
 

 

ICT-56-2020 - Next Generation Internet of Things 

 

D 4.7 
SIEMENS Report on cognitive IoT 

hardware optimizations 
 

Document information 

Contract number 957197 

Project website www.vedliot.eu  

Dissemination Level Public 

Nature Report 

Contractual Deadline 31.01.2024 

Author Yufei Mao (Siemens) 

Contributors Franz Meierhoefer (Siemens), Roland Weiss (Siemens), Jo-

seph Daiaa (Siemens) 

Reviewers Oliver Brunnegard (MAGNA), Kevin Mika (UBI) 

The VEDLIoT project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 957197. 

 

  

http://www.vedliot.eu/


D4.7  Version 1.0 
 

2 
 

Changelog 

v0.1 2023-08-02 Initial of Deliverable 4.7 - Outline 

v0.2 2023-01-11 Initial inputs from Siemens 

v0.3 2024-01-29 Review integration 

v1.0 2024-01-30 Finalization 

 



D4.7  Version 1.0 
 

3 
 

Table of contents 
Executive Summary .............................................................................................................................. 4 
1 Introduction .................................................................................................................................. 5 
2 Design of cognitive IoT devices ................................................................................................. 7 
3 VEDLIoT Smart Field Device with AI ......................................................................................... 9 

3.1 Hardware Design Process ................................................................................................... 9 
3.2 Hardware Overview ........................................................................................................... 10 
3.3 Design Schematic ............................................................................................................... 10 

4 Software Workflow .................................................................................................................... 16 
4.1 Training ................................................................................................................................ 16 
4.2 Synthesis .............................................................................................................................. 18 
4.3 Deployment......................................................................................................................... 19 

5 Evaluation .................................................................................................................................... 20 
6 Conclusion ................................................................................................................................... 22 
7 References .................................................................................................................................. 23 
8 List of Figures ............................................................................................................................. 25 
9 List of Listings ............................................................................................................................. 26 
10 List of Tables ........................................................................................................................... 27 
 

  



D4.7  Version 1.0 
 

4 
 

Executive Summary 
This deliverable is the final report on Task 4.8 in WP4, which focuses on optimizing the 
cognitive IoT hardware platform for the integration of artificial intelligence capability, with 
an emphasis on its ultra-low power feature. The following chapters provide detailed 
information on the development and optimization procedure and results. The resulting 
hardware undergoes system design, manufacturing, testing, and evolves into its second 
version. Ultimately, this report also showcases the synergy between cognitive IoT 
principles, the AI capabilities of the MAX78000 chip, and the industrial use case motor 
condition monitoring, which is presented in Deliverable 7.5 [1]. The work serves as a 
tangible manifestation of our vision, demonstrating the potential for sophisticated 
intelligence within the industrial IoT landscape.  

  



D4.7  Version 1.0 
 

5 
 

1 Introduction 
The fusion of Artificial Intelligence (AI) with Internet of Things (IoT) systems heralds a 
transformative era in modern technology, offering unprecedented potential for intelligent 
decision-making, predictive maintenance, and enhanced operational efficiency. The 
integration of AI within IoT systems encompasses varied architectural approaches, each with 
its own unique set of advantages and limitations. 

 

Figure 1 Architectures for industrial IoT [2] 

Figure 1 shows different possible architectures for integrating AI into IoT systems, which 
also represents the evolution of IIoT from left to right. The cloud centric industrial IoT (IIoT) 
involves centralized AI processing, where data collected by IoT devices is transmitted to a 
centralized cloud or edge server for AI analysis. This architecture enables comprehensive 
data analysis and complex AI algorithms but is susceptible to latency issues and high 
bandwidth requirements for data transmission. Conversely, a smart edge IIoT architecture 
distribute computational tasks to smart edge devices near the IoT devices, fostering real-
time decision-making without relying extensively on remote servers. This approach 
mitigates latency concerns and minimizes data transmission, ensuring faster response times. 
However, it might pose constraints on computational power and memory within the edge 
devices with the scaling up of the system. Collaborative IIoT represents the current trend of 
leveraging a blend of cloud-based, edge, and on-device AI processing. This amalgamation 
optimizes resource utilization, balancing computational capabilities with data transmission 
efficiency. Yet, it demands careful orchestration to strike a harmonious equilibrium between 
decentralized processing and cloud-based resources. 

As shown in Figure 2, the VEDLIoT project aims to provide hardware solutions for the 
integration of AI in different levels of IoT systems within the Work Package (WP) 4. For the 
central cloud and edge devices, the RECS carriers provide heterogeneous computation 
platform. For embedded AI applications in collaborative IIoT systems, the cognitive IoT end 
device described in this deliverable is designed. The incorporation of AI processing on 
embedded system empowers them to discern intricate patterns, detect anomalies in real-
time, and derive predictive insights from the data they collect. This transformative capability 
not only enhances operational efficiency but also enables predictive maintenance, proactive 
troubleshooting, and adaptive behavior—a cornerstone in revolutionizing industries across 
sectors. 



D4.7  Version 1.0 
 

6 
 

 

Figure 2 Overview of the VEDLIoT project with WP4 highlighted with red box [3] 

The rest of this deliverable is structured as follows: chapter 2 describes the baseline Smart 
Field Device (SFD) where the AI power should be integrated, offers insights into the basic 
requirements and design motivation for this work; chapter 3 presents an overview of the 
hardware design and details for each module; chapter 4 further shows the workflow of 
working with the hardware, listing the necessary tools and steps; chapter 5 demonstrates 
the energy consumption estimation for final system, provides evaluation result for the 
system; finally, chapter 6 summarize the outcomes of the work.   



D4.7  Version 1.0 
 

7 
 

2 Design of cognitive IoT devices 
The design of the target hardware is based on the embedded system that has been 
implemented in industrial applications. The end device is designed to be battery-powered 
for situations where mounted end devices cannot be easily cable charged all the time. This 
section provides an overview of this baseline system and some of its application scenarios.  

 

Figure 3 Battery powered SFD 

 

Figure 4 An instance of the SFD 

Figure 3 and Figure 4 show the design of the battery-powered small sensor box and an 
example of the SFD. This module has been implemented in multiple applications such as 
condition monitoring of train and locomotive transformers [4], Smart Multi-sensor for 
process industry [5] etc. 

The design of the SFD has the four main building blocks sensing, communication, power 
management and data processing 

• Sensing:  
o Vibration: 3 axes with an analog bandwidth of more than 1 kHz and 16 g full 

scale and a power consumption less than 300 µW in run mode. 
o Magnetic field: 3 axes with an analog bandwidth of more than 1 kHz, 2 low 

power axes and 1 high bandwidth, high resolution for special monitoring 
tasks. 

o Temperature: High accuracy temperature sensor for local and remote sens-
ing. For low accuracy tasks, the integrated sensors of the sensors or the mi-
crocontroller can be used. 

o Environment: Relative humidity and barometric pressure with a power con-
sumption of less than 2 µW. 

• Communication: The design has the capability to operate in two different communi-
cation modes. Low power, permanent online mesh network and high bandwidth, 
burst transfer peer to peer (p2p) network. Both modes have, depending on the used 
parameters, a comparable energy consumption. 

• Power management: All used peripherals like sensors, communication modules or 
memory devices can be switched off, to safe energy. In addition to that, the power 
supply, the bus pullups, and battery monitoring can also be controlled to optimize 
energy consumption.  

• Data Processing: Each bit that doesn’t need to be transmitted saves energy. Thus, 
the data processing is one of the key components for a low power device. This can 



D4.7  Version 1.0 
 

8 
 

be done either by data compression or information extraction. The cognitive IoT de-
vice is equipped with additional RAM and flash to perform information extraction 
with classical algorithms in an efficient manner. 

A prominent example use case is the Simotics Connect 400 for condition monitoring [6] of 
low-voltage motors. It serves as a plug-and-play connectivity module for measuring and pre-
processing capability. For this application, data transmission is conducted through the Wi-Fi 
module. And the battery can last up to 2 years with a data transmission interval of 5 minutes. 
However, this SFD is only capable of data processing with classical algorithms, which still 
leads to communication overheads. 

 
 

• Figure 5 Simotics Connect SFD (left) and IoT system based on it(right)  [6] 

Therefore, to enable the potential power of SFD in the collaborative IIoT architecture and 
further reduce the overhead in communication, the SFD is to be integrated with AI power 
and optimized in aspect of power efficiency.  



D4.7  Version 1.0 
 

9 
 

3 VEDLIoT Smart Field Device with AI  
The integration of deep learning on SFDs has two challenges. Firstly, it requires maintaining 
efficiency and low power consumption while accommodating the computational demands 
of AI algorithms. Secondly, achieving this integration without compromising existing 
functionalities and scalability needs dedicated algorithm design. 

Our initiative began with a vision to transcend the limitations of conventional IoT devices by 
infusing AI capabilities without sacrificing power efficiency. Based on the evaluation of AI 
accelerators in Deliverable 3.3 [7], we selected the ultra-low power AI accelerator Maxim 
MAX78000 as the core processor [8]. The design also combines the array of sensors from the 
original SFD, creating a harmonized system for intelligent inference and real-time data 
collection.  

3.1 Hardware Design Process 

 

Figure 6 SFD with MAX78000, version two 

The main result from task 4.8 is the hardware prototype on printed circuit boards (PCB) 
shown in Error! Reference source not found. Figure 6. This showcase is created following 
hardware design process: 

1. Specification and requirements: determine the functionality of the hardware and 
requirements for its target system. 

2. Microcontroller and chips selection: the microcontroller is settled to MAX78000 due 
to its ultra-low power feature and integrated CNN accelerator.  

3. Architecture design: details in section 3.2 
4. Register transfer level (RTL) design and verification: the connection of all compo-

nents is established in schematic design as described in section 3.3. 
5. Synthesis and place-and-route: physical layer design of routing for the integrated 

circuit (IC). 
6. Manufacturing: the physical design is printed on printed circuit boards (PCB). 
7. Test and validation: components are soldered, and every module of the hardware 

are to be tested for hardware validation. 
8. Iteration: issues can be identified from the validation step and hardware design can 

be evolved to newer version. Besides, changes of requirements can also lead to iter-
ation of the hardware design. 



D4.7  Version 1.0 
 

10 
 

The analysis of the target system motor condition monitoring is described in the 
Deliverable 7.2 [9]. Besides, to accommodate general requirements for SFDs, the 
cognitive device “embedded accelerator” or short “EmbedX” is designed to be used in 
three different operational modes: 

● Evaluation mode: The device can be connected via USB to a PC. The input data for the 
model can either be recorded by the sensors or fed via USB / UART. 

● Extension mode: The EmbedX is stacked on an SSI-Web system (refer to Figure 4, an 
example of SFD device). The input data for the model are provided by the SSI-Web 
System. The Device is only used for model calculation and switched off again when 
the result is transmitted. 

● Standalone mode: The input data for the model are recorded by the internal sensors. 
The calculated results can be stored in the external memory.  

 

3.2 Hardware Overview 

 

Figure 7 Block diagram of the SFD with MAX78000 as core accelerator 

The hardware is designed for the use case motor condition monitoring as described in 
Deliverable 7.3 [10]. The design concept is shown in the block diagram in Figure 7.  

At the center of the diagram shows the core processor MAX78000 of the cognitive IoT 
device. The processor is integrated with a CNN accelerator. For the sensing and data 
collection, three sensors shown on the left side are connected directly to the processor: 
temperature sensor, vibration sensor and magnetic flux sensor. Besides, a communication 
interface is reserved for further extensions. Same as the SFD mentioned before, a power 
management module is also integrated to provide various voltage options to supply 
different components. Despite these essential components, external SRAM and flash are 
added for extending the capacity of the core processor. JTAG module is attached for 
flashing and software debugging. 

3.3 Design Schematic 

3.3.1 MAX78000 Schematic 
The MAX78000 block diagram is depicted in Figure 8. It has in addition to its conventional 
cortex M4 core, an embedded CNN accelerator with 64 parallel processors. This CNN engine 
has a SRAM based weight storage memory with 442 KB and a data storage memory of 512 
KB to enable fast vector calculations [11].  



D4.7  Version 1.0 
 

11 
 

 

Figure 8 MAX78000 Block Diagram [12] 

 

Figure 9 RTL design of MAX78000 chip with peripherals 

Based on the official data sheet of MAX78000 [11], we connected all components with 
their communication interfaces and verified these connections carefully. The schematic 
design is shown in Figure 9. 



D4.7  Version 1.0 
 

12 
 

3.3.2 Power Supply Schematic 

 

Figure 10 RTL design of power supply module 

The power supply schematic contains an Analog Devices LT8609A [13], which is configured 
to provide 3.3V to the board from an external 5V voltage input. This is essential for the 
normal operation of all connected components. 

3.3.3 SRAM and Flash Memory Schematic 
The microcontroller MAX78000 comes with limited memory option. The integrated SRAM 
is 128kB, and the flash memory is only 512kB. Therefore, external SRAM and flash memory 
are provided on board to enable potential for more application scenarios. The external 
RAM selected to be on the embedded accelerator board is the Onsemi N01S830HAT22I 
[14] with 1MB storage space and the flash is MT25QU128ABA1ESE-0SIT [15]. 

 

  

Figure 11 Schematic design for external SRAM and flash memory 

External RAM and flash are connected to the MAX78000 with Quad Serial Peripheral 
Interface (QSPI). QSPI is a communication protocol that facilitates high-speed, full-duplex, 
and serial communication between a microcontroller and external peripherals. QSPI offers 
several advantages for connecting external RAM and Flash such as high speed, efficiency, 
flexibility with reduced number of pins. 



D4.7  Version 1.0 
 

13 
 

3.3.4 Sensors Schematic 

 

Figure 12 Schematic design of the vibration, temperature, and hall-effect sensor 

As described in the hardware overview, three sensors are integrated in the IC and their 
schematics are presented in Figure 12. From top to bottom, the schematic shows the usage 
of the vibration sensor, the temperature sensor, and the magnetic field sensor. 

The vibration sensor LSM6DSL from STMicroelectronics can capture an accelerometer and 
gyroscope of three dimensions. The sensor offers unparalleled precision in detecting and 
interpreting movement and orientation. Data collection from the sensor serves as a 
cornerstone in applications such as motion analysis, gesture recognition, and vibration 
characteristic of the attached surface. In order to obtain vibration information in terms of 
amplitude and frequency, the data need to be collected through serial peripheral interface 
(SPI), converted to frequency domain with techniques such as Fast Fourier Transform (FFT) 
and filtered. 

For temperature sensing, TMP461 from Texas Instruments is integrated. Renowned for its 
precise temperature measurement capabilities, this sensor operates across an extensive 
temperature range. On the EmbedX, Inter-Integrated Circuit protocol is used for 
communication between the sensor and the controller. 

As for the hall-effect sensor, TLI493D from Infineon Technologies is selected. It is capable 
of measuring magnetic fields with high precision and sensitivity. For motor condition 
monitoring applications, data concerning magnetic fields can provide information about 
rotation speed, rotor position and furthermore fault detection. 

3.3.5 Communication Schematic 
Three type of communication interface can be found on board 



D4.7  Version 1.0 
 

14 
 

- A JTAG (Joint Test Action Group) connector (in Figure 9 left bottom corner) for de-
bugging, testing, and programming the integrated circuit.  

- A USB connector with UART (Universal Asynchronous Receiver / Transmitter) inter-
face shown in Figure 13 for data exchange between PC and the board. This is utilized 
especially under evaluation mode. 

- A pin array shown in Figure 14 that exposes mainly the unused communication in-
terface of  MAX78000. This is designed either as the extension interface of the ex-
ternal module in standalone mode or the communication interface with the main 
controller in extension mode. 

 

Figure 13 Schematic of the USB connector 

 

Figure 14 Schematic design of communication interface 



D4.7  Version 1.0 
 

15 
 

External communication module such as Wi-Fi or LoRaWAN (long range wide area network) 
is not integrated in this integrated circuit because of two reasons. Firstly, the Wi-Fi module 
consumes high energy in operation and also produces heat that can affect temperature 
measuring on board. Secondly, in real applications, the hardware operates as an extension 
for the main board, which is already equipped with a wireless communication module.  



D4.7  Version 1.0 
 

16 
 

4 Software Workflow 
This section presents details on tools and methods for working with the embedded 
accelerator. The code snippets in this chapter are based on the motor condition monitoring 
use case. Figure 15 provides an overview of the workflow for the given hardware with AI 
power. The workflow is built based on the software package from MaximIntegratedAI [16]. 
There are three main steps: training, synthesis, and deployment. The training and synthesis 
are conducted on PC with the given software package, mainly in the programming language 
python. The deployment concerns development of embedded systems with program 
language embedded C. In the workflow, green blocks represent the open-source software 
package as development tool, and the orange blocks are information or files that need to 
be provided by developers, and they need to be customized based on different use cases.  

 

Figure 15 Overview of software workflow, based on software package from [16] 

4.1 Training 
The training procedure is the same as machine learning model training in common scenario. 
The only difference is that the training algorithm is provided by Maxim Integrated AI, which 
is based on Pytorch library. The training requires three main inputs, the dataset for the use 
case, a data loader and the pytorch model definition in certain form as interface for the 
training procedure.  

Listing 1 shows part of the data loader definition. This function reads from given csv files 
and encapsulates data to dataflow that can be used for the training. In applications, data 
processing can also be conducted in this function.  



D4.7  Version 1.0 
 

17 
 

 
def motor_get_datasets(data , load_train=True,  load_test=True): 
        (root_dir, args) = data 
        transform = transforms.Compose([ 
           ai8x.normalize(args=args) 
        ]) 
        if load_train: 
           train_dataset = read_data(root_dir=root_dir,csv_file= '~/ai8x-training/data/motor1/motor_dataset.csv', 
                                 transform = transform,d_type='train') 
        else: 
           train_dataset = None 
        if load_test: 
           test_dataset = read_data(root_dir= root_dir,csv_file= '~/ai8x-training/data/motor1/motor_dataset.csv', 
                                transform = transform,d_type='test') 
        else: 
            test_dataset = None 
        return train_dataset , test_dataset 
 

Listing 1 Example of data loader 

Another key component is the Pytorch model file that structure like the following code 
snippet in Listing 2. The model structure is specified the same as pytorch model, only with 
functions from “ai8x” that have been adapted and optimized for CNN accelerator target 
training. This example shows a model architecture with three layers, two convolution layers 
with max pool layer each, and a dense layer as output layer. 

 
class AI85motorNet2_on_off_off_on(nn.Module): 
    def __init__(self,num_classes=3,num_channels=1,dimensions=(128, 1),bias=False,**kwargs): 
        super().__init__() 
        self.drop = nn.Dropout(p=0.2) 
        # Time: 128 Feature : 3 
        self.current_conv1 = ai8x.FusedConv1dReLU(num_channels, 64, 3, stride=1, padding=0,bias=bias, 
**kwargs) 
        # T: 126 F: 64 
        self.motor_conv1 = ai8x.FusedMaxPoolConv1dReLU(64, 32, 2, stride=1, padding=1,bias=bias, **kwargs) 
        # pool-stride is 2 and pool-padding is 0 
        # T : 64  F: 16 
        self.current_conv2 = ai8x.FusedConv1dReLU(32, 16, 3, stride=1, padding=0,bias=bias, **kwargs) 
        # T: 62 F: 16 
        self.motor_conv2 = ai8x.FusedMaxPoolConv1dReLU(16, 16, 2, stride=1, padding=1,bias=bias, **kwargs) 
        # T : 32  F: 16 
        self.fc = ai8x.Linear(512, num_classes, bias=bias, wide=True, **kwargs) 
 

Listing 2 Example of model definition for the motor use case 

With prerequisite ready, python script is executed for model training. An example of 
command is shown below. In this command, the train.py script reads data through the 
given data loader and trains the model defined in the definition file. Besides, 
hyperparameters for training such as epoch number, optimizer and learning rate are 
specified here.  
python train.py --epochs 200 --optimizer Adam --lr 0.001 --deterministic --model 
model_definition --dataset data_loader --data data/MCM --confusion --save-sample 
10 --device MAX78000 "$@" 



D4.7  Version 1.0 
 

18 
 

Listing 3 Command for model training 

In this step, the model also needs to be quantized for further steps. The MAX78000 
supports a symmetric quantization method that is based on the maximum and minimum 
weights. This method can be used with 1-, 2-, 4-, and 8-bit signed integers, while the 
weights can be configured on a per-layer basis.  

The hardware implementation of the MAX78000 always utilizes signed integers for weights. 
However, during normal training process, floating-point values are commonly used for both 
data and weights, with the values being clipped (i.e., clamped) to a specific range. When 
using 8-bit quantization, the weight memory requirement is reduced by a factor of four. This 
decrease in memory size comes at the cost of a reduction in model accuracy. A way to assess 
the impact of weight quantization on model accuracy is to evaluate the quantized model 
using the test set that was used during training and compare its performance metrics, such 
as accuracy, with the performance of the original model. An evaluation of the impact of 
quantization on accuracy is presented in Deliverable 7.5 for the motor condition monitoring 
use case. 

The quantization can be done with following command and model after quantization is save 
in the checkpoint file under given path “trained/ai85-motor-best-quantize.pth.tar”. The 
checkpoint contains weight information and is further used in the next step synthesis. 

python quantize.py trained/ai85_motor_best.pth.tar trained/ai85-motor-best-
quantize.pth.tar --device MAX78000 -v "$@" 

Listing 4 Command for quantization 

4.2 Synthesis 
During synthesis, the input data samples and a yaml file for model description are required. 
The input data samples are generated during the training process. And the model 
description in the yaml file as shown in Listing 5 must match the network that was used for 
training. This yaml file specifies the processors to be used, as well as the memory offsets 
for input and output layer for efficient neural network execution.  

arch: ai85motornet2_on_off_off_on 
dataset: motor2_on_off_off_on 
 
# Define layer parameters in order of the layer sequence 
layers: 
  # Conv 1D - 4 layers 
  - pad: 0 
    activate: ReLU 
    out_offset: 0x4000 
    processors: 0x0000000000000001 
    data_format: HWC 
    operation: Conv1d 
    kernel_size: 3 
  - max_pool: 2 
    pool_stride: 2 
    pad: 1 
    activate: ReLU 
    out_offset: 0x00 
    processors: 0x000000000000ffff 
    operation: Conv1d 
    kernel_size: 2 



D4.7  Version 1.0 
 

19 
 

  - flatten: true 
    out_offset: 0x4000 
    processors: 0x00000000000000ff 
    operation: MLP 
    output_width: 32 
    activate: None 

Listing 5 The yaml file for model description 

python ai8xize.py --verbose --test-dir sdk/Examples/MAX78000/CNN --prefix ai85-
motor --checkpoint-file trained/ai85-motor-best-quantize.pth.tar --config-file 
networks/ai85-motor-hwc3_on_off_off_on.yaml --device MAX78000 --compact-data --
softmax --timer 0 --display-checkpoint 

Listing 6 Command for synthesis -- conversion to C code 

4.3 Deployment 
The C-code, which is generated from the synthesis step, contains all information for the 
execution of the neural network. Including the structure, the quantized weights, and the 
processor plan for the computation of each layer. To complete the program for the 
applications, drivers for peripherals such as sensors are required same as functions for 
neural network inference. The development of the application is conducted with the 
MaximSDK [8] as integrated development environment (IDE) as shown in Figure 16. 

 

Figure 16 MaximSDK as workspace, layer execution plan is show in in cnn_configure function  



D4.7  Version 1.0 
 

20 
 

5 Evaluation 
The key metric for system evaluation is the runtime and energy consumption during model 
inference. These numbers depend highly on the model size and algorithm design. The 
evaluation in Table 1 Runtime scheduling for the SFD SSI-Web is the energy estimation for 
the product SIMOTIC [6] based on the scheduling in Table 1. Estimated energy consumption 
for the SFD is around 47 mWh per day when the measurement is conducted three times per 
hour and data is sent through Wi-Fi module once per day. The SFD is set to idle mode for the 
rest of time. 

Input Parameters 

Measurement Interval (s) 1200 

Communication Interval (s) 86400 

Battery Capacity (Wh) 28.8 

Table 1 Runtime scheduling for the SFD SSI-Web 

SSI-Web Energy Usage (mWh/d) 

Sleep mode 4.07 

Measurement (active mode) 4 

Communication (with Wi-Fi) 16.20 

Total (ideal) 24.27 

Table 2 Energy estimation of the SFD  SSI-Web 

The energy estimation of the EmbedX is based on the motor condition monitoring use case. 
There are three parts that need to be included in the energy calculation: the CNN accelerator 
for the inference, the MAX78000 microcontroller and the sensors on board. Two modes are 
taken into consideration: active mode and standby mode. 

Error! Reference source not found. summarizes the power and energy consumption for 
each part under different modes. To make the results comparable to the baseline system 
SSI-Web, the algorithm scheduling is set to be the same as in Table 1.  

Assuming the system does the measurement three times an hour, and the microcontroller 
is up for 4 seconds with all peripherals on. Therefore, the system is in standby mode for 
3588 seconds for every hour. In standby mode, the power consumption of the MAX78000 
is 

11.3μA × 3.3V = 0.03729mW 

where 11.3𝜇𝜇𝜇𝜇 is the current flow during standby mode [11]. This makes the energy usage 
per day 0.89mWh. 

3588s
3600s

∗ 24h ∗ 0.03729mW = 0.89mWh 

In comparison, the microcontroller STM32L4A6 has power consumption of 11.8𝜇𝜇𝜇𝜇 × 3.3𝑉𝑉 =
0.03894𝑚𝑚𝑚𝑚 under the Stop 1 mode [17] and makes the energy usage 0.93mWh per day.  

Since the main peripheral components are identical on both boards for this use case, we 
assume that the energy consumption of those peripherals under comparable conditions 
are the same. Thus, we estimate the energy usage of EmbedX under standby mode to be  



D4.7  Version 1.0 
 

21 
 

4.07mWh/d− 0.93mWh/d + 0.89mWh/d = 4.03mWh/d 

For the active mode, similar estimation can be conducted. The system is active 72 times per 
day, 4 seconds each time. When operating under 80MHz, the microcontroller MAX78000 
consumes 0.88mWh per day. 

41.9μA/MHz ×  80MHz × 3.3V ×  24h ×
12

3600
= 0.88mWh 

Under the same condition, the microcontroller STM32L4A6 consumes 2.28mWh per day. 

108μA/MHz ×  80MHz × 3.3V ×  24h ×
12

3600
= 2.28mWh 

In addition, CNN inference energy consumption is not included in MAX78000. Referring to 
the document of MAX78000 [11], the energy consumption of CNN accelerator is 
4.02pJ/MAC, where MAC refers to multiple-accumulate operation in the neural network. For 
a small model shown in Listing 2, the energy is negligible in comparison. 

EmbedX Energy Usage (mWh/d) 

Standby mode 4.03 

Measurement (active mode) 2.60 

Table 3 Energy estimation of EmbedX for the motor use case 

The target hardware with its ultra-low-power feature can achieve lower energy consumption 
compared to the baseline system with STM32. One reason for this is that the MAX78000 has 
fewer peripheral units and components in its core compared to the STM32.  

  



D4.7  Version 1.0 
 

22 
 

6 Conclusion 
This deliverable aims at the optimization of cognitive IoT device in order to integrate AI 
power in end device, especially on embedded systems in far-edge. This enables more 
intelligent on-site data processing, and thus reduces the amount of data to be transmitted. 
This does not only reduce the congestion in IoT networks of large scale, but also release the 
burden on central computing. 

The embedded hardware system presented in this work integrated the ultra-low power 
microcontroller MAX78000 and multiple peripherals for customized functions for target use 
case, motor condition monitoring. The hardware is designed, manufactured, and tested. 
Toolchain for the software development is also evaluated and demonstrated on the use 
case. This work shows the possibility of integrating deep learning neural networks in 
embedded systems under different operational models. On the other hand, its energy 
efficiency is also an attractive feature for future implementation. 

  



D4.7  Version 1.0 
 

23 
 

7 References 
[1]  VEDLIoT EU Project, "Deliverable D7.5 Final report on use case development, 

optimisation, benchmarking and evaluation," 2024. 

[2]  Siemens AG, "Sensor Systen Integration," Siemens AG, 2023. 

[3]  VEDLIoT EU Project, "Deliverable D4.1 First report on cognitive IoT hardware platform 
and microserver development," 2022. 

[4]  A. Mbuy, "Tractronic Sensformer®," Siemens AG, [Online]. Available: 
https://blog.siemens.com/2018/09/tractronic-sensformer-born-connected-the-
worlds-first-intelligent-traction-transformer/. [Accessed 05 01 2024]. 

[5]  Siemens AG, "SITRANS SCM IQ," Siemens AG, [Online]. Available: 
https://www.siemens.com/global/en/products/automation/process-
instrumentation/digitalization/smart-condition-monitoring.html#Ourportfolio. 
[Accessed 05 01 2024]. 

[6]  Siemens AG, "Konnektivität für SIMOTICS Niederspannungsmotoren," [Online]. 
Available: https://www.siemens.com/de/de/produkte/antriebstechnik/digitalisierung-
antriebstechnik/konnektivitaet.html. [Accessed 05 01 2024]. 

[7]  VEDLIoT EU Project, "Deliverable D3.3 Evaluation of the DL accelerator designs," 2022. 

[8]  Analog Devices, "MAX78000 Artificial Intelligence Microcontroller with Ultra-Low-
Power Convolutional Neural Network Accelerator," Analog Device, [Online]. Available: 
https://www.analog.com/en/products/max78000.html#product-overview. [Accessed 
05 01 2024]. 

[9]  VEDLIoT Project, "D7.2 First report on use case development and optimisation," 2022. 

[10]  V. Project, "D7.3 Second report on use case development and optimisation," 2022. 

[11]  Analog Devices, "Artificial Intelligence Microcontroller with UltraLow-Power 
Convolutional Neural Network Accelerator," 5 2021. [Online]. Available: 
https://www.analog.com/media/en/technical-documentation/data-
sheets/MAX78000.pdf. [Accessed 05 01 2024]. 

[12]  O. Dreessen, "Hardware conversion of convolutional neural networks," 18 07 2023. 
[Online]. Available: https://www.embedded.com/hardware-conversion-of-
convolutional-neural-networks/. [Accessed 05 01 2024]. 

[13]  Analog Devices, "LT8609 LT8609A LT8609B Datasheet," 08 2021. [Online]. Available: 
https://www.analog.com/media/en/technical-documentation/data-sheets/lt8609-
8609a-8609b.pdf. [Accessed 05 01 2024]. 

[14]  ON Semiconductor, "N01S830HA Mb Ultra-Low Power Serial SRAM," 2 2016. [Online]. 
Available: https://www.onsemi.com/pdf/datasheet/n01s830ha-d.pdf. [Accessed 05 01 
2024]. 

[15]  Micro Technology, "Micron Serial NOR Flash Memory," 01 2013. [Online]. Available: 
https://media-www.micron.com/-/media/client/global/documents/products/data-
sheet/nor-flash/serial-nor/n25q/n25q_128mb_1_8v_65nm.pdf. [Accessed 05 01 2024]. 



D4.7  Version 1.0 
 

24 
 

[16]  MaximIntegratedAI, "ADI MAX78000/MAX78002 Model Training and Synthesis," 
[Online]. Available: https://github.com/MaximIntegratedAI/ai8x-training. [Accessed 05 
01 2024]. 

[17]  STMicroelectronics, "STM32L4A6xG Datasheet," 07 2022. [Online]. Available: 
https://www.st.com/resource/en/datasheet/stm32l4a6ag.pdf. [Accessed 29 01 2024]. 

 

 

 

 
 



D4.7  Version 1.0 
 

25 
 

8 List of Figures 
Figure 1 Architectures for industrial IoT [2] .................................................................................... 5 
Figure 2 Overview of the VEDLIoT project with WP4 highlighted with red box [3] ................. 6 
Figure 3 Battery powered SFD ........................................................................................................... 7 
Figure 4 An instance of the SFD ........................................................................................................ 7 
Figure 5 Simotics Connect SFD (left) and IoT system based on it(right)  [6] ............................. 8 
Figure 6 SFD with MAX78000, version two ..................................................................................... 9 
Figure 7 Block diagram of the SFD with MAX78000 as core accelerator ................................. 10 
Figure 8 MAX78000 Block Diagram [12] ........................................................................................ 11 
Figure 9 RTL design of MAX78000 chip with peripherals ........................................................... 11 
Figure 10 RTL design of power supply module ............................................................................. 12 
Figure 11 Schematic design for external SRAM and flash memory .......................................... 12 
Figure 12 Schematic design of the vibration, temperature and hall-effect sensor ................ 13 
Figure 13 Schematic of the USB connector ................................................................................... 14 
Figure 14 Schematic design of communication interface ........................................................... 14 
Figure 15 Overview of software workflow, based on software package from [16] ............... 16 
Figure 16 MaximSDK as workspace, layer execution plan is show in in cnn_configure function
 ............................................................................................................................................................... 19 
 
  



D4.7  Version 1.0 
 

26 
 

 

9 List of Listings 
Listing 1 Example of data loader ..................................................................................................... 17 
Listing 2 Example of model definition for the motor use case .................................................. 17 
Listing 3 Command for model training ........................................................................................... 18 
Listing 4 Command for quantization .............................................................................................. 18 
Listing 5 The yaml file for model description ................................................................................ 19 
Listing 6 Command for synthesis -- conversion to C code .......................................................... 19 
 

  



D4.7  Version 1.0 
 

27 
 

 

10 List of Tables 
Table 1 Runtime scheduling for the SFD SSI-Web ........................................................................ 20 
Table 2 Energy estimation of the SFD  SSI-Web ........................................................................... 20 
Table 3 Energy estimation of EmbedX for the motor use case ................................................. 21 
 

 

 

 


	Executive Summary
	1 Introduction
	2 Design of cognitive IoT devices
	3 VEDLIoT Smart Field Device with AI
	3.1 Hardware Design Process
	3.2 Hardware Overview
	3.3 Design Schematic
	3.3.1 MAX78000 Schematic
	3.3.2 Power Supply Schematic
	3.3.3 SRAM and Flash Memory Schematic
	3.3.4 Sensors Schematic
	3.3.5 Communication Schematic


	4 Software Workflow
	4.1 Training
	4.2 Synthesis
	4.3 Deployment

	5 Evaluation
	6 Conclusion
	7 References
	8  List of Figures
	9 List of Listings
	10 List of Tables

