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Executive Summary  

In the chapters below, we will provide an overview of the efforts towards enabling the use 
of efficient low-power accelerators with the SoC system developed within the VEDLIoT pro-
ject. The document provides a summary of the work done in tasks 4.4, 4.6 and 4.7 within the 
project. It is the final version of the first report, provided in deliverable D4.3 [1]. 

In Task 4.4, the reconfigurable communication infrastructure for the RECS systems is devel-
oped. Additionally, the basic FPGA infrastructure has been developed, supporting a wide 
range of different FPGA devices and FPGA boards inside the RECS systems. The architecture 
especially serves as a basis for the accelerator developments in WP3. With a script-based 
approach, new accelerators can be easily integrated into the system and the base architec-
ture can be flexibly retargeted to new hardware platforms. Evaluations of the design have 
been performed using the u.RECS testbed. A special feature of the infrastructure is its sup-
port for partial dynamic reconfiguration, which has been evaluated using the Xilinx DPU ac-
celerators from WP3. 

In Task 4.6 open source SoC generator software has been extended to support FPGA targets 
used within the project including hardened ARM CPUs available on AMD/Xilinx chips. Periph-
eral cores available within the generator have been refactored so that they utilize less FPGA 
resources and provide better performance in typical AI related tasks (e.g. higher data 
throughput). 

In Task 4.7 an open source system allowing seamless generation of interfaces for instantiat-
ing AI accelerators has been developed. The system allows to easily configure and generate 
data mover interfaces needed to instantiate an accelerator and use it with a bigger system. 
The Accelerator Interface Generator (AIG) comes with software needed to control the data 
mover providing the data to and receiving from an accelerator. Example integration of the 
AIG with the SoC generator improved in T4.6 has been developed and released as open 
source software on a permissive Apache-2.0 license. 
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1 Introduction 

With the interest in AI technologies rapidly increasing in recent years, there has been a no-
table increase in demand for AI-related solutions throughout all other technology sectors.  

AI-specific hardware is no exception to this trend, with the rise in Edge AI solutions, as they 
allow for data processing locally, resulting in more efficient use of processing power and 
safety and privacy risks reduction when compared to AI solutions operating in the cloud.  

Developing AI solutions for the edge, however, requires interdisciplinary, often hardware-
specific knowledge. This may often render such a pursuit after Edge AI inaccessible, espe-
cially to individuals and small companies. 

In this light, it should be easy to recognize the importance of making edge AI more accessible 
by providing open source, vendor independent frameworks that simplify and automate the 
process of deploying AI models onto edge devices. 

Chapter 2 provides an overview of the reconfigurable communication infrastructure of the 
RECS hardware platforms that are developed in VEDLIoT. Based on this, Chapter 3 focuses 
on the basic FPGA infrastructure for the cognitive IoT platforms in VEDLIoT. This provides 
the basis for the integration of FPGA-based machine learning accelerators into the VEDLIoT 
hardware platforms, especially the newly developed u.RECS. Support for partial dynamic re-
configuration of FPGAs is integrated to increase the flexibility and energy efficiency of the 
system. This enables the adaptation of accelerators to changing requirements at runtime. 

Chapter 4 provides overview of the open source soft SoC generator. The generator can be 
used for development of the RTL logic for the hardware platforms described in the previous 
chapter. Following that, chapter 5 describes an open source Accelerator Interface Generator 
– a project developed within VEDLIoT speeding up integration of memory mapped hardware 
accelerators with larger systems. Chapter 6 presents examples of SoC generated for both 
pure FPGA and FPGA SoC systems. The examples show usage of the Accelerator Interface 
Generator for integrating an accelerator logic. 

Chapter 7 concludes the document and is followed by Chapter 8 listing document refer-
ences. 
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2 Reconfigurable Communication Infrastructure  

In distributed systems, where tasks can be dynamically exchanged between processing sys-
tems, the communication needs to be adaptable to the application, providing the requested 
bandwidth and latency requirements without wasting power for unused capabilities. There-
fore, the hardware used in the VEDLIoT project has reconfigurable communication struc-
tures. The far edge system u.RECS can be statically reconfigured during setup of the appli-
cation and the larger RECS servers can dynamically reconfigure their communication struc-
ture during run-time. The u.RECS and the t.RECS are the main systems used in VEDLIoT. This 
chapter shows example setups of communication within these two platforms. 

2.1 u.RECS 

The u.RECS is a small far edge system for IoT applications. It can host two processing mod-
ules and up to two PCIe-based accelerators. The form factor of the processing module can 
be SMARC 2.1 or NVIDIA Jetson Nano [2]. The FPGA module described in Chapter 2.1.1 can 
be directly plugged into the SMARC 2.1 slot. In order to populate a second FPGA into the 
system, an adapter is needed to convert from NVIDIA Jetson Nano to SMARC 2.1 or Xilinx 
Kria [3]. The result is a multi-FPGA system with multiple ways of communication. The block 
diagram in Figure 1 shows the two main communication technologies, PCI Express and Giga-
bit Ethernet.  

 

Figure 1 Block diagram of the u.RECS system 

Gigabit Ethernet is the basic communication system that connects the compute modules, 
the BMC and external devices for easy access and data exchange. It is static, but therefore 
ensures that the modules are always accessible. The PCI Express structure is a flexible infra-
structure for determined use cases. In Figure 2, three different COM-Bricks are shown. A 
COM-Brick is a PCB that can be plugged on the u.RECS, providing a specific routing for the 
PCI Express lanes. 
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Figure 2 COM-Bricks for high-speed communication 

Exchanging these COM-Bricks leads to different PCI Express topologies of the system. For 
Brick “COM1”, the two modules are attached to each other; direct communication is possible 
if one module can be a PCI Express Endpoint. This is especially true for FPGA-based modules. 
The Bricks “COM2” and “COM3” are used to attach an M.2-based accelerator to either the 
SMARC or the NVIDIA module. 

A special case is the usage of the “COM1” Brick when two FPGAs are populated. These de-
vices are not bound to the PCI Express communication protocol, they can use lightweight 
protocols with less overhead. Most of the FPGA vendors support low-level protocols like 
AURORA [4]. Changing the protocol can improve bandwidth and latency for FPGA-to-FPGA 
communication. 

2.2 t.RECS 

The t.RECS is the edge server system of the RECS family. It can host up to three microservers 
of the new COM-HPC [5] formfactor, two of them are COM-HPC Client and one is COM-HPC 
Server based. The block diagram in Figure 3 shows the communication infrastructure of the 
t.RECS. Like for the u.RECS, the main communication is Ethernet based, but in this case it is 
10 Gigabit Ethernet. 

 

Figure 3 Block diagram of the communication infrastructure of the t.RECS edge server 
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The high-speed communication of the t.RECS is also based on PCI Express. In Figure 4, pos-
sible routing configurations of the PCI Express communication are shown. The standard con-
figuration is shown in part a) of the figure. All microservers are connected using a PCI Ex-
press root complex to the PCI Express switch. This is the normal operation mode. It provides 
virtual network interfaces to the Linux systems and builds up a TCP/IP based communication 
channel between all connected hosts. In addition, the t.RECS supports direct FPGA-to-FPGA 
communication as shown in b). FPGAs can be connected in a ring topology using the same 
low-level protocols as mentioned in the u.RECS section. This direct communication is routed 
via separate physical lanes. It can be switched on by activating the transceivers in the FPGAs. 
In this configuration the PCI Express switch is switched off to save power. If the application 
is in need for even more communication bandwidth, the PCI Express switch can be used in 
parallel as shown in c). This configuration provides the highest bandwidth but will also con-
sume the most power. 

 

Figure 4 Possible configurations of the PCI Express infrastructure 
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3 FPGA processing infrastructure for Cognitive IoT 

The design of FPGA-based accelerators is one of the key developments in VEDLIoT. This 
chapter describes the results of Task 4.4, based on the intermediate results discussed in 
Chapter 2 of deliverable D4.3 [1]. Since D4.3 is a confidential deliverable, parts of the de-
scription are repeated here. In Task 4.4, the FPGA processing infrastructure is developed, 
which serves as a basis for the efficient integration of new accelerators into the u.RECS plat-
form. High-level requirements for the FPGA base infrastructure have been identified from 
various perspectives: 

● From a hardware perspective, support for the RECS platform, mainly the u.RECS sys-
tem, is the focus, including support for the available I/O interfaces for scalable sys-
tems, leading to multi-FPGA architectures. In order to maximize flexibility and reuse 
of the developments, the design shall be easily retargetable to different FPGAs and 
systems, first of all the various RECS platforms that are available in VEDLIoT. 

● From a software perspective, Linux will be used as the operating system for recon-
figurable SoCs with integrated processor cores. This enables easy integration of new 
interfaces and easy interaction with the hardware accelerators. 

● From a development perspective, a block-based design is envisioned, enabling easy 
adaptation of the architecture as well as easy integration of new ML accelerators 
without or with minimal changes in the low-level hardware descriptions. 

● With respect to resource efficiency, support for dynamic reconfiguration of FPGAs is 
foreseen, enabling the exchange of hardware components (e.g., ML accelerators) at 
runtime. This will allow the user to switch between implementations with different 
power/performance tradeoffs depending on the actual requirements. 

This chapter summarizes the architectural concepts, focusing on the developed system ar-
chitecture for FPGAs, the software architecture and the development environment. 

3.1 System Architecture 

The FPGA base design developed in VEDLIoT primarily targets the RECS platform described 
in D4.1 [6], focusing on the u.RECS system. Due to its modular structure, u.RECS supports a 
wide variety of FPGAs available on SMARC modules [7]. Based on the design decisions, de-
scribed in D2.2 [8], Xilinx Zynq UltraScale+ MPSoCs will be used as the primary targets for 
FPGA developments in VEDLIoT. 

3.1.1 Hardware Platforms 

For the FPGA designs targeting the u.RECS, we focus on SMARC modules, first of all the 
SECO RUSSELL (formerly codenamed SM-B71). It can be equipped with a wide variety Xilinx 
Zynq UltraScale+ SoCs, with devices, ranging from ZU2CG to ZU5CG, ZU2EG to ZU5EG, and 
ZU4EV to ZU5EV MPSoCs [9]. The SMARC module that is used for the base design, described 
in the following, hosts a Xilinx UltraScale+ ZU4EG. Like all Zynq UltraScale+ devices, the 
MPSoC integrates a processing system (PS), tightly coupled to an FPGA fabric (PL, program-
mable logic). The PS comprises a quad-core Arm Cortex-A53 application processing unit, a 
dual-core Arm Cortex-R5 real-time processing unit and additional units including memory 
controllers, I/O interfaces and interfaces to the PL. The PL contains 88k 6-input look-up ta-
bles (LUTs), 176k Flip-Flops (FFs), 728 DSP Slices, 4.4 Mbit embedded BRAM and 13.5 Mbit 
embedded URAM. In addition to the MPSoC, the SMARC module provides 2 GByte DDR4-
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2400 memory, connected to the processing system and 512 MByte DDR4-2400 memory di-
rectly attached to the programmable logic. 

While the FPGA design currently focuses on Zynq MPSoCs with integrated Arm processors, 
the developed design also supports Xilinx FPGAs without embedded processor cores. In this 
case, a RISC-V processing system based on the soft processing system developed in VEDLIoT 
can take over the tasks of the Arm PS. This will further increase the flexibility of the system, 
as discussed in the subsequent chapters. 

3.1.2 FPGA SoC Infrastructure 

The FPGA architecture has been developed as a block-based design that contains the neces-
sary infrastructure for external communication and hardware accelerator integration. The 
requirements for external communications interfaces are based on the u.RECS integration. 
Figure 5 provides an overview of the interfaces that are supported. Some of the interfaces 
are connected directly to the processing system of the MPSoC while others are implemented 
in the PL. 

 

Figure 5 Block diagram of the FPGA base design including the supported interfaces 

The PCIe interface connects the different compute modules and accelerators on the u.RECS. 
With its direct connection to the processing system, this enables a low latency and high-
bandwidth connection, e.g., for scalable multi-FPGA systems. Likewise, the Gigabit Ethernet 
interface is also connected to the PS, allowing for easy integration of network connectivity. 
USB is also provided with a tight integration into the PS. The interfaces need appropriate 
drivers for easy access from the applications. Hence, a Linux OS is running on the Arm cores, 
providing the required software stacks. 

In contrast to the interfaces discussed above, the following interfaces are implemented in 
the FPGA fabric. This enables direct processing of incoming data in the FPGA fabric with min-
imum latency and without occupying compute time on the processing system. This is partic-
ularly useful for handling video data streams, such as received from a camera via the CSI 
interface or an outgoing video stream, transferred via the HDMI interface. Our design also 
integrates a memory controller directly connected to the external DDR4 PL memory. Such a 
controller is especially interesting for accelerators with high memory requirements. This 
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memory is not shared with the processing system and can be used by accelerators to store 
intermediate results or parameters for ML accelerators that do not fit in the FPGA internal 
memory. These interfaces require reconfigurable resources on the FPGA fabric; hence, they 
are only integrated into the design when required by the application. 

For the integration of the ML accelerators, the block design offers an infrastructure consist-
ing of different AXI1 interfaces, several clock sources with different frequencies and an in-
terrupt controller. The AXI interfaces include AXI-light interfaces which are used to control 
connected IP-cores and to read and write from and to control registers. Other AXI interfaces 
are used for high-bandwidth communication with the DDR memory of the processing system 
via a DMA unit. These can be used for data transfer from the processing system to the FPGA 
fabric or vice versa. Additionally, both DDR memories (connected to PS and PL) can be used 
for data exchange between different accelerators. 

3.1.3 Dynamic Reconfiguration of Accelerators 

An important advantage of FPGAs compared to application-specific integrated circuits 
(ASICs) is their reconfigurability, enabling highly optimized designs for specific application 
scenarios (e.g., a specific neural network implementation). However, this reconfigurability 
comes with a significant overhead in terms of power and gate/interconnect delays when 
compared to domain-specific architectures, e.g., for machine learning, fabricated in the same 
technology node. This overhead is significantly reduced by the integration of embedded pro-
cessors and fixed-function units (like DSP blocks and embedded memories) in modern 
FPGAs. An additional method to increase the resource efficiency of reconfigurable architec-
tures is partial dynamic reconfiguration. Partial, because only a part of the FPGA design will 
be exchanged, e.g., an accelerator. Dynamic, because the reconfiguration can be performed 
at runtime, without interfering with calculations in other parts of the FPGA design. In VED-
LIoT, partial dynamic reconfiguration will be utilized in particular to switch between differ-
ent ML accelerators. Dynamic reconfiguration can be used to enable the system to automat-
ically adapt to changing environmental conditions, like weather changes, when running a 
neural network on camera data. Another use case for dynamic reconfiguration are mobile 
systems that run on battery power: based on the current energy budget, accelerators with 
different power, performance, and accuracy footprints can be selected at runtime. Further-
more, the hardware can be reconfigured to suit an adaption on application level. For in-
stance, we can switch between lane detection and parking assistants in automotive applica-
tions. 

Dynamic reconfiguration of accelerators can be performed on different granularities. In gen-
eral, the base design consists of a static part that is only configured once, at power-up, and 
one or more partially reconfigurable modules. Partial reconfiguration in the VEDLIoT FPGA 
design can be performed on different levels of granularity, utilizing the toolchain for partial 
reconfiguration, provided by Xilinx. Three different approaches can be utilized with the de-
veloped base design in VEDLIoT:  

● A single reconfigurable region 
● Multiple reconfigurable regions 
● Hierarchically organized reconfigurable regions 

 

1 Advanced eXtensible Interface 
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The three approaches provide different levels of flexibility. While a single region can be re-
alized with minimal development overhead, the hierarchical approach provides maximum 
flexibility and potentially the highest resource efficiency. In the simple case, the design con-
tains one partial reconfiguration region (PR-region) that hosts a single monolithic accelera-
tor design. Partial reconfiguration will exchange the complete accelerator for another one. 
This makes it necessary to stop the currently running calculations on the accelerator and to 
disconnect its interfaces from the rest of the design to prevent unintended signals on the 
connected communication interfaces. The configuration of the hardware in the PR-region 
can then be overwritten with a new accelerator design. Finally, after the disconnection to 
the interfaces is released, the calculations on the new accelerator can be initiated, e.g., by 
the embedded CPU. In this implementation, a PR-region can also be utilized by different in-
dividual accelerators, i.e., one big accelerator or several small accelerators can be used. But 
the important design constraint is, that in this case, all accelerators need to be exchanged; 
there is no possibility to have individual accelerators up and running, while others are recon-
figured. 

To circumvent these shortcomings, multiple individual PR-regions can be used to further in-
crease the flexibility of the system. In this case, multiple accelerators can be running in par-
allel, utilizing individual PR-regions. Therefore, individual accelerators can be replaced at 
runtime. The process of reconfiguring one accelerator is similar to the process in a design 
with just one PR-region, as discussed above. The main difference is that since there are indi-
vidual PR-regions, while reconfiguring one accelerator, the calculations on the other accel-
erators do not have to be suspended. A drawback compared to the approach utilizing a sin-
gle PR-region is based on the fact that the number and size of PR-regions is defined at design 
time. This means that the flexibility of using and exchanging individual small accelerators 
comes at the cost of constraining the maximum size of the accelerators. This is due to the 
fact that two or more PR regions cannot be combined to host one accelerator, because in-
ternal signals of the accelerator would have to cross the boundaries of PR-regions, which is 
not supported by the design tools. 

 

Figure 6 Block diagram of the FPGA base design supporting partial dynamic reconfiguration 

Considering the disadvantage of the approach discussed above, hierarchical PR-regions can 
be integrated in the base design for VEDLIoT, if required. Hierarchical PR-regions allow large 
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monolithic PR-regions to be separated into smaller Sub-PR-regions with their own inter-
faces. These Sub-PR-regions can be used individually or can be flexibly combined to host 
accelerators with larger hardware demands. Figure 6 provides an overview of a base design 
with two PR-regions, one of which is separated into two Sub-PR-regions. 

In the Xilinx tool flow, partial reconfiguration is referred to as Dynamic Function eXchange 
(DFX). The DFX controller IP, depicted in the block diagram in Figure 6, provides the required 
management functions. When a trigger for partial reconfiguration occurs, the DFX controller 
loads the corresponding partial bitstreams from memory and delivers them to the internal 
configuration access port [10]. 

3.2 Software Architecture 

The Arm cores of the processing system are running PetaLinux, a Linux version for Xilinx 
SoCs, which is based on Yocto [11]. This Linux environment contains the needed software 
infrastructure for the I/O interfaces that are directly connected to the processing system, 
like Gigabit Ethernet, PCIe, and USB. Hence, easy access to the u.RECS platform and its in-
terfaces is provided by means of the common Linux commands. Us-ers can utilize the com-
plete features of the operating system, including, e.g., multi-threading support, which is of 
vital importance for efficient accelerator integration, as shown in D3.3 [12]. 

Additionally, the Linux system contains drivers for communication with the FPGA accelera-
tors via AXI. Additionally, the Xilinx runtime libraries offer the possibility to call accelerators 
via a Xilinx OpenCL API as shown in Figure 7. In this case the data transfers and the calcula-
tions are managed by Xilinx OpenCL functions. The code shows an example for the interac-
tion with an accelerator (called Accel_1), requiring start addresses for two arrays, used as 
data inputs, and one array for the results. After setting the arguments of the accelerator, 
the processing system schedules three operations: (1) the transfer of the input data to the 
accelerator memory, (2) the execution of the accelerator, and finally (3) the transfer of the 
results back to the processing system. 

   // Set in and output buffer for the accelerator 
    Accel_1.setArg(0, in1_buf); 
    Accel_1.setArg(1, in2_buf); 
    Accel_1.setArg(2, out_buf); 
     
    // Schedule transfer of inputs to device memory, execution of the accelerator 
    // Transfer of outputs back to host memory 
    q.enqueueMigrateMemObjects({in1_buf, in2_buf}, 0);  
    q.enqueueTask(Accel_1); 
    q.enqueueMigrateMemObjects({out_buf}, CL_MIGRATE_MEM_OBJECT_HOST); 
 
    // Wait for all scheduled operations to finish 
    q.finish(); 

Figure 7 Example of calling an accelerator via Xilinx OpenCL functions 

As discussed in D3.3 [12], multithreading is often required to efficiently utilize an accelera-
tor, e.g., providing dedicated tasks for pre- and postprocessing. Although this is certainly 
possible in the provided Linux environment, the development of a multithreaded program 
poses additional challenges to the developer. To ease the deployment of accelerator imple-
mentations, a generic, customizable template for the necessary software parts was devel-
oped. It enables the execution of the necessary pre- and post processing steps and calls to 
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the accelerator using OpenCL calls. The code is generic in the sense that it can be easily 
adapted to different accelerators. Pre- and post processing functions can be customized by 
the user as well as the number of threads. Using the template with various parameters for 
the number of threads and different accelerator implementations enables easy semi-auto-
mated design space exploration. 

3.3 Development Environment 

The base design was created with the Xilinx Vitis Core Development Kit (2022.2) in the Vi-
vado block design environment. It includes all major components of the FPGA infrastructure 
and external communication interfaces, as discussed above. The block design can be config-
ured to include only the components required for a specific hardware platform or applica-
tion. The block design is converted to a Vitis platform, easing the integration of custom ac-
celerators and interfaces. The base block design does not contain any accelerator. For cre-
ating the Vitis platform, all connections and interfaces that are potentially used by acceler-
ators and other FPGA IP cores, which are integrated into the design in a later step, have to 
be defined in the base design. This includes the AXI and AXI-light interfaces, the interrupt 
inputs of the interrupt controller and the different clocks that are provided by the base de-
sign. When dynamic reconfiguration of accelerators is foreseen, this base design represents 
the static design; i.e., this part of the design will only be configured once at power-up and 
will remain unchanged, regardless of the dynamically loaded accelerators. 

As mentioned above, the base design needs to be adapted to match the target application 
requirements as well as the used FPGA and FPGA platform. This results in a wide variety of 
different configurations, which can hardly be handled by hand. Therefore, we have devel-
oped a scripting environment, managing all aspects of the implementation. All necessary 
calls to the Vitis build system are automated, enabling an easy transition to new platforms. 
This is achieved with dedicated configuration files that contain the required information 
about the targeted hardware platform as well as the application-specific information. The 
script is based on an Avnet HDL reference design [13]. It automatically builds the complete 
hardware platform as well as the software infrastructure, including the configuration of the 
processing system in the base block design and the PetaLinux system. Changes to the FPGA 
base design, like additional interfaces, located in the FPGA fabric, can be done directly in the 
script. Configurations of the processing system (e.g., activation and configuration of specific 
PS interfaces like Ethernet MDIO configuration or DDR memory timings) and I/O constraints 
of the external interfaces implemented in the FPGA fabric are provided by specific board 
files for the used FPGA platform. The Linux system is configured by means of a Yocto layer 
added to PetaLinux build process. 

3.4 Example Implementations 

Utilizing the approach discussed above, modified designs can be easily built, integrating new 
accelerators or changing interfaces. Additionally, the designs can be flexibly retargeted to 
new FPGAs or FPGA boards with different interface connections and external hardware com-
ponents (e.g., changes in the attached DDR memory). In VEDLIoT, this is especially used for 
an easy transition between the different FPGA devices in the RECS system. 
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Figure 8 FPGA architecture with integrated DPU 

When integrating a new accelerator, the connections of the different interfaces of the ac-
celerator to the corresponding interfaces of the base design are done automatically. Some 
interfaces can be connected to different targets, like the clock, for which different clock 
frequencies can be chosen. In this case, a configuration file is used to define the intended 
connections. Figure 8 shows a base design, integrating an accelerator based on the Xilinx 
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Table 1 Resource requirements of the base design in combination with three DPU configurations, implemented on 
Xilinx Zynq UltraScale+ ZU4EG 

 DPU Configuration 

Resources B512 B2304 B4096 

C
o

m
p

le
te

 D
es

ig
n LUTs 34,456 39.2% 47,107 53.6% 56,685 64.5% 

FFs 43,557 24.8% 78,215 44.5% 107,732 61.3% 

DSPs 110 15.1% 422 58.0% 690 94.8% 

BRAMs 13.5 10.5% 61 47.7% 81 63.3% 

URAMs 16 33.3% 40 83.3% 48 100% 

B
as

e 
D

es
ig

n 

LUTs 8,439 9.6% 8,434 9.6% 8,456 9.6% 

FFs 10,205 5.8% 10,205 5.8% 10,205 5.8% 

DSPs 0 0% 0 0% 0 0% 

BRAMs 4 3.1% 4 3.1% 4 3.1% 

URAMs 0 0% 0 0% 0 0% 

D
P

U
 

LUTs 26,017 29.6% 38,673 44.0% 48,229 54.9% 

FFs 33,352 19.0% 68,010 38.7% 97,527 55.5% 

DSPs 110 15.1% 422 58.0% 690 94.8% 

BRAMs 9.5 7.4% 57 44.5% 77 60.2% 

URAMs 16 33.3% 40 83.3% 48 100% 

 

An example of a dynamically reconfigurable design, implementing the base design with sup-
port for runtime reconfiguration and a B512 DPU placed in the partially reconfigurable re-
gion, is depicted in Figure 9. In the layout, the PR region is highlighted in blue; PS and static 
design are marked in green. At runtime, the DPU can be exchanged with another accelerator, 
providing a different trade-off for power, performance and accuracy by reconfiguring the 
PR region. 

  

Figure 9 Example of the FPGA-implementation of the base design including a B512 DPU on an UltraScale+ ZU4EG 
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In addition to the Ultrascale+ MPSoCs discussed so far, the base design also supports the 
new Xilinx Versal devices. Besides an Arm processing system and an FPGA fabric, this new 
architecture also includes a matrix of AI engines. These AI engines are vector processing 
units organized in an array connecting them to each other and to other parts of the SoC. For 
on-chip communication, the Versal architecture includes a network on chip (NoC) which con-
nects the processing system, the programable logic, the AI engines, and IO components. It 
enables high bandwidth connections between all major components reducing data transfer 
bottlenecks. This new architecture promises good performance, especially for ML applica-
tions utilizing AI engines. Test results running the VEDLIoT benchmarks on the dedicated 
Versal DPU, as presented in D3.3 [12], show performance, power and accuracy results com-
parable to embedded GPUs. Especially the YoloV4 results make the Versal architecture a 
promising candidate for the smart home use case in VEDLIoT. Figure 10 shows an example 
of the base architecture on a Xilinx Versal. This implementation enables two accelerators 
running in parallel, both utilizing FPGA resources and AI engines. 

 

Figure 10 Block diagram of a base design on Xilinx Versal proving integrating two accelerators 
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4 SoC generator overview 

The work in the T4.6 and T4.7 of the VEDLIoT project focused on providing software allowing 
design and configuration of an SoC that can be used to process the ML payloads on the 
FPGAs. In designing the FPGA soft SoC system, we used LiteX, an open source system-on-
chip (SoC) generator and system builder that enables the creation of custom SoCs tailored 
to specific requirements. It provides a flexible and modular framework for designing and 
generating complex digital systems, allowing users to create their own SoC designs from 
scratch or modify existing ones, also for mixed-language projects. 

At the core of the generator is the concept of Intellectual Property (IP) cores, which are pre-
designed and verified hardware modules that can be integrated into the SoC. These cores 
include processors, peripherals, memory controllers, communication interfaces, and other. 
The generator offers a variety of cores to choose from, allowing developers to select the 
ones that best suit their particular design. 

The SoC builder supports multiple CPU architectures, including RISC-V, OpenRISC, LM32, 
Zynq, etc., providing options for both open source and proprietary instruction sets. Addi-
tionally, it offers support for different system interconnects, allowing efficient communica-
tion between various components within the SoC. 

Users can configure the desired components and connectivity options of their SoC, e.g. se-
lect the required IP cores, set the desired parameters, define memory maps, or establish 
interconnects between different components. 

4.1 External components integration 

In an SoC, components are connected with buses which serve as a communication system. 
Through a bus, components are able to transfer data (data bus) and exchange information 
about requests (control bus). Such information will most often consist of read/write re-
quests and their return status. 

As a means of arranging access to all components connected to a single bus, each of the 
components is assigned an address. When connecting two similar (or dissimilar) buses, a 
bridge is placed. Bridges, like other components, are assigned their individual addresses as 
well.  

As an example, let us take a component that is connected to a bus at the `0x1` address. This 
bus is connected through a bridge at the `0x1000` address to the main bus. In order to com-
municate with this component from the main bus, we need to send a request (through a 
selected communication protocol) to the `0x1001` address. The main bus will then delegate 
this request to the bridge, which will later decode the request’s address as 0x1 and forward 
it to the component.  

In the SoC generator, the SoCBusHandler class, accessed through SoCCore.bus, is responsible 
for communication between the CPU and the rest of the system. 

Therefore, in order to manually incorporate SoC components in LiteX, one needs to connect 
a component’s control bus to this bus. This, usually, can be done through the SoC-
Core.add_slave method. 
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To use a Verilog component, first, you need to add a source file to the chosen platform. 

 
class Component(Module): 

def __init__(self, platform): 
platform.add_sources(path/to/Component.v) 

 

Then, proceed with instantiating interfaces (or signals) available from Component.v .  

 
self.axi = AXIInterface(data_width=data_width) 
self.axi_csr = AXILiteInterface(data_width=data_width) 
self.irq_ex = Signal(1) 

 

You can connect the interfaces listed above to the component via Instance by simply assign-
ing corresponding signals. 

 
self.specials += Instance("ComponentTop", 

                 i_clock = ClockSignal("sys"), 
                            i_reset = ResetSignal("sys"), 
                            o_io_axi_aw_id = self.axi.aw.id, 

                     o_io_axi_aw_awaddr = self.axi.aw.addr, 
                            o_io_axi_aw_awlen = self.axi.aw.len, 

o_io_axi_aw_awsize = self.axi.aw.size, 
                            o_io_axi_aw_awburst = self.axi.aw.burst, 

...                             
          i_io_csr_ar_araddr = self.axi_csr.ar.addr, 

                            i_io_csr_ar_arprot = self.axi_csr.ar.prot, 
                            i_io_csr_ar_arvalid = self.axi_csr.ar.valid, 
                            o_io_csr_ar_arready = self.axi_csr.ar.ready, 
       ... 
                                 o_io_irq_ex = self.irq_ex 
) 

 

You can then connect a component to the main bus  by declaring the component's address 
space via SoCRegion and connecting its Control and Status Register (CSR) handling bus to 
the target’s main bus. The main bus standard is imposed by the chosen architecture.  

 
class BaseSoC(SoCCore): 
 def __init__(self, **kwargs): 
  platform = chosen_platform.Platform() 

SoCCore.__init__(self, platform, **kwargs) 
   
  ... 
 
  self.submodules.Component = Component(platform) 
  core_region = SoCRegion(origin=0xbase_addr, size=0xsize) 
  self.add_slave("Component", self.axi_csr, core_region) 
 
 
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If, apart from CSRs, the component also transfers data, the appropriate bus interface needs 
to be instantiated and connected to the interface provided by the chosen target (in case of 
Zynq7000 it’s axi_hp_slave). 

 
self.comb += self.AIG.axi.connect(self.cpu.add_axi_hp_slave()) 

 

If supporting interrupts, they can be instantiated with an architecture-specific method. 

 
self.cpu.cpu_params.update({"i_IRQ_F2P" : self.irq_ex}) 

 

It is worth noting that connecting buses of different type (i.e. Wishbone with AXI protocol) 
will result in additional converting logic. 

4.2 Accelerator integration 

Within the VEDLIoT T4.6 and T4.7 tasks, we are exploring two approaches of interfacing with 
accelerators: 

● Accelerator connected to a system bus consuming data from the memory and writing 
results back to it. 

● Tight integration with a CPU where the accelerator is implemented as a Custom Func-
tion Unit and is driven with custom CPU instructions. 

4.2.1 Accelerator on the bus 

Having introduced SoC development tools, the remaining component is the integration of 
the given accelerator to the rest of the SoC. 

One solution is to connect an accelerator, alongside two data movers,  to the system bus. 
Those data movers would facilitate the read and write operations between the accelerator 
and the main memory. 

On top of the data transfers, it is crucial to incorporate a Control/Status Register (CSR) han-
dling component for this system to work effortlessly - as those later allow the accelerator-
system to communicate with dedicated software, such as device drivers. 
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Figure 11 Accelerator on the bus diagram 

 

On top of the data transfers, it is crucial to incorporate a Control/Status Register (CSR) han-
dling component for this system to work effortlessly - as they later allow the accelerator-
system to communicate with dedicated software, such as device drivers. Apache VTA or 
Nvidia’s NVDLA can serve as an example of an open source accelerator that is implemented 
using this method. 

4.2.2 RISC-V tightly coupled accelerator 

Another approach of interfacing with accelerators we are exploring as part of VEDLIoT Is 
tight integration with a RISC-V CPU, where the accelerator is implemented as a Custom Func-
tion Unit (CFU) and driven using custom CPU instructions. It adds a custom instruction to the 
ISA using a standardized format defined by the CFU working group of RISC-V International. 
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5 Configurable Accelerator Interface Generator 

In this section, we concentrate on describing the mechanisms behind the Accelerator Inter-
face Generator (AIG), a configurable, vendor-independent tool that simplifies the process 
of, amongst others, development of IoT devices. AIG incorporates a custom AI accelerator 
design into the system by connecting it, alongside two data movers, to the system bus. In 
this particular case, the role of data movers can be performed by a Direct Memory Access 
(DMA) controller, which allows for RAM access independently from the CPU. 

In order to manage the accelerator and DMA CSRs simultaneously, both the DMAs and an 
accelerator can be connected to the CSR decoder which later is connected to the system 
bus. 

To further improve the data exchange between DMAs and the AI accelerator, the compo-
nents can be internally connected with an AXI-Stream interface - a simple and efficient data-
transferring protocol. 

 

 

Figure 12 DMAs and accelerator internally connected via an AXI-Stream interface 

 
We can find a similar AI accelerator architecture approach in the VTA extension in the 
Apache TVM framework as well as the NVIDIA Deep Learning Accelerator (NVDLA) from 
NVIDIA. However, for our needs, we discovered that applying these solutions would require 
numerous alterations for the SoC to be applicable on different platforms and in different 
configurations, as both of the architectures assume the use of their dedicated software.  

5.1 FastVDMA 

For the purpose of using an AI accelerator on the system bus, we used Antmicro’s open 
source DMA controller – Fast Versatile DMA (FastVDMA). FastVDMA is vastly customizable, 
allowing modification of various bus parameters such as address, data width or maximum 

https://tvm.apache.org/vta
https://tvm.apache.org/
https://tvm.apache.org/
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burst. It can easily be generated in different configurations of supported data and control 
buses, providing compatibility with the following interfaces: 

Data: 

● AXI Stream 
● AXI4 
● Wishbone 

Control: 

● AXI4 Lite 
● Wishbone 

Recent improvements to the FastVDMA core introduced a new level of configurability, 
where the required interface can be generated on-the-fly. Also a single instance of the core 
uses unique block names to prevent naming collisions in bigger systems and enable gener-
ating more complex systems with multiple FastVDMA cores of various configurations. 

5.2 Demosaicer cores as an example 

In order to demonstrate the functionality of the Accelerator Interface Generator a simple 
stream processing core has been integrated with the system. While the core itself is not an 
AI computations accelerator, it is simple enough to show the integration process. Also, video 
processing cores are often used in edge vision systems to accelerate preprocessing of the 
raw video frames garnered from the sensors. 

The below is an example use case FPGA-based demosaicing system that converts raw data 
obtained from CCD or CMOS sensors and reconstructs the image using three different inter-
polation algorithms controlled via a dedicated wrapper. The three interpolation methods 
are: 

● Nearest neighbor interpolation, where the nearest pixel is used to approximate the 
color value. This algorithm is simple to implement and is common in real-time 3D ren-
dering. It uses a 2x2 px matrix and is the lightest and easiest method to implement. 

● Bilinear interpolation, which establishes color intensity by calculating the average 
value of the 4 nearest pixels located diagonally in relation to the given pixel. This 
method uses a 3x3 px matrix and gives better results than the nearest neighbor in-
terpolation method but takes up more FPGA resources. 

● Edge directed interpolation, which calculates the pixel components in a similar way 
to bilinear interpolation, but uses edge detection with a 5x5 px matrix. This algorithm 
is the most sophisticated of the three, but gives the best results and eliminates zip-
pering. 
 

5.3 Accelerator Interface Generator 

The Accelerator Interface Generator (AIG) aims for configurability and simplicity. Its main 
goal is to create a generic accelerator interface that could be used in efficient Deep Learning 
in IoT. 

The AIG is a vendor-independent project that allows for generation of a Verilog module that 
incorporates two DMAs and an user-defined accelerator. The only requirement for the ac-
celerator is compatibility with AXI Stream. 
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AIG supports custom CSRs, which can be defined via a configuration file.  

AIG provides functionality to generate example SoC generator target boards, including ac-
celerator design. 

5.3.1 Generating bitstream from target device 

Produced target device description - aig_generated_target.py is a structured SoC description 
that can also be processed by the SoC generator.  

Having the SoC generator and its dependencies in path, it is sufficient to execute the gener-
ated script with  - -build option. 

 

python aig_generated_target.py --build 

 

By default, the toolchain used for synthesis, implementation, place & route is Vivado. 

Upon successful execution, all of the Vivado produced files with the design source code will 
be available within the build directory. 

 

build/aig_generated_target/gateware/ 

 

This directory will also contain the generated bitstream which then can be loaded onto the 
device via i.e. openFPGALoader or written to the pre-formatted SD card. 

5.3.2 Customization 

The AIG configuration is stored in a JSON file format and it’s validated using a JSON Schema 
specification. 

AIG allows users to define custom CSRs with the configuration file. The implementation is 
generic by nature and can be fully customized. 

All possible customizations can be specified in the configuration file, including: 

● Address Space - via baseAddress fields for each component. The AIG uses a custom 
decoder that grants access upon those values. 

● FastVDMA parameters (optional) 
○ Address and Data Widths 
○ Max burst size 
○ FIFO depth 

● Accelerator description 
○ Source file 
○ Signals: I/O AXI Stream, clock and reset 
○ Custom CSRs (optional) 

 

AIG implements three different types of CSRs: 

● Status Register - read-only, 

http://build/aig_generated_target/gateware/
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● Auto-Clearing Register - read-write; overriding the data once write request has fin-
ished, 

● Storage Register - read-write; overrides with each write. Each CSR can be specified 
with: 

● name (unique), 
● type, 
● address (which a absolute address in the SoC address space), 
● fields (which names need to be the same as in the accelerator’s top Verilog 

module to be properly connected). 

What is important, the code of both the DMA and the CSRs is vendor agnostic and can there-
fore be easily used with any FPGA or included in ASIC design. 

5.4 Test system overview and tests 

The plot below depicts the throughput of the AIG system on hardware being clocked at 100 
MHz on both Arty A7 and Zynq Video Board. The experiment has been conducted with a full 
system setup - target generated in the SoC generator, Linux v5.15 with FastVDMA and FPGA 
ISP provided software and the v4l2-ctl tool. 

The AIG system has been tested in four different configurations. That included using AXI4 
or Wishbone for DMA input/output buses and Wishbone or AXI4-Lite for CSR handling.  

Each record in the plot represents the average throughput from 3000 frames sent (total of 
around ~3000 MB in blocks of size 238.8kB and 955.2kB), 1000 for each FPGA ISP algorithm 
- the differences between efficiency of algorithms were negligible. 

 

Figure 13 Accelerator interface data throughput 
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The AIG uses chiseltest for testing its components individually. 

The AIG provides the generic AIGInterface test class for Cocotb that chooses configuration-
appropriate Cocotb interfaces alongside suitable memory definitions and read/write file 
methods. 

An example test suite is provided for the FPGA ISP demosaicing cores, where a picture in 
Bayer format is passed to the accelerator and a RGB decoded picture is passed to the output 
and saved to the file. 

  

https://github.com/ucb-bar/chiseltest


D4.6  Version 1.0 

27 

 

6 VEDLIoT SoC  

VEDLIoT SoC cannot be considered as a single implementation that is given to users, but 
rather a set of building blocks along with a generator and build system allowing defining an 
SoC structure, generating required code and build the SoC for a selected target 

The SoC generator is using migen domain specific language and LiteX library to define the 
target platform. It integrates the Accelerator Interface Generator, described in section 5 en-
abling users to integrate their own accelerators in the system. 

A few examples of the system have been provided to demonstrate the possibilities and give 
future users an entry point to start working with the design and be able to instantiate their 
accelerators. 

The SoC generator developed within T4.6 and T4.7 of the VEDLIoT project can be used with 
the hardware developed in other tasks of the project. The highly configurable nature of the 
FPGA based processing infrastructure requires highly configurable software and RTL code 
allowing adaptations of the processing flow depending on the payload. The SoC generator 
and Accelerator Interface Generator described in the previous sections were developed to 
address exactly this requirement. Both parts were released on permissive open source li-
censes, so they can also be used outside the VEDLIoT project. 

6.1  Example targets 

The SoC projects provides example build targets for the following platforms: 

● Zynq Video Board with Zynq 7000 SoC 
● Arty A7 (with open source RISC-V CPU) 

The platforms were chosen to present the system functionalities with a hardened ARM cpu 
and soft RISC-V CPU. The generator/build floe, however, provides the infrastructure that 
facilitates adding support for custom target devices.  

6.1.1 Zynq Video Board  

Zynq Video Board is an open hardware carrier board designed for Enclustra Mars SoC Mod-
ules. Containing two MIPI CSI-2 camera interfaces, D-PHY receiver and Pmod connector it 
can serve well for applications  on edge oriented around image processing. 

 

 

Figure 14 AIG system connected to Zynq 7000 SoC on Zynq Video Board 

https://github.com/antmicro/zynq-video-board
https://www.enclustra.com/en/products/system-on-chip-modules
https://www.enclustra.com/en/products/system-on-chip-modules
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When deploying an application onto the Zynq Video Board, AIG will utilize high performance 
AXI buses provided by Zynq 7000 SoC for more efficient data transfers between the DMAs 
and RAM. 

Control communication will be carried out through general purpose AXI interface. 

Aside from the ports visible in Figure 14, Zynq’s Processing System 7 offers a range of MIO 
ports that can be utilized for connecting USB, CAN, I2C, SPI or ethernet peripherals as well 
as the extended ones that can be repurposed, additionally supporting i.e. JTAG. 

In order to generate Zynq Video Board with AIG and example accelerator target device de-
scription, you may proceed with provided example with: 

 
exportTARGET=antmicro_zynq_video_board 
export CONFIG_FILE=examples/configs/config_zvb.json 
make target 
 

This will produce aig_generated_target.py, which is the target device description, as well as 
AIGTop.v and fpga_isp.v that are Verilog source code files that will be later needed for syn-
thesis. 

6.1.2 Arty A7 

Arty A7 is a development platform designed around Artix7 FPGA. It was developed specifi-
cally to facilitate a soft processing system, which could be altered and fitted to individual 
applications.  

For the needs of the AIG project, the VexRiscV SMP CPU was utilized - an open source RISC 
V implementation.  

 

https://digilent.com/reference/programmable-logic/arty-a7/start
https://github.com/SpinalHDL/VexRiscv
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Figure 15 AIG system ported onto Arty A7 with VexRiscV SMP - soft CPU 

In the case of the Zynq Video Board, a great number of components were already embedded 
within the Zynq SoC. Here, since the soft CPU is utilized, some of them need to be added 
manually, such as RAM, UART or platform interrupt controller. 

All of those components are connected to the main bus. VexRiscV provides wishbone inter-
faces for both control and data transfers. The DMAs will access RAM through dma_bus. 

Similarly with Zynq Video Board target device, one may use the provided example to gener-
ate Arty A7 with AIG description. 

 

Export TARGET=digilent_arty 
export CONFIG_FILE=examples/configs/config_arty.json 
make target 
 

This will produce aig_generated_target.py, which is the target device description, alongside 
AIGTop.v and fpga_isp.v sources. 
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7 Conclusion 

This document provides an overview of the accomplishments achieved in the VEDLIoT pro-
ject concerning FPGA infrastructure and software for the development, construction, and 
deployment of logic designs onto hardware. A significant portion of the project concen-
trated on enhancing the hardware platform to seamlessly integrate with larger systems. 
This involved the expansion of the u.RECS IoT platform to include FPGA-based devices and 
the creation of FPGA-based nodes for the t.RECS system, facilitating the offloading of 
server-side processing to dedicated logic running within the FPGA. 

An FPGA base infrastructure supporting FPGAs from u.RECS and t.RECS was implemented 
to enhance flexibility and ease of use. The design is crafted to be easily retargetable across 
different FPGAs and RECS platforms featured in VEDLIoT. Furthermore, resource efficiency 
is a central concern, with plans for dynamic FPGA and communication reconfiguration to 
facilitate the swapping of hardware components, such as machine learning accelerators, at 
runtime. 

The RTL generator software was a focal point, tailored to produce System-on-Chip (SoC) 
designs optimized for specific FPGA families. Users can select from a range of available 
RISC-V soft cores and robust ARM cores found in FPGA platforms like Zynq-7000 and Zynq 
Ultrascale plus MPSoC to be included in the system. 

To enable the smooth integration of memory-mapped accelerators with the generated 
SoC, an additional tool known as the Accelerator Interface Generator was developed. This 
open-source software simplifies the process of generating the necessary digital logic and 
software for integrating a memory-mapped accelerator. 

The efforts undertaken in the VEDLIoT project, as outlined in this report, have led to an ex-
pansion of the processing capabilities of the t.RECS system and the creation of innovative 
u.RECS devices. Furthermore, the open-source software and RTL developed in this context 
open up new possibilities for the hardware platform and can have broader applications be-
yond the scope of the VEDLIoT project.  
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