be exchanged with another accelerator,
providing a different trade-off for power, performance and accuracy by reconfiguring the
PR region.

Figure 9 Example of the FPGA-implementation of the base design including a B512 DPU on an UltraScale+ ZU4EG

D4.6 Version 1.0

17

In addition to the Ultrascale+ MPSoCs discussed so far, the base design also supports the
new Xilinx Versal devices. Besides an Arm processing system and an FPGA fabric, this new
architecture also includes a matrix of AI engines. These AI engines are vector processing
units organized in an array connecting them to each other and to other parts of the SoC. For
on-chip communication, the Versal architecture includes a network on chip (NoC) which con-
nects the processing system, the programable logic, the AI engines, and IO components. It
enables high bandwidth connections between all major components reducing data transfer
bottlenecks. This new architecture promises good performance, especially for ML applica-
tions utilizing AI engines. Test results running the VEDLIoT benchmarks on the dedicated
Versal DPU, as presented in D3.3 [12], show performance, power and accuracy results com-
parable to embedded GPUs. Especially the YoloV4 results make the Versal architecture a
promising candidate for the smart home use case in VEDLIoT. Figure 10 shows an example
of the base architecture on a Xilinx Versal. This implementation enables two accelerators
running in parallel, both utilizing FPGA resources and AI engines.

Figure 10 Block diagram of a base design on Xilinx Versal proving integrating two accelerators

VCK190 / SMARC Module

SoC

Programmable LogicProcessing System and I/O

PCIe

GigE

USB

DDR

Memory
Subsystem

Dual Arm
Cortex- A72

Dual Arm
Cortex-R5F

I/O Interfaces

GPIO, UART

eMMC

Flash

SD

SATA

Clk

Platform Mgmt,
System Funct. &
Configuration

AI Engines

I/O Controllers

Accelerator 1

Accelerator 2

Programmable NoC

D4.6 Version 1.0

18

4 SoC generator overview

The work in the T4.6 and T4.7 of the VEDLIoT project focused on providing software allowing
design and configuration of an SoC that can be used to process the ML payloads on the
FPGAs. In designing the FPGA soft SoC system, we used LiteX, an open source system-on-
chip (SoC) generator and system builder that enables the creation of custom SoCs tailored
to specific requirements. It provides a flexible and modular framework for designing and
generating complex digital systems, allowing users to create their own SoC designs from
scratch or modify existing ones, also for mixed-language projects.

At the core of the generator is the concept of Intellectual Property (IP) cores, which are pre-
designed and verified hardware modules that can be integrated into the SoC. These cores
include processors, peripherals, memory controllers, communication interfaces, and other.
The generator offers a variety of cores to choose from, allowing developers to select the
ones that best suit their particular design.

The SoC builder supports multiple CPU architectures, including RISC-V, OpenRISC, LM32,
Zynq, etc., providing options for both open source and proprietary instruction sets. Addi-
tionally, it offers support for different system interconnects, allowing efficient communica-
tion between various components within the SoC.

Users can configure the desired components and connectivity options of their SoC, e.g. se-
lect the required IP cores, set the desired parameters, define memory maps, or establish
interconnects between different components.

4.1 External components integration

In an SoC, components are connected with buses which serve as a communication system.
Through a bus, components are able to transfer data (data bus) and exchange information
about requests (control bus). Such information will most often consist of read/write re-
quests and their return status.

As a means of arranging access to all components connected to a single bus, each of the
components is assigned an address. When connecting two similar (or dissimilar) buses, a
bridge is placed. Bridges, like other components, are assigned their individual addresses as
well.

As an example, let us take a component that is connected to a bus at the `0x1` address. This
bus is connected through a bridge at the `0x1000` address to the main bus. In order to com-
municate with this component from the main bus, we need to send a request (through a
selected communication protocol) to the `0x1001` address. The main bus will then delegate
this request to the bridge, which will later decode the request’s address as 0x1 and forward
it to the component.

In the SoC generator, the SoCBusHandler class, accessed through SoCCore.bus, is responsible
for communication between the CPU and the rest of the system.

Therefore, in order to manually incorporate SoC components in LiteX, one needs to connect
a component’s control bus to this bus. This, usually, can be done through the SoC-
Core.add_slave method.

D4.6 Version 1.0

19

To use a Verilog component, first, you need to add a source file to the chosen platform.

class Component(Module):

def __init__(self, platform):
platform.add_sources(path/to/Component.v)



Then, proceed with instantiating interfaces (or signals) available from Component.v .

self.axi = AXIInterface(data_width=data_width)
self.axi_csr = AXILiteInterface(data_width=data_width)
self.irq_ex = Signal(1)



You can connect the interfaces listed above to the component via Instance by simply assign-
ing corresponding signals.

self.specials += Instance("ComponentTop",

 i_clock = ClockSignal("sys"),
 i_reset = ResetSignal("sys"),
 o_io_axi_aw_id = self.axi.aw.id,

 o_io_axi_aw_awaddr = self.axi.aw.addr,
 o_io_axi_aw_awlen = self.axi.aw.len,

o_io_axi_aw_awsize = self.axi.aw.size,
 o_io_axi_aw_awburst = self.axi.aw.burst,

...
 i_io_csr_ar_araddr = self.axi_csr.ar.addr,

 i_io_csr_ar_arprot = self.axi_csr.ar.prot,
 i_io_csr_ar_arvalid = self.axi_csr.ar.valid,
 o_io_csr_ar_arready = self.axi_csr.ar.ready,
 ...
 o_io_irq_ex = self.irq_ex
)



You can then connect a component to the main bus by declaring the component's address
space via SoCRegion and connecting its Control and Status Register (CSR) handling bus to
the target’s main bus. The main bus standard is imposed by the chosen architecture.

class BaseSoC(SoCCore):
 def __init__(self, **kwargs):
 platform = chosen_platform.Platform()

SoCCore.__init__(self, platform, **kwargs)

 ...

 self.submodules.Component = Component(platform)
 core_region = SoCRegion(origin=0xbase_addr, size=0xsize)
 self.add_slave("Component", self.axi_csr, core_region)



D4.6 Version 1.0

20

If, apart from CSRs, the component also transfers data, the appropriate bus interface needs
to be instantiated and connected to the interface provided by the chosen target (in case of
Zynq7000 it’s axi_hp_slave).

self.comb += self.AIG.axi.connect(self.cpu.add_axi_hp_slave())



If supporting interrupts, they can be instantiated with an architecture-specific method.

self.cpu.cpu_params.update({"i_IRQ_F2P" : self.irq_ex})



It is worth noting that connecting buses of different type (i.e. Wishbone with AXI protocol)
will result in additional converting logic.

4.2 Accelerator integration

Within the VEDLIoT T4.6 and T4.7 tasks, we are exploring two approaches of interfacing with
accelerators:

● Accelerator connected to a system bus consuming data from the memory and writing
results back to it.

● Tight integration with a CPU where the accelerator is implemented as a Custom Func-
tion Unit and is driven with custom CPU instructions.

4.2.1 Accelerator on the bus

Having introduced SoC development tools, the remaining component is the integration of
the given accelerator to the rest of the SoC.

One solution is to connect an accelerator, alongside two data movers, to the system bus.
Those data movers would facilitate the read and write operations between the accelerator
and the main memory.

On top of the data transfers, it is crucial to incorporate a Control/Status Register (CSR) han-
dling component for this system to work effortlessly - as those later allow the accelerator-
system to communicate with dedicated software, such as device drivers.

D4.6 Version 1.0

21

Figure 11 Accelerator on the bus diagram

On top of the data transfers, it is crucial to incorporate a Control/Status Register (CSR) han-
dling component for this system to work effortlessly - as they later allow the accelerator-
system to communicate with dedicated software, such as device drivers. Apache VTA or
Nvidia’s NVDLA can serve as an example of an open source accelerator that is implemented
using this method.

4.2.2 RISC-V tightly coupled accelerator

Another approach of interfacing with accelerators we are exploring as part of VEDLIoT Is
tight integration with a RISC-V CPU, where the accelerator is implemented as a Custom Func-
tion Unit (CFU) and driven using custom CPU instructions. It adds a custom instruction to the
ISA using a standardized format defined by the CFU working group of RISC-V International.

D4.6 Version 1.0

22

5 Configurable Accelerator Interface Generator

In this section, we concentrate on describing the mechanisms behind the Accelerator Inter-
face Generator (AIG), a configurable, vendor-independent tool that simplifies the process
of, amongst others, development of IoT devices. AIG incorporates a custom AI accelerator
design into the system by connecting it, alongside two data movers, to the system bus. In
this particular case, the role of data movers can be performed by a Direct Memory Access
(DMA) controller, which allows for RAM access independently from the CPU.

In order to manage the accelerator and DMA CSRs simultaneously, both the DMAs and an
accelerator can be connected to the CSR decoder which later is connected to the system
bus.

To further improve the data exchange between DMAs and the AI accelerator, the compo-
nents can be internally connected with an AXI-Stream interface - a simple and efficient data-
transferring protocol.

Figure 12 DMAs and accelerator internally connected via an AXI-Stream interface

We can find a similar AI accelerator architecture approach in the VTA extension in the
Apache TVM framework as well as the NVIDIA Deep Learning Accelerator (NVDLA) from
NVIDIA. However, for our needs, we discovered that applying these solutions would require
numerous alterations for the SoC to be applicable on different platforms and in different
configurations, as both of the architectures assume the use of their dedicated software.

5.1 FastVDMA

For the purpose of using an AI accelerator on the system bus, we used Antmicro’s open
source DMA controller – Fast Versatile DMA (FastVDMA). FastVDMA is vastly customizable,
allowing modification of various bus parameters such as address, data width or maximum

https://tvm.apache.org/vta
https://tvm.apache.org/
https://tvm.apache.org/

D4.6 Version 1.0

23

burst. It can easily be generated in different configurations of supported data and control
buses, providing compatibility with the following interfaces:

Data:

● AXI Stream
● AXI4
● Wishbone

Control:

● AXI4 Lite
● Wishbone

Recent improvements to the FastVDMA core introduced a new level of configurability,
where the required interface can be generated on-the-fly. Also a single instance of the core
uses unique block names to prevent naming collisions in bigger systems and enable gener-
ating more complex systems with multiple FastVDMA cores of various configurations.

5.2 Demosaicer cores as an example

In order to demonstrate the functionality of the Accelerator Interface Generator a simple
stream processing core has been integrated with the system. While the core itself is not an
AI computations accelerator, it is simple enough to show the integration process. Also, video
processing cores are often used in edge vision systems to accelerate preprocessing of the
raw video frames garnered from the sensors.

The below is an example use case FPGA-based demosaicing system that converts raw data
obtained from CCD or CMOS sensors and reconstructs the image using three different inter-
polation algorithms controlled via a dedicated wrapper. The three interpolation methods
are:

● Nearest neighbor interpolation, where the nearest pixel is used to approximate the
color value. This algorithm is simple to implement and is common in real-time 3D ren-
dering. It uses a 2x2 px matrix and is the lightest and easiest method to implement.

● Bilinear interpolation, which establishes color intensity by calculating the average
value of the 4 nearest pixels located diagonally in relation to the given pixel. This
method uses a 3x3 px matrix and gives better results than the nearest neighbor in-
terpolation method but takes up more FPGA resources.

● Edge directed interpolation, which calculates the pixel components in a similar way
to bilinear interpolation, but uses edge detection with a 5x5 px matrix. This algorithm
is the most sophisticated of the three, but gives the best results and eliminates zip-
pering.

5.3 Accelerator Interface Generator

The Accelerator Interface Generator (AIG) aims for configurability and simplicity. Its main
goal is to create a generic accelerator interface that could be used in efficient Deep Learning
in IoT.

The AIG is a vendor-independent project that allows for generation of a Verilog module that
incorporates two DMAs and an user-defined accelerator. The only requirement for the ac-
celerator is compatibility with AXI Stream.

D4.6 Version 1.0

24

AIG supports custom CSRs, which can be defined via a configuration file.

AIG provides functionality to generate example SoC generator target boards, including ac-
celerator design.

5.3.1 Generating bitstream from target device

Produced target device description - aig_generated_target.py is a structured SoC description
that can also be processed by the SoC generator.

Having the SoC generator and its dependencies in path, it is sufficient to execute the gener-
ated script with - -build option.

python aig_generated_target.py --build

By default, the toolchain used for synthesis, implementation, place & route is Vivado.

Upon successful execution, all of the Vivado produced files with the design source code will
be available within the build directory.

build/aig_generated_target/gateware/

This directory will also contain the generated bitstream which then can be loaded onto the
device via i.e. openFPGALoader or written to the pre-formatted SD card.

5.3.2 Customization

The AIG configuration is stored in a JSON file format and it’s validated using a JSON Schema
specification.

AIG allows users to define custom CSRs with the configuration file. The implementation is
generic by nature and can be fully customized.

All possible customizations can be specified in the configuration file, including:

● Address Space - via baseAddress fields for each component. The AIG uses a custom
decoder that grants access upon those values.

● FastVDMA parameters (optional)
○ Address and Data Widths
○ Max burst size
○ FIFO depth

● Accelerator description
○ Source file
○ Signals: I/O AXI Stream, clock and reset
○ Custom CSRs (optional)

AIG implements three different types of CSRs:

● Status Register - read-only,

http://build/aig_generated_target/gateware/

D4.6 Version 1.0

25

● Auto-Clearing Register - read-write; overriding the data once write request has fin-
ished,

● Storage Register - read-write; overrides with each write. Each CSR can be specified
with:

● name (unique),
● type,
● address (which a absolute address in the SoC address space),
● fields (which names need to be the same as in the accelerator’s top Verilog

module to be properly connected).

What is important, the code of both the DMA and the CSRs is vendor agnostic and can there-
fore be easily used with any FPGA or included in ASIC design.

5.4 Test system overview and tests

The plot below depicts the throughput of the AIG system on hardware being clocked at 100
MHz on both Arty A7 and Zynq Video Board. The experiment has been conducted with a full
system setup - target generated in the SoC generator, Linux v5.15 with FastVDMA and FPGA
ISP provided software and the v4l2-ctl tool.

The AIG system has been tested in four different configurations. That included using AXI4
or Wishbone for DMA input/output buses and Wishbone or AXI4-Lite for CSR handling.

Each record in the plot represents the average throughput from 3000 frames sent (total of
around ~3000 MB in blocks of size 238.8kB and 955.2kB), 1000 for each FPGA ISP algorithm
- the differences between efficiency of algorithms were negligible.

Figure 13 Accelerator interface data throughput

D4.6 Version 1.0

26

The AIG uses chiseltest for testing its components individually.

The AIG provides the generic AIGInterface test class for Cocotb that chooses configuration-
appropriate Cocotb interfaces alongside suitable memory definitions and read/write file
methods.

An example test suite is provided for the FPGA ISP demosaicing cores, where a picture in
Bayer format is passed to the accelerator and a RGB decoded picture is passed to the output
and saved to the file.

https://github.com/ucb-bar/chiseltest

D4.6 Version 1.0

27

6 VEDLIoT SoC

VEDLIoT SoC cannot be considered as a single implementation that is given to users, but
rather a set of building blocks along with a generator and build system allowing defining an
SoC structure, generating required code and build the SoC for a selected target

The SoC generator is using migen domain specific language and LiteX library to define the
target platform. It integrates the Accelerator Interface Generator, described in section 5 en-
abling users to integrate their own accelerators in the system.

A few examples of the system have been provided to demonstrate the possibilities and give
future users an entry point to start working with the design and be able to instantiate their
accelerators.

The SoC generator developed within T4.6 and T4.7 of the VEDLIoT project can be used with
the hardware developed in other tasks of the project. The highly configurable nature of the
FPGA based processing infrastructure requires highly configurable software and RTL code
allowing adaptations of the processing flow depending on the payload. The SoC generator
and Accelerator Interface Generator described in the previous sections were developed to
address exactly this requirement. Both parts were released on permissive open source li-
censes, so they can also be used outside the VEDLIoT project.

6.1 Example targets

The SoC projects provides example build targets for the following platforms:

● Zynq Video Board with Zynq 7000 SoC
● Arty A7 (with open source RISC-V CPU)

The platforms were chosen to present the system functionalities with a hardened ARM cpu
and soft RISC-V CPU. The generator/build floe, however, provides the infrastructure that
facilitates adding support for custom target devices.

6.1.1 Zynq Video Board

Zynq Video Board is an open hardware carrier board designed for Enclustra Mars SoC Mod-
ules. Containing two MIPI CSI-2 camera interfaces, D-PHY receiver and Pmod connector it
can serve well for applications on edge oriented around image processing.

Figure 14 AIG system connected to Zynq 7000 SoC on Zynq Video Board

https://github.com/antmicro/zynq-video-board
https://www.enclustra.com/en/products/system-on-chip-modules
https://www.enclustra.com/en/products/system-on-chip-modules

D4.6 Version 1.0

28

When deploying an application onto the Zynq Video Board, AIG will utilize high performance
AXI buses provided by Zynq 7000 SoC for more efficient data transfers between the DMAs
and RAM.

Control communication will be carried out through general purpose AXI interface.

Aside from the ports visible in Figure 14, Zynq’s Processing System 7 offers a range of MIO
ports that can be utilized for connecting USB, CAN, I2C, SPI or ethernet peripherals as well
as the extended ones that can be repurposed, additionally supporting i.e. JTAG.

In order to generate Zynq Video Board with AIG and example accelerator target device de-
scription, you may proceed with provided example with:

exportTARGET=antmicro_zynq_video_board
export CONFIG_FILE=examples/configs/config_zvb.json
make target

This will produce aig_generated_target.py, which is the target device description, as well as
AIGTop.v and fpga_isp.v that are Verilog source code files that will be later needed for syn-
thesis.

6.1.2 Arty A7

Arty A7 is a development platform designed around Artix7 FPGA. It was developed specifi-
cally to facilitate a soft processing system, which could be altered and fitted to individual
applications.

For the needs of the AIG project, the VexRiscV SMP CPU was utilized - an open source RISC
V implementation.

https://digilent.com/reference/programmable-logic/arty-a7/start
https://github.com/SpinalHDL/VexRiscv

D4.6 Version 1.0

29

Figure 15 AIG system ported onto Arty A7 with VexRiscV SMP - soft CPU

In the case of the Zynq Video Board, a great number of components were already embedded
within the Zynq SoC. Here, since the soft CPU is utilized, some of them need to be added
manually, such as RAM, UART or platform interrupt controller.

All of those components are connected to the main bus. VexRiscV provides wishbone inter-
faces for both control and data transfers. The DMAs will access RAM through dma_bus.

Similarly with Zynq Video Board target device, one may use the provided example to gener-
ate Arty A7 with AIG description.

Export TARGET=digilent_arty
export CONFIG_FILE=examples/configs/config_arty.json
make target

This will produce aig_generated_target.py, which is the target device description, alongside
AIGTop.v and fpga_isp.v sources.

D4.6 Version 1.0

30

7 Conclusion

This document provides an overview of the accomplishments achieved in the VEDLIoT pro-
ject concerning FPGA infrastructure and software for the development, construction, and
deployment of logic designs onto hardware. A significant portion of the project concen-
trated on enhancing the hardware platform to seamlessly integrate with larger systems.
This involved the expansion of the u.RECS IoT platform to include FPGA-based devices and
the creation of FPGA-based nodes for the t.RECS system, facilitating the offloading of
server-side processing to dedicated logic running within the FPGA.

An FPGA base infrastructure supporting FPGAs from u.RECS and t.RECS was implemented
to enhance flexibility and ease of use. The design is crafted to be easily retargetable across
different FPGAs and RECS platforms featured in VEDLIoT. Furthermore, resource efficiency
is a central concern, with plans for dynamic FPGA and communication reconfiguration to
facilitate the swapping of hardware components, such as machine learning accelerators, at
runtime.

The RTL generator software was a focal point, tailored to produce System-on-Chip (SoC)
designs optimized for specific FPGA families. Users can select from a range of available
RISC-V soft cores and robust ARM cores found in FPGA platforms like Zynq-7000 and Zynq
Ultrascale plus MPSoC to be included in the system.

To enable the smooth integration of memory-mapped accelerators with the generated
SoC, an additional tool known as the Accelerator Interface Generator was developed. This
open-source software simplifies the process of generating the necessary digital logic and
software for integrating a memory-mapped accelerator.

The efforts undertaken in the VEDLIoT project, as outlined in this report, have led to an ex-
pansion of the processing capabilities of the t.RECS system and the creation of innovative
u.RECS devices. Furthermore, the open-source software and RTL developed in this context
open up new possibilities for the hardware platform and can have broader applications be-
yond the scope of the VEDLIoT project.

D4.6 Version 1.0

31

8 References

[1] VEDLIoT, „Deliverable D4.3 First report on FPGA infrastructure, RISC-V system and
accelerators,“ 2022.

[2] Nvidia, “Jetson Xavier NX and Jetson Nano Interface Comparison and Migration
Application Note, V1.2, 2021/12/10”.

[3] Xilinx, „DS987 (v1.2) Kria K26 SOM Data Sheet,“ March 15, 2022.

[4] Xilinx, “Aurora 64B/66B v12.0 LogiCORE IP Product Guide,” [Online]. Available:
https://docs.xilinx.com/r/en-US/pg074-aurora-64b66b.

[5] PICMG, „COM-HPC Overview,“ [Online]. Available:
https://www.picmg.org/openstandards/com-hpc/.

[6] VEDLIoT, "Deliverable D4.1 First report on cognitive IoT hardware platform and
microserver development," 2022.

[7] SGeT - Standardization Group for Embedded Technologies, “Smart Mobility
ARChitecture (SMARC),” [Online]. Available: https://sget.org/standards/smarc/.

[8] VEDLIoT, "Deliverable D2.2 Hardware platform architecture," 2021.

[9] Seco, “SM-B71 - SMARC Rel. 2.0 compliant module with the Xilinx Zynq Ultrascale+™
MPSoC”.

[10] Xilinx , "Vivado Design Suite User Guide - Dynamic Function eXchange - UG909,"
February 2022.

[11] Xilinx, "UG1144 - PetaLinux Tools Documentation: Reference Guide (UG1144)
(v2022.1)," 2022.

[12] VEDLIoT, „Deliverable D3.3 Evaluation of the DL accelerator designs,“ 2022.

[13] Avnet, "Avnet HDL Reference Designs," [Online]. Available:
https://github.com/Avnet/vitis.

[14] VEDLIoT, "Deliverable D3.2 Initial report on the DL accelerator design," 2022.

D4.6 Version 1.0

32

9 List of Figures

Figure 1 Block diagram of the u.RECS system .. 6

Figure 2 COM-Bricks for high-speed communication .. 7

Figure 3 Block diagram of the communication infrastructure of the t.RECS edge server 7

Figure 4 Possible configurations of the PCI Express infrastructure ... 8

Figure 5 Block diagram of the FPGA base design including the supported interfaces.......... 10

Figure 6 Block diagram of the FPGA base design supporting partial dynamic reconfiguration
 ... 12

Figure 7 Example of calling an accelerator via Xilinx OpenCL functions.................................. 13

Figure 8 FPGA architecture with integrated DPU .. 15

Figure 9 Example of the FPGA-implementation of the base design including a B512 DPU on
an UltraScale+ ZU4EG .. 16

Figure 10 Block diagram of a base design on Xilinx Versal proving integrating two
accelerators ... 17

Figure 11 Accelerator on the bus diagram .. 21

Figure 12 DMAs and accelerator internally connected via an AXI-Stream interface 22

Figure 13 Accelerator interface data throughput .. 25

Figure 14 AIG system connected to Zynq 7000 SoC on Zynq Video Board 27

Figure 15 AIG system ported onto Arty A7 with VexRiscV SMP - soft CPU 29

D4.6 Version 1.0

33

10 List of Tables

Table 1 Resource requirements of the base design in combination with three DPU
configurations, implemented on Xilinx Zynq UltraScale+ ZU4EG ... 16

	Executive Summary
	1 Introduction
	2 Reconfigurable Communication Infrastructure
	2.1 u.RECS
	2.2 t.RECS

	3 FPGA processing infrastructure for Cognitive IoT
	3.1 System Architecture
	3.1.1 Hardware Platforms
	3.1.2 FPGA SoC Infrastructure
	3.1.3 Dynamic Reconfiguration of Accelerators

	3.2 Software Architecture
	3.3 Development Environment
	3.4 Example Implementations

	4 SoC generator overview
	4.1 External components integration
	4.2 Accelerator integration
	4.2.1 Accelerator on the bus
	4.2.2 RISC-V tightly coupled accelerator

	5 Configurable Accelerator Interface Generator
	5.1 FastVDMA
	5.2 Demosaicer cores as an example
	5.3 Accelerator Interface Generator
	5.3.1 Generating bitstream from target device
	5.3.2 Customization

	5.4 Test system overview and tests

	6 VEDLIoT SoC
	6.1 Example targets
	6.1.1 Zynq Video Board
	6.1.2 Arty A7

	7 Conclusion
	8 References
	9 List of Figures
	10 List of Tables

