
ICT-56-2020— Next Generation Internet of Things

D5.4
Integrated and extended Security, Safety
and Robustness mechanisms and tools

Version 1.0

Document Information

Contract Number 957197

Project Website https://vedliot.eu/

Dissemination Level PU (Public)

Nature R (Report)

Contractual Deadline 31 January 2024

Author António Casimiro (FC.ID)

Contributors Jämes Ménétrey (UNINE), Marcelo Pasin (UNINE),

Sébastien Vaucher (UNINE), Carina Marcus (MAGNA),

Alysson Bessani (FC.ID), José Cecílio (FC.ID), Tiago

Carvalho (FC.ID), Bakary Badjie (FC.ID), Piotr

Zierhoffer (ANT), Simon Bouget (RI.SE), Anum

Khurshid (RI.SE), Peter Jonsson (RI.SE), Joakim

Eriksson (RI.SE)

Reviewers Mario Porrmann (UOS), Pedro Trancoso (Chalmers)

The VEDLIoT project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 957197.

https://vedliot.eu/

D5.4 Version 1.0

Change Log

Version Date Description of Change

0.1 2023-09-11 Document template created.

0.2 2023-10-19 Added contributions fromMAGNA.

0.3 2023-12-05 Added contributions from FC.ID.

0.4 2023-12-05 Added contributions from UNINE.

0.5 2024-01-05 Added contributions from Antmicro.

0.6 2024-01-15 Added more contributions from UNINE.

0.7 2024-01-24 Integrated version with initial and final sections.

1.0 2024-01-30 Complete version, with added contributions from

RI.SE, and addressing comments provided by

reviewers.

2

D5.4 Version 1.0

Table of Contents

Executive Summary . 9

1 Introduction . 10

2 Secure Communication and Execution on IoT platforms 14

2.1 Trusted Communication with WebAssembly and Intel SGX 14

2.1.1 Twine Design . 14

2.1.2 Implementation Details . 16

2.1.3 Use Case: Credit Scoring in Crypto Finance 21

2.1.4 Evaluation . 23

2.1.5 Security Analysis . 26

2.1.6 Retrospective . 28

2.2 Protecting IoT Peripherals with ARM TrustZone 28

2.2.1 TrustZone, a TEE for Edge Devices 29

2.2.2 Open Portable TEE (OP-TEE) . 30

2.2.3 MMIO and DMA . 31

2.2.4 Threat Model . 32

2.2.5 Fortress Architecture . 32

2.2.6 Assessment of Fortress and Concluding Remarks 36

2.3 Attesting MQTT Brokers within Intel SGX 36

2.3.1 Pub/sub Systems . 38

2.3.2 Attestation . 38

2.3.3 Pub/sub with TEEs . 40

2.3.4 Communication Protocols using Attestation 41

2.3.5 Threat Model . 42

2.3.6 Security Requirements and Trusted Primitives 43

2.3.7 Architecture Overview . 44

2.3.8 Attesting Communication Channels 44

2.3.9 Securing pub/sub Systems . 46

2.3.10 Concluding Remarks about Attested pub/sub 47

3 Trusted Certification of IoT Devices . 48

3.1 TruCerT: Definitions and Concepts . 48

3.2 TruCerT Protocol . 49

3.2.1 Initiate Certificate Request . 50

3.2.2 Initiate Audit Request . 51

3.2.3 Audit Evidence and Certification Info 51

3.2.4 Risk Evaluation . 53

3.2.5 Certificate of Assurance . 53

3.3 Realization of TruCerT with Standards 54

3.3.1 TruCerT with RATS . 54

3

D5.4 Version 1.0

3.3.2 TruCerT and X509-based Certificates 54

3.4 Network Overhead of TruCerT vs TruCerT with RATS 55

3.5 Security Analysis . 57

3.5.1 Introduction to Tamarin . 58

3.5.2 TruCerT Formal Analysis . 58

4 Secure computing with Contiki-NG . 59

4.1 Contiki-NG on Low-Power RISC-V Devices 59

4.1.1 Background knowledge and context of the work 59

4.1.2 The Contiki-NG OS . 59

4.1.3 Porting Contiki-NG to a RISC-V CPU 60

4.1.4 Future Work . 61

4.2 EDHOC for Contiki-NG . 61

5 SIRE Evaluation . 63

5.1 Use Cases . 63

5.1.1 IoT Membership Management . 63

5.1.2 Autonomous Vehicle Coordination 63

5.1.3 Robust Federated Machine Learning 64

5.2 Evaluation . 65

5.2.1 Read and Write Data – get & put 66

5.2.2 Use Case 1 - IoT Membership Management 66

5.2.3 Use Case 2 - Intersection Management 68

5.2.4 Use Case 3 - BFT Federated Learning 69

6 Simulation and Testing with Renode . 71

6.1 Introduction to Renode . 71

6.2 Robust Automatic Platform Generation Features 72

6.3 CFU Simulation . 75

6.4 Co-simulation Improvements . 76

6.5 Improvements to the Testing Infrastructure 77

6.5.1 Renode-Verilator Integration . 77

6.5.2 Renode DPI Examples . 79

6.6 Coherent Co-simulation Flow for ML Development 80

7 Robustness for Deep Neural Networks . 81

7.1 Robustness Verification of Neural Networks 81

7.1.1 Related Works . 82

7.1.2 Robustness Verification and Quantification Approach 82

7.2 Mitigation of Adversarial Data Poison Attacks Against Deep Neural Net-

works . 85

7.2.1 Related Works . 86

7.2.2 Mitigation of Adversarial Data Poison Attacks 86

7.3 Self-ensemble Horizontal Gating-based Mixture of Expert Image Classi-

fication Deep Neural Networks . 88

8 Generating, Sharing and Using Data for Increased Safety – Advantages

and Challenges . 89

8.1 Reasons for Sharing Data . 89

8.2 Available Sharing Options/Infrastructure 89

4

D5.4 Version 1.0

8.2.1 Broadcast . 89

8.2.2 Two-way Communication . 90

8.3 Creating the Big Picture . 90

8.3.1 Generating Data and Local Information 90

8.3.2 Sharing and Processing . 90

8.3.3 Distributing and Using Information 91

8.4 Outlook . 91

9 Overall Achievements . 93

10 References . 95

5

D5.4 Version 1.0

List of Figures

1.1 Overall perspective of VEDLIoT. 10

2.1 Overall Twine architecture. 15

2.2 Overview of Twine’s deployment and attestation workflow. 15

2.3 Architectural overview and workflow of Credora, highlighting attested

channels and Twine enclaves in red. 22

2.4 PerformanceofWolfSSLbenchmarks targeting cryptographic algorithms,

normalised to the native speed. 24

2.5 Performance of WolfSSL benchmarks for TLS sessions. 24

2.6 Pulling time of Credora Private Pullers using SGX and Twine. 26

2.7 TrustZone security architecture on ARM Cortex-A. 29

2.8 OP-TEE architecture. 30

2.9 DT node for an I2S interface on Tegra 194 SoC. 31

2.10 Fortress workflow. 33

2.11 Overview of I2S protocol. 33

2.12 Fortress driver partitioning. 35

2.13 The overall architecture of our proposal. (,) mean X.509 certificate

and attestation evidence, respectively. The colours of these icons corre-

spond to the actor owning them. 44

2.14 Enhanced TLS 1.3 handshake with attestation. New elements are men-

tioned in bold. 45

3.1 The entities and stakeholders of TruCerT process adopted from the EU

Cybersecurity Certification Framework. The IoT device manufacturers

are responsible for implementing certification capabilities in devices

and initiate certification. The CAB performs the audit and certification

protocol (i.e. TruCerT) with the IoT Device based on the Device-profile

received from guidance repo. It is also responsible for risk assessment

and re-certification after IoT device’s deployment. The industry group

is an important source of shared knowledge, best practices and advice.

The NAB is charged with responsibility of accrediting the CAB/s and the

NCCA oversees the entire process and provides expertise to the NAB. 49

3.2 The Device Vendor initiates TruCerT and the CAB then runs the certifica-

tion process with the IoT Device. After IoT Device attestation and risk

evaluation, the CAB generates a Certificate of Assurance. 50

3.3 TruCerT Protocol with RATS for Remote Integrity Verification 55

3.4 Standard X509 IoT profile with TruCerT assurance attributes: Certificate

ID, Device ID, Device Profile and Assurance Level 56

6

D5.4 Version 1.0

3.5 Introduction of TruCerT and Assurance_Cert into existing IoT paradigm.

IoT Device receives a Device Identity Certificate, i.e. Cert through Est-

CoAP from CA, which is used for secure session establishment with

End-user. CAB audits the device using TruCerT and achieves RIV. The

device then receives an Assurance_Cert from CAB which guarantees

software-state integrity. Another proposal presented here is combining

the assurance attributes with X509 Device Identity Certificates. TruCerT

proposes this alternate mechanism to transfer the Assurance Attributes

after RIV to the CA. The CA then updates the Cert of IoT Devicewith

Assurance Attributes and enrolls a new certificate, i.e. Cert + Assurance

Attributes. 57

4.1 Servant with SERV (from Olof Kindgrens github repository) 60

5.1 SIRE Use Cases: BFT federated learning and autonomous vehicle inter-

section management. 65

5.2 Performance evaluation of the get operation using a variable number of

server replicas and amaximumof 2000 clients. f represents the number

of tolerated faults. 67

5.3 Performance evaluation of the put operation with a variable number of

server replicas and amaximumof 2000 clients. f represents the number

of tolerated faults. 67

5.4 Performance evaluation of the attest/join operation with a variable

number of server replicas and a maximum of 2000 clients. 68

5.5 Performance evaluation of the put operation in the intersection man-

agement use case. 69

5.6 Performance evaluation of the put operation in the federated learning
use case. 70

6.1 CI-based Renode development flow diagram 72

6.2 CFU instruction flow diagram . 75

7.1 Block diagram of a DNN . 83

7

D5.4 Version 1.0

List of Tables

2.1 Comparison of the state-of-the-art pub/sub systems shielded by TEEs. 40

2.2 Comparison of the state-of-the-art channel binding solutions. 41

3.1 Requirement fulfillment by TruCerT mechanisms 54

8

D5.4 Version 1.0

Executive Summary

This deliverable, D5.4 “Integrated and extended Security, Safety and Robustness

mechanisms and tools”, is the final deliverable of VEDLIoT’s Work Package 5 (WP5).

During the project, WP5 was focused on security, safety and robustness aspects of

AI-enabled critical automated systems. The deliverable provides final descriptions of

the several components that were developed in WP5 during the project, including

evaluation results where appropriate.

The deliverable is organized as follows:

Chapter 1 provides an introduction to the deliverable, explaining how the provided

contents are aligned with the WP objective and the planned tasks.

Chapter 2 focuses on solutions for secure communication and execution on IoT plat-

forms, by exploiting the possibility of using Trusted Execution Environments (TEEs),

and dealing with WebAssembly applications. More specifically, the chapter describes

Twine, which provides a WebAssembly runtime for Intel SGX, presents Fortress, a

framework using ARM TrustZone to protect IoT devices, and also presents a solution

for secure Publish/Subscribe communication, implementing an MQTT broker inside an

Intel SGX enclave.

Chapter 3 describes an extension to previous work on Remote Attestation of IoT

devices, now addressing Trusted Certification using hardware-based root-of-trust.

Chapter 4 describes work done in relation to the Contiki-NGOS, which is widely used in

IoT devices. More specifically, it describes the efforts done to port the Contiki-NG OS

to an FPGA platform that can run a RISC-V implementation, and the implementation

of the newly standardized lightweight authenticated key exchange protocol called

EDHOC (Ephemeral Diffie-Hellman Over COSE) standard for the Contiki-NG OS.

Chapter 5 presents a performance evaluation of the Trusted Verifier Service (SIRE),

which is done in the context of three use cases involving edge devices.

Chapter 6 is then focused on simulation and testing of embedded and IoT systems,

which is done using the Antmicro’s Renode open source simulation framework. The

chapter wraps up the work done in the project concerning these aspects, describing

latest updates and improvements of some Renode components.

Chapter 7 describes latest work aiming at increasing the robustness of machine learn-

ing, which is important for the reliability and safety of critical IoT systems. This includes

the description of methods for the robustness verification of neural networks, for

mitigating adversarial data poisoning attacks, and for handling inputs drifts in image

classification systems using deep neural networks.

Chapter 8 turns attention to safety aspects, discussing the possibility of using shared

data in traffic scenarios for improving safety and flow. The potential benefits come

with challenges, from data generation to data distribution and processing, which are

discussed in the chapter.

Finally, Chapter 9, sums up the work done in WP5 and provides concluding remarks.

9

D5.4 Version 1.0

1 Introduction

The main objective of VEDLIoT (Very Efficient Deep Learning in IoT) was to develop a

platform for the Next Generation IoT architecture, which considers the full continuum

of computation ranging from the far-edge to the cloud. The VEDLIoT platform can

be used in various application domains, including autonomous driving, smart industry

and smart home.

Given the substantial volume of data collected and the demanding computational

requirements inherent in these applications, the need for efficient solutions is evident.

In addressing this challenge, VEDLIoT leverages Artificial Intelligence (AI) and Deep

Learning (DL) to effectively manage the inherent complexity of the problem. In addi-

tion, these systems and applications are often safety-critical, and deal with sensitive

data then needs to be protected. Therefore, ensuring security, safety, and robust-

ness is of utmost importance, and this is the focal point addressed in Work Package

5 (WP5). An overall perspective of VEDLIoT, including its major components and the

security and safety aspects addressed in WP5 is provided in Figure 1.1 (right-hand

side).

This deliverable is the last one in WP5 and hence provides a perspective of the final

achievements concerning the definition, development and evaluation of mechanisms,

methods and tools for increased security, safety and robustness. It is organized in

several chapters, each of which groups together and describes work related to a

common topic. For instance, Chapter 2 focuses on how to secure communication

and computation when using IoT platforms, whereas Chapter 7 groups together the

description of a set of methods developed in VEDLIoT to increase ML robustness. In

the following five sections, each corresponding to a WP5 task, we describe how the

work presented in the several chapters contributes towards the goals of these tasks.

Applications
(WP7)

Requirements
(WP2)

Security &
Safety (WP5)

Trusted Exec.

Hardware
(WP4)

Accelerator
(WP3)

Middleware
(WP6)

Embedded / Far Edge (µ.RECS) Near Edge (t.RECS) Cloud (RECS|Box)

FPGA Reconfigurable Infrastructure

Communication
Run-Time

reconfiguration
Management

ASIC AI AcceleratorsUltra

Low

Power
Mid

Range
High

Performance

AI Toolchain (EmbeDL)

OptimizationModel Zoo

RobustnessDeployment

Industrial IoT

Motor

Condition

Classification

Arc

Detection

Automotive AI

Automatic

Emergency

Breaking

Safety and

Robustness

Monitoring

RISC-V

extensions

Trusted Web

Assembly VM

Root of Trust

Distributed

Attestation

RISC-V evaluation

(Embench Tester)

Benchmark

Framework (Kenning)

Smart Home

Smart

Mirror

Require-

ments

Engineering

Ethics

Safety and

Robustness

Modelling

and

Verification

IoT/Edge Emulation

Framework (Renode)

Processing

Platforms

Peripherals

Communication

Infrastructures

ARM, x86, RISC-V, GPU, FPGA, ASIC

Open Calls

… … …

Trusted Com.

Secure IoT

Gateway

LORA/5G

Figure 1.1. Overall perspective of VEDLIoT.

10

D5.4 Version 1.0

Task 5.1: End-to-end attestation of distributed trusted environ-

ments

The main purpose and objective of this task was to develop end-to-end trust through

a distributed attestation mechanism. To this end, we developed SIRE (truSted verIfieR

sErvice), whose principleswere introduced inDeliverableD5.1 [145] (therewe referred

to a Trusted Membership Service), and whose description, implementation and initial

evaluation were presented in Deliverables D5.2 and D5.3. SIRE provides distributed

Byzantine Fault-Tolerant (BFT) attestation and in this deliverablewe present additional

work on SIRE. In concrete, additional evaluation results are presented in Chapter 5.

Furthermore, in this task we also provided a solution to address the well-known

TOCTOU (Time-Of-Check to Time-Of-Use) problem, initially described in Deliverable

D5.2 [100], and developed inDeliverableD5.3 [202]. Chapter 3 describes how to realise

the proposed certification solution to assure trusted certification of IoT devices.

The evaluation of SIRE’s performance herein presented has now been done in the

context of three example application scenarios, which are directly or closely related to

VEDLIoT use cases: a) membershipmanagement of IoT devices; b) autonomous vehicle

coordination; and c) federated machine learning. All these examples involve a possibly

large number of end devices that must be attested, so that they are recognized as

trustworthy and can take part of some distributed computations. In fact, the first

scenario is highlighted on a demonstration that has been prepared in connection to

the VEDLIoT motor monitoring use case, involving SIRE and the secure MQTT broker

described in Section 2.3. However, in the demonstration only one device is attested. In

contrast, in this deliverable we provide performance results showing that operations

supported by SIRE can scale to hundreds or even thousands of clients interacting with

the service. Therefore, we show that distributed BFT attestation is perfectly feasible

in realistic environments.

Task 5.2: Security support for distributed execution and communica-

tion

In VEDLIoT, we committed to improve security at the edge by making extensive use of

Trusted Execution Environments (TEEs). Either using Intel’s SGX or ARM’s TrustZone,

we worked during the whole project duration towards creating solutions to exploit

TEEs in order to run critical software in a secure way, and to make sure that it would

be possible achieve end-to-end communication security. Chapter 2 is entirely devoted

to present the latest achievements towards the objectives of Task 5.2.

One important option we took right from the start of the project was to use We-

bAssembly as an enabler, to ease the deployment of applications on end devices,

while ensuring their secure execution on a trustworthy WebAssembly runtime. For

the latter we developed Twine, whose latest revision and complete description is

provided in Section 2.1. The section provides details about Twine’s architecture, about

its implementation, and about its evaluation. It also shows that the intended security

requirements are fulfilled.

While Twine is primarily designed to serve as a platform for edge and client systems, on

which SGX enclaves can be exploited, Section 2.2 provides another solution, Fortress,

which is a robust and comprehensive framework that exploits ARM’s TrustZone to

secure IoT devices and the data they produce.

11

D5.4 Version 1.0

Finally, Section 2.3 describes the work towards developing a secure MQTT broker,

which canbeexecuted inside aTEE (in this case, using Intel’s SGX),while also implement-

ing TLS channels directly from the enclave to client devices. The section also refers to

the deployment of the solution using Mosquitto, a well-known and open-source MQTT

message broker, and its application in one of the VEDLIoT demonstrations, which also

integrates with SIRE.

Task 5.3: Simulation platform for development of security features

and robustness testing

The main goal of this task was to provide a platform to project participants and future

users of VEDLIoT, which can be used as a testing and simulation solution, speeding up

thedevelopment process byproviding a reliable anddeterministic testing environment

for accelerated, FPGA-oriented ML workloads, as described in Chapter 6.

This platform was developed on top of the Renode Framework [13], an open-source

simulation environment developed by Antmicro, capable of simulating complex multi-

node, heterogeneous, interconnected IoT systems.

In this deliverable, an overview of Renode is given in Section 6.1, which provides

the context for the subsequent sections, in which the latest improvements of the

testing and simulation platform are described. In concrete, new features for automatic

platform generation were added, which are described in Section 6.2. Furthermore,

Section 6.3 describes the developments made to provide support to RISC-V Custom

Function Units (CFUs), which is done through Renode’s co-simulation integration layer.

Finally, improvements to these co-simulation capabilities of Renode are described in

Section 6.4.

Task 5.4: Continuous integration workflow for verification of secu-

rity and robustness

In close connection to the work done in Task 5.3, the work in Task 5.4 was meant

to focus on a Continuous Integration workflow to facilitate simulation and testing.

In Section 6.5 we describe the examples that were added to the renode-verilator-

integration [16] and renode-dpi-examples [15] repositories, which can be used by

developers to more easily create their own co-simulation scenarios, either simulating

CFUunits [8] or bus-connected peripheralswith RTL code compiledwith Verilator [183].

Task 5.5: Safety and Robustness

This task was defined to address the safety and robustness requirements of ML-

based IoT systems. Giving continuity to work previously done in this task, we present

in Chapter 7 two algorithms that aim at increasing the robustness of Deep Neural

Networks (DNNs), thus contributing to enabling their use in safety-critical applications,

such as image processing in autonomous driving systems. Additionally, we designed a

framework to handle diverse driving scenarios. It is important to mention that we not

only consider problems like noise or other accidental perturbations affecting images

but also adversarial attacks, intending to mislead the classifiers and force them to

producemisleading predictive results during inference. Finally, we discuss in Chapter 8

the possibility of sharing data between vehicles in a traffic scenario to increase road

safety. Although the availability of more data, which is received from surrounding

12

D5.4 Version 1.0

vehicles, can clearly be useful to improve perception functions, it also raises some

problems, namely the trustworthiness of the received data. This is why some of the

work done in WP5, namely concerning secure communication, will be valuable in this

setting.

13

D5.4 Version 1.0

2 Secure Communication and Execution on IoT plat-

forms

2.1 Trusted Communication with WebAssembly and Intel SGX

We followed up on our previouswork regarding the integration of Twine, a trustworthy

WebAssembly runtime tailored to secure the execution of WebAssembly applications

within the execution context of Intel SGX [135, 125, 144].

2.1.1 Twine Design

Our objective with this revision is to create a runtime for running legacyWebAssembly

modules inside a secure enclave, thus enabling a two-way sandbox that ensures typical

TEE security features while also mitigating and controlling data leaks, even from

malicious TEE service providers, aswell as providing additional trustworthy guarantees.

2.1.1.1 Requirements Elicitation

We identify five requirements that guide this extended Twine’s design.

R1: Must support the execution of legacy software services inside the two-way sandbox.

Twine should ensure transparent execution of services whose source code can be

compiled to WebAssembly.

R2: Must provide communication support inside the two-way sandbox. Wasm mod-

ules running inside secure enclaves should be able to communicate through selected

application-level protocols or secured socket API.

R3: Must provide file management support inside the two-way sandbox. Wasm mod-

ules running inside secure enclaves should be able to perform restricted file system

operations based on runtime-defined permissions or access paths.

R4: Must prevent covert channels through the available OS services. Twine should

protect the exfiltration of sensitive data from inside the enclave, which may occur

through OS service interfaces.

R5: Must be verifiable. Twine should provide support for verifying the integrity of the

runtime and validating its related security policies.

2.1.1.2 Architectural Overview

Twine comprises two main building blocks: a Wasm runtime and a WASI interface

(see Figure 2.1). The Wasm runtime runs entirely inside the TEE, and WASI works as

a bridge between trusted and untrusted environments, abstracting the machinery

dedicated to communicate with the TEE facilities and the underlying OS. The TEE-

hosted Wasm runtime uses the WASI interface, which is always involved whenever

OS services are accessed, allowing it to filter security-sensitive OCALLs. Doing so

serves as an intermediate control layer preceding the actual interaction with the OS,

adhering to a capability-based security approach. The runtime can limit what Wasm

can do on a program-by-program basis, preventing Wasm code from leveraging the

full access rights of the user owning the process. For instance, WASI may restrict an

application to only open a file system subtree, similar to the capabilities of chroot.

14

D5.4 Version 1.0

TWINE

Hardware

Operating system

WASM runtime
Sandbox 

SGX driver

SGX microcode

TEE (safe)!

W
ASI

Protected FS
Remote attestation

Comm. service
WASM binary

Figure 2.1. Overall Twine architecture.

Developer’s premises Host





C/C++

Rust

Go

.c

.rs

.go
…

LLVM

 WASM




AoT


Network
(TLS)

TEE


VM

Deployment
!

!

Attestation API

" " " "

#
TEE certs.

$
%

Attestation
" "

Evidence

&

" &
" &

➊ ➋

➌
➍

➎

➏ ➏

➏

Figure 2.2. Overview of Twine’s deployment and attestation workflow.

The combination of the sandbox capabilities of SGX and WASI ends up in a two-way

sandboxing system, partially inspired by MiniBox [109], and somehow follows the

same perspective of Ryoan. The system, considered untrusted in the threat model

of SGX, cannot compromise the integrity of the enclave code nor the confidentiality

of the data stored in memory. Likewise, Wasm applications, considered untrusted

from the data owner’s standpoint, cannot interact directly with the OS unless WASI

explicitly grants permission in the Wasm runtime.

Figure 2.2 depicts the workflow of our proposal. We compile source code from po-

tentially multiple programming languages to Wasm bytecode and then perform AOT

compilation to native code for enhanced performance. We deploy these AOT-compiled

applications via a secure communication channel to ensure code confidentiality and

integrity. Details on the attestation process for the hosted application and the runtime

are elaborated in §2.1.2.5.

Compliance with R1. Twine facilitates the porting of legacy applications. In fact,

it is language-independent. The programming language can be freely chosen, pro-

vided it can be compiled with LLVM or another compiler that supports Wasm and

WASI as a compilation target. This lifts the restrictions imposed by SGX, typically

forcing enclaved applications to be written in C/C++. Furthermore, it is cross-platform

hardware-compatible. Applications can be safely executed as long as the TEE is able

to execute Wasm (supported by WASI), opening the door to other TEE technologies.

Finally, it is system-agnostic as long as the OS can provide an equivalent of the API

required byWASI. SinceWASImimics the system calls of POSIX systems, many Unix-like

variants can implement it.

CompliancewithR2, R4. Wehave appropriately instrumented theWASI interface and

the runtime to control security-sensitive functionalities, which could be exploited to

15

D5.4 Version 1.0

exfiltrate data. Depending on the selected configuration, low-level communication ca-

pabilities (socket-related OS calls) may not be provided directly to theWasm binary. In

such a case, communication over the network would only go through application-level

protocols (i.e., HTTP) to prevent covert channels via network system call interfaces.

To this end, we embedded an HTTP library inside the Wasm module, which can be

configured in terms of whitelisted targeted endpoints.

Compliance with R3, R4. At the same time, file management support is provided

and shielded against data leaks from code running in the Wasm module. The WASI

interface has been extended so that every file operation leverages the Intel protected

file system (IPFS), which automatically encrypts data coming out of the two-way

sandbox (e.g., via fwrite) and decrypts data flowing in the other direction (e.g., via

fread). Furthermore, theWASI sandbox enforces limitations on theWasm applications

by restricting them to predefined file system operations and access paths.

Compliance with R5. We also equipped Twine with an attestation service, which

empowers data owners by enabling them to verify the authenticity and integrity of

both the runtime environment and the WASI interfaces through which their data inter-

acts. By implementing attestation mechanisms, data owners can confidently ensure

that the runtime has not been tampered with and that the interfaces adhere to the

specified security policies. This proactive approach to attestation fosters a foundation

of trust between data owners and the runtime, assuring them that their sensitive

information remains protected in the Wasm code and that their interactions with

the runtime occur within a secure and verifiable environment, ultimately enhancing

the overall security posture of the system. We equipped the Wasmmodule with an

attestation library, which allows the data owner to generate an attestation quote

whose EnclaveHeldData field embeds the runtime hash, the security policy hash, and

the wasmmodule hash.

By default, Intel SGX ensures the integrity of the enclave binary rather than its confi-

dentiality. While integrity is verified through a signature of the code, the code itself

must remain in plaintext to be loaded into enclave memory. Extensions, such as Intel

SGX protected code loader (PCL), do provide confidentiality guarantees for enclave

binaries, albeit with some security considerations, including writable sections and

segments. These considerations may result in editable enclave code and read-only

data at enclave runtime [92]. Conversely, Twine can also offer code confidentiality for

enclave binaries. Wasm code can be either downloaded into the enclave following

attestation or retrieved from a sealed blob and subsequently loaded by Twine. Upon

decryption of theWasm code, it is mapped into a securememory area of SGX known as

reserved memory. This memory region allows the runtime to load arbitrary executable

code, and due to the inherent robustness of Wasm, such code remains immutable

from the perspective of the Wasm application.

2.1.2 Implementation Details

2.1.2.1 Wasm Runtime and WASI

We considered many Wasm runtimes as candidates for implementing Twine. We have

chosenWAMR for its small size, few dependencies, and its ability to be linked to binary

code (albeit generated ahead of time, that is, no JIT). A small TCB reduces the attack

surface of the runtime. Further, AOT-compiled Wasm applications achieve near-native

16

D5.4 Version 1.0

execution speed, as shown in §2.1.4. As such, we forked WAMR and extended its

WASI interface, as explained below, in such a way that we can abstract the enclave

constraints while implementing systems calls.

WASI is the interface through which Wasm applications communicate with the outside

world, similar to POSIX’s capabilities for regular native programs. The development of

TEE-enabled applications requires to deal with crossing the boundary between trusted

and untrusted environments, materialised with ECALLs and OCALLs in the case of Intel

SGX TEEs. We believe that leveraging WASI as the communication layer meets the

purpose of Wasm, where the implementation is abstracted away for the application

itself. As a result, the applications compiled in Wasm with WASI do not require any

change to be executed inside Intel SGX or other TEE technologies. For example, WaTZ

showcased how the sameWasm applications can be hosted in TrustZone.

By the time Twine was developed, WAMR already included a WASI implementation

that relies heavily on POSIX calls. POSIX is not available inside SGX enclaves, so the

WASI layer written by the authors ofWAMR needs to cross the trusted boundary of the

enclave frequently and straightforwardly routes most of the WASI functions to their

POSIX equivalent using OCALLs. While this approach enables running any Wasm appli-

cations that comply with WASI inside an enclave, it does not bring additional security

benefits regarding the data that transits through POSIX, as there is no encryption.

We designed Twine to implement a more optimised WASI interface for WAMR, better

tailored to SGX enclaves, which adopts a different approach than plain forwarding

WASI calls outside the enclave. The rationale for this choice is as follows. First, per-

formance: most WASI calls would simply be translated to (costly) OCALLs. Second, we

wanted to leverage trusted implementations when available, for instance, Intel pro-

tectedfile system (IPFS), described below (§2.1.2.4). Therefore, we refactoredWAMR’s

WASI implementation to keep its sandboxing enforcement, splitting the remaining

into two distinct layers: (i) one for specific implementations when available and (ii) and

another for generic calls. Generic calls are handled by calling the POSIX library outside

the enclavewhile providing additional securitymeasures and validity checks. Such calls

are only wired when no trusted compatible implementation exists. For instance, time

retrieval is not supported by Intel SGX. Hence, Twine’s WASI layer fetches monotonic

time while ensuring that the returned values are always greater than the previous

ones. If, for a given function, a corresponding trusted implementation exists (as it is

the case for the ones in the official Intel SGX SDK), we use it to handle its relatedWASI

call. Often, a trusted implementation calls outside the enclave while at the same time

providing additional security guarantees. One notable example is the protected file

system (see §2.1.2.4). Finally, Twine can disable untrusted POSIX implementations

inside the enclave (via a compilation flag). This is useful when one requires a strict and

restricted environment or assesses how the applications rely on external resources.

In particular, the WASI interface may expose states from the TEE to the outside by

leaking sensitive metadata in host calls, e.g., usage patterns and arguments, despite

the returned values being checked once retrieved in the enclave.

In its current implementation, Twine requires exposing a single ECALL to supply the

Wasm application as an argument. This function starts theWasm runtime and executes

the start routine of the Wasm application, as defined by WASI ABI specifications [190].

Twine is versatile and can be adapted to only receive the Wasm applications from

trusted endpoints supplied by the applications providers, as shown in Figure 2.2. The

17

D5.4 Version 1.0

endpoint may either be hard-coded into the enclave code and, therefore, part of

the SGX measurement mechanism that prevents binary tampering, or provided in a

manifest file with the enclave. The endpoint can verify that the code running in the

enclave (i.e., the runtime) is trusted using SGX’s remote attestation. We propose a

remote attestation API for Wasm applications in Section 2.1.2.5. As a result, Twine is a

secure deployment and execution framework for running applications on untrusted

devices and environments. DespiteOS dependency for network communication, Twine

provides cryptographic techniques to create TLS and HTTPS channels that cannot be

eavesdroppedon. For that purpose, we compiled and integrated aWasmcryptographic

library in the runtime (see §2.1.2.3).

2.1.2.2 Memory allocation

Memory management greatly impacts the performance of the code executed in en-

claves. WAMR provides three modes to manage the memory for Wasm applications:

(1) the default memory allocator of the system, (2) a custommemory allocator, and

(3) a buffer of memory. We found that using the SGX memory allocator to enlarge the

linear memory of the Wasm runtime performed poorly, leading to a time complexity

above linear. Consequently, Twine preallocates a buffer of a fixed size to operate. This

approach is generally not problematic, as it requires specifying a fixed heap size at

compile-time for SGX enclaves.

We note that the newer iterations of Intel SGX include a memory allocation scheme

called enclave dynamic memory management (EDMM) [121], enabling more memory

allocation than the size specified at build time. In such cases, Twine can leverage this

new capability to extend the preallocated buffer dynamically and seamlessly.

2.1.2.3 Communication Support

Bringing network capabilities inside enclaves is essential to support communication

with external endpoints, such as trusted peers or other enclaves. Therefore, we im-

plemented the required calls to deal with network sockets in our WASI layer, relying

on the network stack of the untrusted OS. We perform our cryptography inside the

enclave to secure the communication channels and prevent attackers from eavesdrop-

ping. For that purpose, we use WolfSSL [58], an open-source popular cryptographic

library. WolfSSL supports mainstream ciphers and the TLS protocol, which can be used

to set up trusted communication channels. Using a renowned cryptographic library

compiled in Wasm has many advantages: (1) the library is platform-independent and

reusable in other TEEs (e.g., TrustZonewithWaTZ [134]), (2) the library can be statically

linked to any application when compiled into the Wasm format, and (3) the library

can also leverage the multi-module feature of WAMR, the runtime which Twine is

based on, which enables Wasm applications to load dependencies dynamically (i.e.,

at runtime), which eliminates the burden of static linking, and abstracts a specific

implementation of the library. AWASI proposal already exists to bring cryptography to

Wasm applications by the runtime. However, we considered its status too preliminary

to be considered as a building block.

Furthermore, we adapted Mongoose [57], a lightweight and embeddable Web server

library, to enable compilation intoWasm and facilitate the hosting ofWeb applications

within the TEE. In conjunction with WolfSSL, our adaptation of Mongoose enables

clients to establish secure communication channels featuring HTTPS termination se-

cured by Intel SGX. Consequently, enclaved applications can expose high-level APIs,

18

D5.4 Version 1.0

such as REST, while ensuring the confidentiality of data and the integrity of executing

code. The literature has examined various approaches to providing attestation in

conjunction with high-level APIs supported by TLS. Intel proposed an X.509 certificate

extension, introducing specific object identifiers (i.e., fields) to bind TLS and attes-

tation [186]. Other researchers have extended the TLS handshake to incorporate

additional attestation information [23]. Twine can employ one of these solutions for

TEE attestation.

The WASI calls related to the sockets are implemented using OCALLs, forwarding them

to the untrusted OS. Analogous to the WASI implementation for Linux, our approach

supports the sandboxing of networking, allowing the enclave launcher to supply

IP ranges to which Wasm applications can connect. We minimised the number of

OCALLs by embedding computations that do not require untrusted OS system calls,

e.g., text to binary IP address conversions. WolfSSL has been slightly adapted to be

compiled in Wasm. Our work builds upon the compilation target of WolfSSL for Intel

SGX, with missing dependencies addressed using WASI calls and WASI-SDK header

files. Due to the constraints of the Wasm virtual machine, which prohibits embedding

assembly instructions in the bytecode, we could not use the hardware acceleration

offered by modern CPUs for specific ciphers (e.g., AES). Limitations can be mitigated

by offloading certain cryptographic operations to the runtime. Mongoose exclusively

supports OpenSSL and Mbed TLS libraries for providing cryptographic primitives. As

such, we integrated WolfSSL as a TLS provider within Mongoose, enabling it to host

or query HTTPS-enabled websites. We plan to contribute these changes to WolfSSL’s

and Mongoose’s repositories.

2.1.2.4 File Management Support

As a showcase of the abstraction power offered by WASI, we implemented the subset

of the WASI calls related to file system operations by using the Intel protected file

system (IPFS) [90]. Being shippedwith the Intel SGX SDK, itmimics the POSIX functions

for file input/output. The architecture of IPFS is split in two: (1) the trusted library,

running in the enclave that offers a POSIX-like API for file management, and (2) the

untrusted library, an adapter layer to interact with the POSIX functions outside of

the enclave, that actually read and write on the file system. Upon a write, content is

encrypted seamlessly by the trusted library before being written on themedia storage

from the untrusted library. Conversely, content is verified for integrity by the enclave

during read.

IPFS uses AES-GCM for authenticated encryption, leveraging the CPU’s hardware

acceleration. An encrypted file is structured as a Merkle tree with nodes of a fixed

size of 4KiB. Each node contains the encryption key and tag for its children nodes.

Thus, IPFS iteratively decrypts parts of the tree as the program in the enclave requests

data [173]. Thismechanism ensures the confidentiality and integrity of the data stored

at rest on the untrusted file system. While the enclave is running, the confidentiality

and the integrity of the data are also guaranteed by SGX’s memory shielding.

IPFS has several limitations, which are deemed beyond the scope of Intel’s threat

model. Since the files are saved in the regular file system, there is no protection

against malicious file deletion and swapping. Consequently, IPFS lacks protection

against: (1) rollback attacks: IPFS cannot detect whether the latest version of the

file is opened or has been swapped by an older version, and (2) side-channel attacks:

19

D5.4 Version 1.0

IPFS leaks file usage patterns and various metadata such as the file size (up to 4KiB

granularity), access time and file name. We note how Obliviate [2], a file system for

SGX, partially mitigates such attacks. Although Obliviate can be adapted for use with

Twine, addressing side-channel attacks falls beyond our threat model.

The WASI API includes several calls that do not have direct counterparts in the IPFS,

due to slight variations from the ISO C standard. For instance, fseek allows the cursor

to move past the end of a file, which is not permitted in IPFS. To address this, our WASI

implementation extends the file with null bytes, requiring extra IPFS calls. Also, IPFS

lacks support for vectored read and write operations. Since WASI exclusively handles

file I/O with vectored operations, we resolved to implement those with an iteration.

IPFS provides convenient support to automatically create keys for encrypting files,

derived from the enclave signature and the processor’s (secret) keys. While automatic

key generation seems straightforward, a key generated by a specific enclave in a given

processor cannot be regenerated elsewhere. IPFS circumvents this limitation with a

non-standard file open function, where the caller passes the key as a parameter. Our

prototype relies on automatic generation, and we leave it as future work to extend

the SGX-enabled WASI layer to support custom encryption keys.

In conclusion, files persisted by Twine cannot be read outside the enclaves and are

transparently decrypted and integrity-checked while handled by Wasm applications.

2.1.2.5 Attestation

RA is a cornerstone feature of TEEs, as it ensures the authenticity of the executing

code, including Wasm applications in the context of Twine. We worked with the open-

source community ofWAMR [132, 201] to define additional functions in the runtime to

interact with the attestation features of Intel SGX. Consequently, Wasm applications

within our system can interfacewith Intel SGX to generate quotes during attestation. A

quote refers to a signed data structure that contains the enclave’s measurement, iden-

tity, and additional metadata, certifying the enclave’s trustworthiness, integrity, and

authenticity to remote parties or Wasm applications executing in other SGX enclaves.

The integration of attestation within the runtime provides robust security guarantees

for remote peers, typically facilitating the establishment of secure communication

channels to transfer confidential data in remotely executed Wasm applications.

The RA feature of the Wasm runtime is implemented using librats, a low-level library

facilitating attestation for multiple TEEs [88]. Although the current implementation

supports Intel SGX data centre attestation primitives (DCAP), the runtime can be ex-

tended to incorporate additional TEEs. Figure 2.2 illustrates the attestation workflow.

A hash is computed upon loading theWasm application bytecode (or the AOT-compiled

assembly code) within the enclave (Ê). When collecting a quote, the runtime retrieves

this precomputed hash and derives a secondary hash, incorporating optional user

data provided by the Wasm application, such as a public key to establish a trusted

communication channel (Ë–Ì). The runtime then forwards the final value to the Intel

SGX RA mechanism, which generates a quote (Í). This quote serves as evidence for a

relying party, confirming the enclave’s genuineness (Î) and the trustworthiness of

the executing Wasm application (Ï).

20

D5.4 Version 1.0

2.1.3 Use Case: Credit Scoring in Crypto Finance

The Twine runtime has been used in a data-intensive, large-scale commercial appli-

cation to enhance the trustworthiness of a distributed credit scoring oracle. Credit

scoring has been historically used by financial institutions to estimate the risk of lend-

ing money to an individual. It determines the ability of an entity to repay debts based

on a number of quantitative and qualitative metrics. High credit scores lead to higher

chances of obtaining a loan with low interest rates. Conversely, entities with a lower

credit score must pay higher interest rates on their loans. The Credora Inc. company

provides a privacy-preserving scoring solution for credit in crypto-currency finance.

With over $100B of crypto-collateral being used to generate over $1.25B of interest on

a quarterly basis, credit is one of the most rapidly growing sectors of the emerging

crypto-currency finance ecosystem. Credora allows borrowers to supply lenders with

real-time portfolio risk metrics, while preserving the privacy of trades, positions, and

other sensitive information. Borrowers benefit from improved lending terms, as they

can display their risk in real-time and assure lenders they are trading responsibly.

Lenders benefit from increased visibility and real-time information. Credora calculates

various dynamic risk metrics and aggregates across client portfolios, including total

assets, liabilities and maximum loss simulations. The latter is based on the standard

portfolio analysis of risk (SPAN) system, wherein the worst possible loss of a client’s

portfolio is estimated from a simulation over price and volatility shock scenarios. The

fundamental requirement of the Credora solution is that users’ confidential data re-

mains private and is computed correctly, i.e., metrics must reflect the actual status

of the credit. To this end, Credora uses TEE technologies and cryptographic proofs

to ensure users’ sensitive data privacy and guarantee risk analysis. Intel SGX is the

enabling TEE technology adopted to protect and attest sensitive processing. Within

the threat model supported by Intel SGX, only computations authorised by the user

are allowed in the attested enclave, and no party can see granular private data or

perform any knowledge extraction.

Figure 2.3 shows the architecture of the credit scoring system of Credora. It is com-

posed of a set of distributed and loosely-coupled microservices communicating via a

distributed in-memory data store. The typical execution flow is as follows. Initially,

before interacting with the backend, the client challenges the KMS for its attestation

(Ê) to set up a secure channel. Once completed, it can provide secrets (i.e., exchange

keys) to the Credora TEE-secured KMS (Ë). The dispatcher defines pulling jobs, i.e., a

request to be executed for a particular exchange using its API endpoints that returns

information on clients’ portfolios. These jobs are transferred through a shared cache

to the pullers (Ì). Based on those, the private puller uses the exchange keys distributed

by the KMS (Í) to get clients’ data (e.g., information on open trading positions) from

crypto-currency exchanges venues (Î) such as Binance, Deribit, Coinbase and Kraken.

A trading position denotes an individual’s or entity’s ownership stake in a particular

financial asset, which represents their investment and potential for profit or loss. The

obtained data is encrypted and pushed into the shared cache (Ï). Similarly, the public

puller gathers public market data (Î), which is also stored in the shared cache (Ï).

The aggregator reads clients’ private data from the shared cache, markets public data

obtained by the public puller (Ð), and computes the risk metrics and credit scores (Ñ).

In this use-case, the confidential data is given by: (1) exchange keys used to obtain

clients’ wallet data from exchange venues, and (2) the client trading positions received

21

D5.4 Version 1.0

Aggregator

Database
Credit scores

KMS

Pullers

Public market data

CredoraCustomer

Exchanges

➊

➋ ➍

➍ ➑

Local application
Exchange keys

Encryption keys

TEE

!
Exchange keys

➐

➏

➌

➌

Shared cache
Customer data (encrypted)

Public market data

Pulling jobs

➎

➎
Private puller (WASM)

Customer data

Twine (TEE)

!

Encryption keys

Exchange keys

RESTful API

Public market data

Customer data

Customer data

Twine (TEE)

!
Aggregator (WASM)

Dispatcher
Pulling jobs

Public puller

Figure 2.3. Architectural overview and workflow of Credora, highlighting attested channels and

Twine enclaves in red.

from exchanges. This architecture guarantees that confidential data never leaves the

secure enclave unencrypted. The exchange keys are received directly from clients’

browsers over an attested TLS TEE-terminated secure channel. This is possible through

the librats library [88], which can be compiled to Wasm with emscripten and executed

inside the browser. These exchange keys are persistently stored using IPFS that en-

crypts the secret information in the enclave using the SGX sealing key. The process

of signing requests for exchanges using the exchange keys is executed inside the en-

clave. RESTful requests for exchanges are then made over an HTTPS TEE-terminated

connection using WolfSSL and Mongoose compiled in Wasm, guaranteeing that the

confidential financial data is directly received and aggregated in the enclave.

Under the described scenario, Credora’s clients only need to trust Intel (i.e., SGX

threat model) and Credora itself, which does not disclose the implementation of their

software. Hence, the cloud provider hosting the application may be untrusted, thanks

to the isolation offered by Intel SGX. Additionally, we aim to further reduce the scope

of the threat model by removing Credora, leaving Intel as the only trusted entity.

Toward this goal, one must prove to clients that no data has ever leaked from the

secure enclaves, nor that the enclaves are curious and retrieve unwanted information

from the cloud provider’s system. As such, Twine’s trust model plays an essential role:

its two-way sandbox (as explained in §2.1.2) offers two strong guarantees for the cloud

provider and the clients. First, the Credora’s enclaves, which are based on Twine, are

proven authentic using RA, which guarantees to Credora that the enclaves have not

been tampered with and can supply Wasm applications and confidential information

22

D5.4 Version 1.0

for further computations, preventing one from eavesdropping. Second, Credora’s

customers can review the open-source implementation of Credora’s enclaves (i.e.,

based on Twine), ensuring that the runtime properly sandboxes theWasm applications

(whose source code is proprietary) deployed by Credora later on, which prevents the

Credora’s Wasm applications from accessing the host system resources.

2.1.4 Evaluation

We present here the new benchmark results from our evaluation of the extended

version of the runtime Twine. For the full set of our previous benchmarks, refer to

Deliverable 5.1 from VEDLIoT [144]. We intend to answer the following questions:

• What are the performance overheads for using cryptographic operations and

setting up TLS-terminated connections within the enclaves?

• How does Twine perform when used in a data-intensive and real-world solution?

We answer these questions by encrypting, hashing and securing communications using

cryptographic primitives and TLSwithWolfSSL (§2.1.4.2), and assessing the end-to-end

performance of a Wasm application in the fintech company Credora (§2.1.4.3).

2.1.4.1 Experimental setup

We use a Supermicro 5019S-M2 with Intel Xeon E3-1275 v6 (3.8GHz, EPC 128MiB,

usable 93MiB) for SGX tests. Systems run Ubuntu 18.04.6 with kernel 4.15.0-202, SGX

driver v2.11, and SGX SDK v2.17.100.3. Twine is fully merged into the WAMR’s official

repository. As such, we use theWAMR build for running the benchmarks unless stated

otherwise.

Time is measured using the monotonic clock of POSIX in all the benchmarks and

averaged using the median. If measured from within the enclave, the time to leave

and reenter the enclave is included. In our setup, the enclave round trip accounts for

approximately 4ms. We used Docker to build the benchmarks while their execution

is on bare metal to avoid potential isolation overheads. The native benchmarks are

compiled using Clang 10 with optimisation set to --O3. The Wasm benchmarks are

compiled using Clang into Wasm format, then AoT-compiled into native format using

the compiler provided by WAMR (i.e., wamrc) using --O3 and size level 1 to run into

SGX enclaves (--sgx). We used GCC v7.5 for two tasks: (1) compile the applications

executing thebenchmarks, i.e., theWAMRruntimeand theSGXenclaves, alsowith --O3,

and (2) compile IPFS with --O2, as in the SGX SDK. SGX-LKL (v0.2.0), LKL (v5.4.62) and

AccTEE have been used as an empirical baseline for running the experiments natively

in SGX enclaves. They have been downloaded from the official Debian repository and

GitHub. Finally, our implementation and instructions to reproduce our experiments

are open-source [133].

2.1.4.2 Micro-benchmarks: network stack

We assess the network stack of Twine using two micro-benchmarks bundled with

WolfSSL: (1) a performance comparison of cryptographic primitives usingmany ciphers

and hashing algorithms, and (2) a performance evaluation of TLS sessions, which have

one side of the connection terminated within the enclave. In both cases, we compare

the relative execution speed of native and Wasm (inside SGX) and Wasm (outside SGX)

against native (outside SGX). For a fair comparison between native andWasm, we have

23

D5.4 Version 1.0

chosen to disable the hardware acceleration support of WolfSSL, i.e., the offloading

of some ciphers using CPU capabilities.

3D
ES

SH
A3
-5
12

SH
A3
-3
84

SH
A3
-2
56

SH
AK
E2
56

SH
A3
-2
24

SH
AK
E1
28

Ca
me
ll
ia MD

5

HM
AC
-M
D5

AE
S-
19
2-
CB
C

AE
S-
25
6-
CB
C

HM
AC
-S
HA
22
4

HM
AC
-S
HA
25
6

SH
A

HM
AC
-S
HA

0

1

2

3

1 1 1 1 1 1 1 1 1 1

1
.3

1
.3

1
.2

1
.2

1 11 1 1 1 1 1 1 1 1 1 1
.1

1
.1

1 1 1
.1

1
.1

1 1 1 1 1 1 1
.1 1
.1 1
.1

1
.1 1
.3

1
.3 1
.3

1
.4

1
.4

1
.4

(a) Symmetric

EC
DH
E-
ag
re
e

EC
DS
A-
si
gn

EC
DS
A-
ve
ri
fy

EC
C-
ke
yg
en

0

5

10

2
.8

2
.8

2
.8

2
.9

1
.6

1
.6

1
.6

1
.6

3
.8

3
.8

3
.8 3
.9

(b) Asymmetric

AE
S-
CC
M

SH
A-
22
4

SH
A-
25
6

AE
S-
12
8-
CB
C

PB
KD
F2

PO
LY
13
05

AE
S-
25
6-
GC
M

AE
S-
19
2-
GC
M

RN
G

AE
S-
12
8-
GC
M

CH
A-
PO
LY

CH
AC
HA

HM
AC
-S
HA
51
2

HM
AC
-S
HA
38
4

SH
A-
38
4

SH
A-
51
2

0

1

2

3

1
.2

1
.2

1
.2 1
.3

1
.2 1
.5

1
.4 1
.4

1
.2 1
.4

1
.1

1

1
.8

1
.8

1
.8

1
.8

1
.1

1 1 1
.1 1
.1

1 1
.1

1
.1 1
.2

1
.1

1 1 1
.1

1
.1

1
.1

1
.11
.4

1
.4

1
.4

1
.4 1
.5

1
.5 1
.5 1
.5

1
.5 1
.6 1
.7 1
.7 1
.9

1
.9 1
.9 2

N
or
m
al
is
ed

ru
n
ti
m
e

◀
L
ow

er
is
b
et
te
r

RS
A-
pr
iv
at
e

RS
A-
pu
bl
ic

DH
-a
gr
ee

DH
-k
ey
ge
n

0

5

10

3
.6

3
.4 4
.2

4
.1

1
.2

1
.1

1
.1

1
.1

5
.7 5
.9 6
.9 7
.1

Outside SGX: native (= 1) WAMR Inside SGX: native Twine

Figure 2.4. Performance of WolfSSL benchmarks targeting cryptographic algorithms, normalised

to the native speed.

0 1 3 5 7 9 11 13 15 17 19 21
0

50

100

150

Concurrent connections

T
ra
n
sa
ct
io
n
s
p
er

se
co
n
d

H
ig
h
er

is
b
et
te
r
▶

Native SGX Wasm Twine

Figure 2.5. Performance of WolfSSL benchmarks for TLS sessions.

Figure 2.4a depicts the execution speed of symmetric algorithms and hashing func-

tions. In contrast, Figure 2.4b illustrates the speed for asymmetric ciphers and key

generation operations. Among these, symmetric operations are the most efficient,

with an average slowdown for Wasm of 1.2× outside of SGX, and 1.3× inside of the

TEE, compared to native speed execution. Hashing functions follow, with slowdowns

of 1.3× and 1.4× for Wasm outside and inside SGX, respectively. Finally, the asym-

metric ciphers have the highest slowdown, with 3.3× and 5.1× for the same settings.

The TLS protocol uses asymmetric ciphers to establish sessions, authenticate remote

endpoints, and exchange session keys. Once the session is active, it relies on more ef-

ficient symmetric and hashing algorithms, mitigating concerns over the slower speed

of asymmetric ciphers.

In Figure 2.5, we stressed an application usingWolfSSL’s TLS 1.3 protocol by evaluating

the number of TLS transactions per second over a range of concurrent connections.

The setup involves a client and a server hosted on different machines connected

through a switch. The client is a native executable running on Linux, while the server

is of four types and evaluated separately: native in Linux and SGX, Wasm in Linux

and Twine in SGX. A TLS transaction is comprised of (1) the TLS handshake, (2) the

server reading 16KiB, (3) the server sending 16KiB, and (4) the closure of the ses-

sion. We measure the time the server takes to handle 512 connections while varying

the number of concurrent connections handled by a single core. Besides, we used

24

D5.4 Version 1.0

the ciphersuite TLS13-AES128-GCM-SHA256 as cryptographic primitives. Finally, we con-

sidered AES128-CCM and CHACHA20-POLY1305 as AEAD ciphers, but we did not notice

significantly different results because the performance of these algorithms is similar,

as reflected in Figure 2.4.

The number of transactions per second for native execution outside of SGX andWasm

demonstrates a pronounced increase until it reaches a maximum value, after which it

stabilises. This maximum value signifies the saturation of the singular thread respon-

sible for managing TLS sessions. The native execution within the enclave exhibits a

comparable pattern; however, it necessitates a more extended period to converge

after attaining its peak value. Although we did not conduct a comprehensive inves-

tigation on this particular behaviour, we believe the observed phenomenon results

from how SGX-LKL (the library operating system employed for the execution of na-

tive applications in SGX) processes in-enclave packets via its dedicated TCP/IP stack.

Native execution outside of SGX converges to an average of 157TPS, which serves

as the baseline measurement. In contrast, native execution within the TEE exhibits

an average of 97TPS with a consequent slowdown factor of 1.6×. Furthermore, the

average transaction rates per second for Wasm outside and inside the enclave are

67TPS and 44TPS, respectively, with corresponding slowdown factors of 2.4× and

3.6×. When comparing the in-enclave solutions, Twine’s slowdown relative to native

is 2.2×, but offers all the advantages of Wasm, such as portability and security. Yet,

Wasm services hosting TLS connections may leverage multithreading for performance

enhancement.

We highlight that modifications were made to the official benchmark to use the

poll system call instead of epoll, as the latter is unsupported in WASI. The resulting

software was then contributed to the WolfSSL open-source repository.

2.1.4.3 Macro-benchmark: Twine for Credit Scoring

We estimate the impact of Twine on the credit scoring application (see §2.1.3). Our

goal is to evaluate the overhead of Twine for time-sensitive functionalities impacting

business operations. In particular, we focused on the Private Puller and Aggregator

components, measuring the duration required to pull clients’ data from Exchanges

and to compute portfolio aggregations, respectively. In both instances, performance

is critical, as producing outdated data may impair data accuracy and subsequently

undermine Credora’s credibility.

The initial experiment entailed measuring the time to complete each request from

single-thread clients. We target a variety of Exchange venues by querying their API

endpoints which return JSON data with a maximum size of 8KiB, containing clients’

positions (i.e., an individual’s ownership in a financial asset, reflecting their investment

and potential for gains or losses). The baseline relies on an extended version of the

cpp-httplib library [54], which uses SGX-WolfSSL [59] to carry out TLS cryptographic

functions, adopted by Credora in production. On the other hand, Twine uses WolfSSL

and Mongoose. Figure 2.6 reports the results of the Private Puller evaluation. It is

apparent that the two solutions exhibit comparable behaviour. For some Exchanges,

Twine is slower (e.g., up to 30% for Binance), while for others, it yielded better pulling

time (e.g., up to 17% for GateIO). This suggests that the performance is similar and

subject to variations attributable to the server-side processing.

Next, we measured the duration required to complete a single aggregation round of

25

D5.4 Version 1.0

bi
tm
ex

kr
ak
en
fu
t

bi
ts
ta
m
p

bi
tfi
ne
x

ok
co
in

co
in
ba
se

kr
ak
en bi

t
ok
ex

hu
ob
i

dy
dx

cr
yp
to
co
m

co
in
fle
x

ge
m
in
i

de
rib
it

co
pp
er

de
lta

ga
te
io

bi
na
nc
e

0

200

400

600

800

1,000

1,200

1,400

1
2
3

1
1
1

1
2
2

1
4
2 1
7
5

1
9
4

3
0
7

2
3
3 3
1
3 3
5
5

3
4
5 3
9
9

3
4
1 4

2
8

4
0
0

6
3
3

7
8
0

1
,1
1
5

7
3
9

1
2
1

1
2
3

1
2
5 1
7
9

1
8
5 2
1
9 2
6
1

2
6
2 3
3
5

3
4
4

3
4
9

3
7
5

3
8
9

3
9
4 4
3
2

6
3
9

8
3
3

9
4
7

9
6
1

R
u
n
ti
m
e
[m

s]

◀
L
ow

er
is
b
et
te
r

SGX Twine

Figure 2.6. Pulling time of Credora Private Pullers using SGX and Twine.

all clients’ entries (i.e., a total of 522 in April 2023) available in the Credora production

environment. Utilising nine parallel aggregators, we obtained the following results:

t(agg)without_Twine = 3m23s

t(agg)with_Twine = 4m51s

The runtime overhead using Twine is considered acceptable for Credora, which can

effortlessly scale its computing units, albeit at the expense of increased infrastruc-

tural costs. Upon further profiling, we discovered that the primary source of delay

is attributable to the JSON library managing large data chunks. Credora uses the

nlohmann library [115], which is characterised by substantial memory consumption

and consequently suboptimal performance when executed within Twine. In future,

we plan to adopt more memory-optimised JSON libraries to mitigate this overhead

further.

2.1.5 Security Analysis

In this section, we analyse how Twine contributes to the security of the requirements

specified in §2.1.1.1. Additionally, we compare the security standpoint of Twine to

some state-of-the-art solutions, namely AccTEE [76] and SGX-LKL [151].

Security of R1. The two-way sandbox in Twine offers security through two mecha-

nisms: (1) Intel SGX, which protects against the system tampering with Twine and the

Wasm application, and (2), a Wasm sandbox to enforce memory safety while requiring

the hosted application to rely on WASI for any interactions with the untrusted OS.

These dual mechanisms allow both the application and infrastructure providers to

confirm the integrity of the sandbox, which neither party cannot alter. For comparison,

AccTEE also offers a two-way sandbox but lacks WASI support, thereby limiting the

application’s ability to access OS services and constraining the portability of legacy

applications. SGX-LKL, conversely, does not offer a two-way sandbox but enables the

execution of legacy applications through its ad-hoc variant of libc.

We observe that AOT-compiled code can bypass theWasm sandbox if not compiled in a

secure environment. Typically, the compilation of Wasm bytecode into assembly code

ensures that memory access and function calls stay confined to the sandbox. However,

malicious actors could craft assembly code that executes unauthorised operations

26

D5.4 Version 1.0

in Twine, like directly invoking an OCALL function. To counter this, we suggest three

mitigations: (1) use JIT compilation to ensure secure code compilation within Twine,

albeit at a performance cost, (2) establish a separate, secure enclave solely for compi-

lation that communicates with Twine, or (3) coordinate with the Wasm application and

infrastructure owners to validate the hash of the AOT-compiled assembly against the

loaded code in Twine, provided that both parties having prior knowledge of the Wasm

bytecode. The first option is straightforward and already supported in Twine (as it is

based on WAMR), while the latter two are more challenging to tackle.

Security of R2 and R4. In Twine, hosted applications can leverage two pre-compiled

Wasm components for secure communication: a lightweight TLS library and an HTTPS

library for establishing secure communication channels. These components enable

the creation of TLS-termination endpoints within the enclave, ensuring both data

confidentiality and integrity during transmission. Furthermore, Twine may extend

Wasm’s capability-based security model to permit application-level protocols exclu-

sively like HTTPS, mitigating the risk of data exfiltration through insecure communica-

tion channels. In contrast, SGX-LKL provides encrypted channels exclusively between

trusted enclaves or trusted parties using Wireguard as the VPN solution. However,

this approach has limitations: both endpoints must be configured with Wireguard,

and including the TCP/IP stack in the TCB contributes to its increased size. Outside

this trusted network, hosted applications must provide their own TLS implementation.

SGX-LKL’s oblivious communication feature is likewise confined to its VPN network.

On the other hand, AccTEE claims to support I/O calls but delegates encryption to the

application or the underlying layer, which is SGX-LKL.

Security of R3 and R4. Intel protected file system is integrated with WASI for secure

file operations in hosted applications, including transparent encryption anddecryption.

Replacing standard libc calls with IPFS functions effectively mitigates the risk of

exfiltrating sensitive data through the file system. The enclave’s sealing key serves

as the basis for a symmetric key, decrypting a file’s Merkle tree root node. This root

node holds essential metadata for decrypting subsequent nodes [173]. Although the

Merkle tree nodes are stored on the untrusted file system, decryption is limited to

the specific enclave or its owner via the enclave- or owner-bound sealing key [89].

SGX-LKL also offers file system security through the use of virtual block devices. It

creates virtual disks on an untrusted file system and uses an ad-hoc algorithm to

mitigate side-channel data leaks. While Twine does not guard against side-channel

attacks, its abstraction throughWASI allows the secure file system to be replaced with

other state-of-the-art solutions like Obliviate [2]. As for AccTEE, file system security is

delegated to SGX-LKL, similar to its approach to network security.

Security of R5. Twine offers hosted applications the capability for attesting the

Wasm bytecode in JIT mode, or assembly code in AOT mode, along with the runtime.

This serves two purposes: (1) it lets the enclave owner validate the genuineness

of the hardware and the integrity of the application, and (2) it provides assurance

to the infrastructure owner of the correct implementation of the Twine runtime.

Furthermore, the attestation process ensures that a specific configuration of Twine

is in place, including disabling some system calls for the Wasmmodule. Turning off

specific system calls enhances security by reducing the attack surface, adhering to the

principle of least privilege, and easing systemmonitoring and auditing. By comparison,

AccTEE mentions attestation but lacks an API to expose the evidence to the Wasm

27

D5.4 Version 1.0

applications for secure communication. SGX-LKL offers remote attestation by sharing

the hash of the virtual disks with trusted entities. However, this approach can be

challenging, especially when hosted applications store files since the attestation

measurement also reflects these files. Consequently, managing multiple virtual disks

becomes necessary for maintaining known attestation measurements.

2.1.6 Retrospective

The reluctance to adopt distributed architectures for sensitive applications arises from

a lack of trust when outsourcing computations to remote parties. Although this issue

has been extensively studied in the context of TEEs, such solutions introduce non-

trivial drawbacks and constraints, including limited programming language support,

restrictions on system calls, and enforced programming paradigms. In this section we

proposed an approach for executing unmodified programs in WebAssembly (Wasm)

— a target binary format for applications written in LLVM-supported languages, such

as C, C++, Rust, Go, and Swift — within lightweight TEEs that can be easily deployed

across client and edge computers. Twine is our trusted runtime that supports the

execution of unmodified Wasm binaries within SGX enclaves. Wasm offers several

advantages, including speed, versatility, and abstraction of the complexity associated

with developing applications tailored for specific TEEs. Furthermore, we provide an

adaptation layer between the standard WebAssembly system interface (WASI) used

by applications and the underlying OS, translating WASI operations into equivalent

native system calls or functions from secure libraries specifically designed for SGX

enclaves. Consequently, trusted applications can seamlessly interact with encrypted

files and secure network connections via TLS and HTTPS. Our comprehensive evalu-

ation demonstrates performance comparable to other state-of-the-art approaches

while offering robust security guarantees and full compatibility with standard Wasm

applications. Finally, Twine is freely available as open-source software and has been

merged into the original WAMR runtime.

2.2 Protecting IoT Peripherals with ARM TrustZone

The widespread adoption of IoT platforms has raised serious security and privacy

concerns due to the nature of interconnected devices and the vast amounts of data

generated [21]. For instance, in smart homes, large amounts of sensitive data are

constantly generated through sensors and hardware peripheral devices, e.g., cameras,

microphones. This data is usually transmitted to untrusted cloud services and third-

party providers, oftentimes with little regard to the confidentiality of the shared data.

The involvement ofmultiple parties introduces privacy issues, as thedata could beused

for purposes beyond the user’s knowledge or control. For example, in July 2019, more

than 1000 Google Assistant recordings were involuntarily leaked [79, 50], with part of

these recordings activated accidentally by users. Furthermore, privileged software like

the underlying operating system (OS) or hypervisor can be compromised [107, 181],

potentially leading to data breaches or unauthorized access to sensitive data.

To cope with these security threats, hardware-based security technologies that allow

the creation of trusted execution environments (TEEs) have been developed. Popular

and emerging implementations include Intel software guard extensions (SGX) [52],

Intel trust domain extensions (TDX) [47], and AMD secure encrypted virtualization

(SEV) [60] which target server-end environments, and ARM TrustZone [149] or RISC-V

MultiZone [71], respectively for low-power ARM-based or RISC-V-based client-end

28

D5.4 Version 1.0

User Mode

Kernel Mode

Normal World

User Mode

Kernel Mode

Secure World

FIQ IRQ

SMC

SMC

DRAM

Non-Secure Non-SecureSecure

C
o

n
fig

u
re

D
R

A
M

 reg
io

n
s

? ? ??

EL0 EL1 EL2

Hypervisor

EL3

Secure
Monitor

TZASC

TF-A

Figure 2.7. TrustZone security architecture on ARM Cortex-A.

devices. Although TEE frameworks like OP-TEE [179] have been leveraged to secure

both user and kernel level applications, a holistic and generic solution for safeguarding

peripheral data in IoT setups remains absent.

The work presented in this section aims to fill the gap described above by proposing

Fortress, a robust and comprehensive framework to enhance security and privacy in IoT

infrastructures. Our approach involves restricting peripheral I/O memory to a secure

kernel space TEE, providing access only to a small part of peripheral driver code while

isolating peripheral data from an untrusted OS or hypervisor. The data is then securely

transferred to a user space TEE, where obfuscation or data sanitization techniques

can be applied to encrypt or remove sensitive information before it is transmitted to

an untrusted cloud environment. This security framework has practical applications in

various contexts, including smart homes, medical IoT, retail IoT, amongst many others.

In summary, our research effort produced a design to secure IoT peripheral data

using ARM TrustZone and a generic approach to partition peripheral drivers. These

results are presented in the following sections. A scientific paper was accepted for

publication [200] including our results, together with the details of a proof-of-concept

implementation of our design using I2S peripherals on ARMv8-A, demonstrating the

feasibility of the proposed approach, and a comprehensive evaluation of our system,

which shows that privacy is achieved at a reasonable cost.

2.2.1 TrustZone, a TEE for Edge Devices

A trusted execution environment (TEE) is a hardware-enforced security technique to

isolate sensitive code and data at runtime frompotentiallymalicious entities, including

privileged software like the OS or hypervisor. Various hardware security technologies

have been developed that allow to create a TEE. Intel SGX [52] provides process

isolation through enclaves, while AMD SEV [60] and more recently Intel TDX [47] focus

on isolating virtual machines (VMs). These technologies are specifically tailored for

server-grade environments.

For edge-based and low-power devices, ARM TrustZone (TZ) [149] is themost common

TEE technology. TZ is a security technology for ARM-based processors which divides

the processor into two protection domains: secure world wherein sensitive operations

can be performed, and normal world for performing non-sensitive operations. Fig-

29

D5.4 Version 1.0

Normal World

SMC

TEE Supplicant

ARM SoC

 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Client Application (CA)

Secure World

Trusted Application
(TA)

GlobalPlatform
TEE Client API

OP-TEE Core
(PTAs, drivers)

TEE Utility
functions

GlobalPlatform TEE Internal API
Storage, Network,

etc.

Shared
Memory

U
se

r
M

o
d

e
K

er
n

el
 M

o
d

e

O
P

-T
E

E
 O

S

O
P

-T
E

E
 C

lie
n

t

Secure Monitor

 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

M
o

n
it

o
r

M
o

d
e

SMC

OP-TEE
driver

L
in

u
x

 K
er

n
el

Hypervisor

Figure 2.8. OP-TEE architecture.

ure 2.7 describes TrustZone’s security architecture. At any point in time, the processor

operates exclusively in one of these worlds. A special bit known as the non-secure (NS)

bit stored in the secure configuration register (SCR) determines the current protection

domain of the processor, and is used for memory access control checks across both

worlds. The processor can equally transition between worlds; TrustZone introduces a

new component known as the secure monitor (operating inmonitor mode) which acts

as a bridge between both worlds and is responsible for storing processor state during

transitions. A new privileged instruction, i.e., securemonitor call (SMC), allows software

in bothworlds to switch to the opposite world viamonitormode. Regarding interrupts,

IRQ (normal interrupt request) and FIQ (fast interrupt request) in the secure world can

also trigger a transition to monitor mode without an SMC. The ARMv8 architecture

provides four privilege levels, i.e., exception levels (EL) [111] at which code can run:

EL0 for user space code, EL1 kernel space code, e.g., the OS, EL2 for the hypervisor,

and EL3 for secure monitor mode. 1

The memory infrastructure in TrustZone-enabled systems (Cortex-A) introduces a

hardware component called the TrustZone address space controller (TZASC), which the

ARM Trusted Firmware (TF-A) [112] uses to configure specific DRAM areas as secure

regions. These configurations can be done such that secure world applications can

access all memory regions while normal world applications are confined to non-secure

memory. A similar memory partitioning functionality is performed by a component

called TrustZone memory adapter (TZMA) but targets SRAM rather than DRAM. Both

TZASC and TZMAmay or may not exist on a specific system-on-chip (SoC) implemen-

tation. For example, the Raspberry Pi 3 plaftform supports some ARM TrustZone

features but lacks TZASC and TZMA [165], and hence it lacks the capability of securing

memory with TrustZone.

2.2.2 Open Portable TEE (OP-TEE)

OP-TEE [179] is a software framework that implements a trusted execution environ-

ment for TrustZone. OP-TEE is compliant with the GlobalPlatform TEE Internal/Client

API specification v1.0 [73], and consists of three main components: OP-TEE client, OP-

TEE OS, and OP-TEE Linux driver. OP-TEE client offers an API that allows applications in

1A prefix of ”S” is usually added to the exception level for more precision when the code is being
executed in the secure world. For example S-EL0/S-EL1 explicitly indicate that the user space/kernel
space code is executing in the secure world.

30

D5.4 Version 1.0

 t egr a_i 2s1: i 2s@2901000 {
compat i bl e = " nvi di a, t egr a194- i 2s" ,

 " nvi di a, t egr a210- i 2s" ;
r eg = <0x2901000 0x100>;
cl ocks = <&bpmp TEGRA194_CLK_I 2S1>,

 <&bpmp TEGRA194_CLK_I 2S1_SYNC_I NPUT>;
cl ock- names = " i 2s" , " sync_i nput " ;
. . .

 sound- name- pr ef i x = " I 2S1" ;
st at us = " okay" ;

} ;

Figure 2.9. DT node for an I2S interface on Tegra 194 SoC.

the normal world, also known as client application (CAs), to interact with applications

running in the secure world, known as trusted application (TAs). Specifically, the CAs

operate within a rich execution environment (REE), i.e., in the regular OS at the EL0

level, while TAs execute in the secure world inside the TEE, at the S-EL0 level. OP-TEE

Linux driver is a kernel-space component operating in the normal world OS (at EL1)

which facilitates transitions between normal and secure worlds. In the presence of

a hypervisor, the SMC from a guest kernel traps into the hypervisor and the latter

performs the SMC on behalf of the former. OP-TEE OS provides an interface called a

pseudo trusted application (PTA) which TAs can use to communicate with OP-TEE OS.

Given the large dominance of ARM-based architectures on user-end devices in IoT

setups, the architecture and design of Fortress is based on ARM Trustzone andOP-TEE,

since it is the dominant architecture on user-end devices in IoT platforms.

2.2.3 MMIO and DMA

Contemporary computer systems and IoT devices comprise peripheral devices, e.g.,

keyboard, mouse, camera, microphone, fingerprint sensors, aimed to provide I/O

capabilities. Dedicated system software called device drivers enable the OS kernel to

interact with these peripherals. The job of a typical device driver is, for the most part,

reading or writing I/O memory [51]. This is commonly achieved through mechanisms

like MMIO and DMA, which we detail next.

MMIO. It is a method of performing I/O between the CPU and a peripheral device by

mapping the peripheral’s I/O registers into the CPU’s address space. As such, processor

load/store instructions on mapped addresses translate to load/store operations on

the corresponding I/O registers in physical memory. The Linux kernel on 64-bit ARM

platforms provides MMIO access primitives like ioreadX/iowriteX which read and write

X bits of data from and to an I/O register, respectively. For example, ioread8(reg) and

iowrite8(reg,val) read andwrite 8 bits of data from and to amemory-mapped register,

respectively.

DMA. It is a mechanism used by peripheral devices to transfer I/O data to and from

main memory bypassing the processor [51]. A specialised hardware component, i.e.,

the DMA controller, coordinates the DMA data transfer, and generates an interrupt

request to the CPU upon DMA completion.

MMIO or DMAmemory for a particular peripheral device is usually associated with a

base address and size, which indicate respectively the base address in physical memory,

and the size of the contiguous portion ofmemory used by the data transfermechanism.

The peripheral’s specifications provides information regarding base addresses, sizes,

31

D5.4 Version 1.0

and the offsets for all useful registers and DMA regions. The details regarding all

hardware devices on a system are described in a data structure called the device tree

(DT). The DT contains nodes describing all the hardware on a system, including CPUs,

memory, clocks, and peripheral devices like I2S, Ethernet cards, etc. For example,

Figure 2.9 represents a node in the DT of an NVIDIA Jetson AGX Xavier kit describing

I2S peripheral’s properties, such as the base address in memory (0x2901000) and size

(0x100). The DT is read by the kernel at boot time.

2.2.4 Threat Model

Fortress has four main security goals, aimed to guarantee the confidentiality and

integrity of sensitive data (e.g., images, voice recordings) originating from IoT periph-

erals before its transmission to the cloud:

(G1): Protect the confidentiality of peripheral data from the underlying OS or hypervi-

sor.

(G2): Ensure a trusted path between kernel space where the data is originally obtained

to secure user space where data processing (e.g., encoding, decoding, filtering)

occurs.

(G3): Ensure the confidentiality (and integrity) of sensitive peripheral data transferred

to the cloud, or complete removal of sensitive data from the data stream.

(G4): Minimise the trusted computing base and hence the potential attack surface.

Hardware. We assume that the underlying hardware itself is not malicious and can-

not be tampered with by the adversary. Fortress shields existing peripheral devices

connected to the SoC, and does not consider the connection of new components,

i.e., the adversary’s goal is to access sensitive data of already connected peripherals,

typically via MMIO or DMA. Denial-of-service attacks (e.g., maliciously shutting down

the system) as well as side-channel vulnerabilities [114] are considered out-of-scope.

Software. The on-die boot ROM and intermediate firmware, as well as OP-TEE are

considered trusted components, which permit establishment of a chain-of-trust during

a secure boot process. We assume the peripheral’s hardware components information,

e.g., MMIOorDMAphysical addresses, is encapsulated in a device treefile that is signed

and verified while establishing the chain-of-trust, preventing a potential attacker from

misconfiguring the device. All other software on the system is considered untrusted.

Third-party. Any element outside the hardware perimeter of the SoC, such as the cloud

providers in the IoT setup (e.g., AWS IoT [30]) to which potentially sensitive peripheral

data is transmitted, are considered untrusted.

2.2.5 Fortress Architecture

In this section, we present the architecture and design of Fortress. Here, we show

how its components interact to achieve the security goals outlined in §2.2.4.

The workflow of Fortress is summarised in Figure 2.10. At system initialisation, the

secure boot process authenticates system boot components, e.g., OP-TEE OS image,

DT files, and TZASC is used to configure peripheral MMIO and DMAmemory regions

32

D5.4 Version 1.0

ARM SoC

Peripheral
Device

Device Driver
(Trusted part)

PTA

O
P

-T
E

E
 O

S

Relay
Data

ObfuscatorCA
 Cloud
Service

TA

e.g., mic
Device Driver

(Untrusted part)

clk, pw

1

Linux Kernel

Supplicant

Init

2

3

5

4

6

78

RoT

Figure 2.10. Fortress workflow.

D
M

A
/

M
M

I
O

m

e
m

o
r

y

Bit Clock

Data

LR Clock

L: 1100 0111
R: 1011 0101

Bit Clock

Data

LR Clock

L: 1100 0111

R: 1011 0101

L: 1100 0111

R: 1011 0101

I 2S Mast erI 2S Sl ave

DMA/ MMI O

DRAM

Figure 2.11. Overview of I2S protocol.

to be accessible to the secure world only (Ê). After system setup, a peripheral device,

e.g., microphone or camera which constitutes a smart home/IoT setup, generates

potentially sensitive data, i.e., speech or visual data (Ë). In a regular setup, the device

driver software is part of the untrusted OS, thus leaking sensitive data. In Fortress, the

driver is partitioned into trusted and untrusted parts, which respectively execute in

the secure and normal world. The trusted part is embedded in the OP-TEE OS kernel,

and has exclusive access to the generated peripheral data, which is read into secure I/O

buffers (Ì). The sensitive data is securely processed by the trusted driver, after which

it is transferred to a trusted application via the PTA interface (Í–Î). The TA comprises

a data obfuscator that acts as a firewall, encrypting or filtering out any sensitive

information (Ï). Converting human speech into a finite set of voice commands is a

typical example of stripping potentially sensitive information. Finally, the reviewed

data is sent to an untrusted cloud service via a relay module in the TA (Ð–Ñ). The relay

module leverages a Linux user-space daemon called the TEE supplicant to provide

OS-level services such as network communication or storage.

We create a proof-of-concept implementation of this approach with secure sound

processing via I2S, a serial communication protocol commonly used to transmit audio

data between integrated circuits (ICs). Figure 2.11 provides an overview of the I2S

protocol. One IC, i.e., SoC (master) controls data transfer by manipulating two clock

lines: the left-right clock to specify the audio channel (L=0;R=1), and the bit clock to

specify if data can be sent (1) or not (0). The second IC, i.e., I2S microphone (slave)

sends data bits (via MMIO or DMA) for the corresponding channel each time the bit

clock is set.

2.2.5.1 System Initialization and Peripheral Memory Isolation

Secure boot. To ensure the authenticity and integrity of trusted system components,

ARM TrustZone supports trusted board boot (TBB) [22]. The latter establishes a chain-

of-trust consisting of several stages of integrity verifications, starting from the boot

33

D5.4 Version 1.0

ROM, comprising the root-of-trust (RoT), and extending through various bootloader

stages, the ARM trusted firmware (containing the secure monitor), and OP-TEE OS

components. During the deployment phase, critical components of the TCB, such as

OP-TEE OS, device tree files, and TAs undergo cryptographic signing (using SHA-256)

with a private key. The secure boot process uses the corresponding public key to verify

the signatures of these components. By verifying the integrity of OP-TEE OS, this in

turn ensures the integrity of Fortress’s trusted peripheral driver, as well as device tree

files containing peripheral I/O registers.

Memory isolation. To safeguard peripheral data fromunauthorised access by untrusted

components like the OS and hypervisor, it is necessary to confine the memory regions

associated with peripheral data to the secure world. In the context of our work, we

collectively refer to these memory regions as the secure I/O region of the peripheral.

Since most IoT hardware peripherals transfer data using MMIO or DMAmechanisms,

Fortress configures peripheralMMIOandDMAmemory ranges as the secure I/O region.

The specific MMIO registers and DMA regions used by the peripheral are typically

defined in the device’s DT node. Our solution offers twomethods for specifying these

secure I/O regions. The first is static and involves hard-coding the physical memory

addresses of the MMIO and DMA base registers (along with their sizes) directly into

the driver’s source code. The second approach is dynamic, where the information is

read from the DT node in the corresponding device tree file.

During system initialisation, the trusted firmware utilises TZASC to configure DRAM

in such a way that the peripheral’s secure I/O region (i.e., MMIO and DMA memory

ranges) is exclusively accessible to the secure world. This configuration effectively

prevents any access to the peripheral’s data from the untrusted OS or hypervisor,

thereby satisfying the security requirement in G1. To complete the initialisation of

the peripheral’s memory, the trusted driver’s initialisation code invokes OP-TEE OS’s

core_mmu_add_mapping routine, which maps the secure MMIO regions into kernel-space,

ensuring that the secure driver can effectively interact with the peripheral.

2.2.5.2 Secure Kernel to User-space Communication

After the trusted driver reads peripheral data via MMIO or DMA into its I/O buffers, it

needs to transfer the data to a secure user-space TA for further processing operations,

e.g., encoding, encryption, or filtering. To establish this secure connection between

the OP-TEE driver and the TA, we leverage an OP-TEE PTA. The latter acts as a bridge,

offering an interface that connects the TA to secure driver space. The TA utilises

GlobalPlatform Internal API to safely retrieve peripheral data from thedriver’smemory

space via a PTA invocation. This operation requires a context switch from S-EL0 to

S-EL1, and can be summarised in four steps: (1) checking access rights of the TA’s

destination buffers in the invocation, (2) copying necessary parameters (e.g., the

PTA/driver function identifier) from TA memory to OP-TEE OS memory space, (3)

issuing a system call to OP-TEE OS to invoke the corresponding PTA/driver routine,

and (4) copying results from OP-TEE OS memory into the TA’s destination buffer. The

creation of this secure channel from OP-TEE OS to the TA satisfies G2.

2.2.5.3 Data Obfuscation

Data obfuscation is the process of transforming sensitive information to safeguard

it from unauthorized access. Common data obfuscation techniques include encryp-

tion, randomization, anonymization etc. By integrating a data obfuscation module in

34

D5.4 Version 1.0

 f unc c l eanup_i n() {
 unmap_r egi st er s() ;

f r ee_i r qs() ;
 }

 f unc i ni t _out () {
 cr eat e_devi ce_obj () ;
 i ni t _cl ocks() ;

 }

 f unc i r q_handl er s(i nt i r q) {

 / / handl e i nt er r upt s
 }

 f unc dat a_pr ocessi ng() {

mmi o_r ead_wr i t e() ;
dma_r ead_wr i t e() ;
pr ocess_dat a() ;

 }

 f unc dr i ver _i ni t () {

cr eat e_devi ce_obj () ;
i ni t _cl ocks() ;
map_r egi st er s() ;
r egi st er _i r qs() ;

 }

 f unc pw_mngt () {

 / / power management ops
 }

 f unc dr i ver _cl eanup() {

unmap_r egi st er s() ;
r emove_devi ce_obj () ;
f r ee_i r qs() ;

 }

 f unc i r q_handl er s(i nt i r q) {
 / / handl e i nt er r upt s

 }

 f unc dat a_pr ocessi ng() {
mmi o_r ead_wr i t e() ;
dma_r ead_wr i t e() ;
pr ocess_dat a() ;

 }
 f unc i ni t _i n() {

map_r egi st er s() ;
r egi st er _i r qs() ;

 }

 f unc pw_mngt () {
 / / power management ops

 }

 f unc c l eanup_out () {
 r emove_devi ce_obj () ;

 }

U
n

t
r

u
s

t
e

d

P
a

r
t

T
r

u
s

t
e

d

P
a

r
t

U
n

p
a

r
t

i
t

i
o

n
e

d

D
r

i
v

e
r

Figure 2.12. Fortress driver partitioning.

Fortress, sensitive data originating from an IoT peripheral can be protected before

its transmission to an untrusted party in the cloud or the host OS, hence satisfying

G3. The generic architecture proposed by Fortress offers the flexibility to incorporate

diverse obfuscation techniques depending on the nature of the data. Our implemen-

tation leverages techniques provided by OP-TEE’s cryptography API which is based

on LibTomCrypt [169], a popular open-source cryptographic library. The latter pro-

vides various symmetric cryptographic algorithms, including AES-GCM, which can be

leveraged to encrypt and guarantee the integrity of sensitive data. Additional data

obfuscation methods, including data conversion and data filtering, serve to reduce

the sensitivity of the data or completely strip sensitive elements, respectively. Data

conversion can be particularly effective for human voice recordings, converting them

into voice commands upon recognition of specific voice patterns. Data filtering, on

the other hand, can entirely remove unrecognised sentences. The primary advantage

of data obfuscation is that it effectively restricts the distribution of sensitive data in

uncontrolled environments, such as the REE and the cloud service providers.

2.2.5.4 Driver Partitioning

A key aspect of TEE development is decreasing the trusted computing base (TCB). The

latter represents the components of a system that must be trusted to enforce the

system’s security policies. Decreasing the TCB reduces the potential attack surface

and the likelihood of vulnerabilities in the TEE. TCB reduction is usually done via code

partitioning. This involves identifying portions of the code that manipulate sensitive

data and isolating only these within the TEE; the non-sensitive part can be kept out of

the TEE. OP-TEE provides some examples of how to build secure peripheral drivers

but lacks a systematic approach for partitioning them into trusted and untrusted

components.

This section outlines a high-level approach to assist developers in partitioning drivers

for securing peripheral data in Fortress. Using a simple I2S peripheral driver as an

example, we manually partition its code into trusted and untrusted parts. The trusted

part includes the code which interacts with the peripheral’s secure I/O region. For I2S,

the trusted driver handles tasks like mapping MMIO registers, read/write operations,

and DMA buffer management. The untrusted part deals with non-sensitive operations

35

D5.4 Version 1.0

like clock and power-management. Figure 2.12 provides a generic blueprint formanual

partitioning in Fortress, satisfying G4. Advanced techniques like static data-analysis

may be used for more complex code bases to pinpoint code portions interacting with

sensitive regions of the peripheral.

2.2.6 Assessment of Fortress and Concluding Remarks

This section presented Fortress, a generic design to secure sensitive peripheral data

in IoT environments by leveraging TEE technology. Fortress restricts peripheral I/O

memory regions to a secure kernel-space TEE, thereby limiting access exclusively to

an small segment of the peripheral driver code. This strategy effectively blocks unau-

thorised access from potentially compromised operating systems or hypervisors. The

data is then securely transferred to a user-space TEE, where obfuscation techniques

are applied prior to its transmission to an untrusted host operating system or cloud

service providers. We refer to our scientific paper [200] for more details concerning

our proof-of-concept implementation focusing on I2S, and our evaluations showing

that Fortress achieves enhanced the security posture of IoT devices at a reasonable

cost.

Manual partitioning can be very challenging and error-prone for large code bases, as

there may be complex data paths with indirect access to peripheral data, which are

difficult to identify manually. Nonetheless, in Fortress, restricting the peripheral’s

secure I/O region to the secure world always prevents access to peripheral data from

untrusted code, even if the latter contains instructions that manipulate peripheral

data. To overcome the complexities inherent in manual partitioning, techniques such

as static data-analysis [49, 101] could be leveraged to properly identify all code parts

that interact (directly or indirectly) with sensitive data.

We aim to extend our work along two axes: firstly by integrating static analysis tech-

niques to streamline the code partitioning process, and subsequently by introducing

machine learning classification algorithms to automate data obfuscation. The latter

approach involves the use of pre-trained deep learning models within the TA to iden-

tify sensitive data in data streams, upon which appropriate obfuscation techniques

may be applied.

2.3 Attesting MQTT Brokers within Intel SGX

Publish/subscribe (pub/sub) systems [63] have become fundamental when implement-

ing communication of a wide range of devices, from IoT ecosystems to large-scale

cloud-based services, such as the cloud-edge continuum [168]. Pub/sub systems en-

able efficient and scalable data distribution among distributed entities by decoupling

data producers from data consumers. Given their widespread adoption, notably in

cloud computing [6, 80, 129], several pub/sub systems have been proposed with the

clear goal of providing additional privacy guarantees [140]. However, the nodes partici-

pating in these systems are implicitly trusted, relegating security concerns primarily to

the protection of communication channels or leveraging heavyweight cryptographic

primitives [96]. This limited security approach leaves data on the processing compo-

nents vulnerable to potential threats, especially in decentralised and heterogeneous

environments. Notably, high-privileged actorswithin the pub/sub nodes, i.e., operating

system or hypervisor, may compromise the confidentiality and integrity of data. Simi-

larly, they could leak critical cryptographic material, e.g., private keys of certificates.

36

D5.4 Version 1.0

Leaking certificate keys is especially concerning as these keys serve as the foundation

for the authentication process among pub/sub participants, thereby putting user

privacy and data integrity at stake.

In both the consumer market and cloud providers, trusted execution environments

(TEEs) present a solution to strengthen the integrity and confidentiality of data in use,

especially on nodes thatmay not be inherently trustworthy. TEEs provide enclaves, e.g.,

hardware-protected memory regions, where sensitive computations are completely

isolated from other software executed on the same platform. Such secure enclaves

significantly elevate the security posture of systems like pub/sub, safeguarding not

just the communication but also the processing and data on such nodes frommalicious

actors. As a keystone feature of TEEs, attestation enables a remote entity to verify the

authenticity, configuration, and state of a trusted environment using cryptographic

proofs, ensuring the enclave runs the intended software without being tampered with

or compromised [123]. In pub/sub systems deployed over untrusted infrastructures,

attestation ensures data and its processingwithin theTEEenclave are kept confidential

and untampered.

Nonetheless, developing applications for TEEs is challenging due to their specific

programming paradigms and SDKs, requiring massive efforts when writing or port-

ing existing software [81]. In addition, while many pub/sub systems exploit TEEs to

protect data in use (covered in §2.3.3), these usually tie closely to a specific TEE ar-

chitecture, which is limiting in the heterogeneous environments (e.g., using different

CPUs) considered in this work. Beyond this, current secure communication protocols

fail to transport attestation proofs, do not maintain the privacy of these messages

when supported, or cannot expose X.509 certificates issued by global authorities

(covered in §2.3.4). This leads to the use of ad-hoc implementations, which fall short

in offering a consistent solution across the cloud-edge continuum.

We solve many major challenges associated to writing secure and portable pub/sub

systems by relying on WebAssembly (Wasm), an open-standard binary instruction

format. Wasm’s architecture-neutral design abstracts the complexity of hardware and

TEE requirements, making it particularly suitable as a compilation target for pub/sub

systems in heterogeneous hardware environments, such as the cloud-edge continuum.

We further protect the communication channels by extending the industry standard

TLS protocol for embedding attestation evidence in the handshake while maintaining

compatibility with the original specifications. This ensures the authenticity of the

executing code of parties within the pub/sub system, thereby mitigating the risk

of malicious entities impersonating or modifying these components. Additionally,

certificate keys are safeguarded within the TEEs, preventing potential leaks.

We developed a proof-of-concept that encapsulates the full implementation of a

standard pub/sub broker and a TLS library, enabling the termination of TLS channels

directly in the TEE, which has been proven complex in prior work [29]. We achieve this

by using Wasm as a compilation target for both software, limiting the number of code

changes required to make them compile and run within TEEs. While our prototype

is focused on cloud environments by leveraging Intel SGX, we outline the trusted

primitives required for our proposal to be compatible with other platforms, including

edge and IoT devices.

This section proposes a unified strategy that secures a standard pub/sub system using

37

D5.4 Version 1.0

TEEs with attestation for security, and compiled in Wasm for seamless cloud-edge

communication while minimising code changes. We also propose an extension to the

TLS communication protocol, facilitating the confidential exchange of attestation

evidence, thereby affirming the authenticity of actors within the pub/sub system. We

included these proposals in a scientific paper recently published [124], along with the

detailed description of an open-source implementation of a pub/sub broker using

Intel SGX for cloud environments, with a suite of benchmarks aimed at evaluating the

impacts of Wasm, the TEE and attestation, in comparison with state-of-the-art work.

Our evaluation reveals that our system delivers messages at a throughput that is a bit

slower, yet providing portability and the robust security guarantees of TEEs.

2.3.1 Pub/sub Systems

A publish/subscribe system (often called pub/sub) is an asynchronous architecture

for message passing that connects two different types of entities: publishers and

subscribers. Publishers sendmessages (or events), being unaware of who is interested

in receiving suchmessages. Messages sent are usuallymarkedwith an arbitrary type or

a category. Subscribers express their interest in specific types ofmessages and receive

them when they are published. Pub/sub is commonly used in event-driven distributed

systems such as the Internet-of-things, since they simplify the communication between

different entities.

Pub/sub messages are usually passed from publishers to subscribers using an inter-

mediary broker. Brokers receive messages from publishers and forward them to sub-

scribers who have expressed interest in the corresponding topics. Message brokers

are responsible for routing and delivering messages to the appropriate subscribers.

Examples of message brokers include Apache Kafka, RabbitMQ, MQTT brokers, and

cloud-based pub/sub services like Amazon SNS (Simple Notification Service) or Google

Cloud Pub/Sub.

One of the key advantages of pub/sub is decoupling since publishers and subscribers

do not need to know each other. Pub/sub systems can also be designed to be highly

scalable and fault-tolerant by using replicated, interconnected brokers. This flexible

architecture allows components to be added or removedwithout affecting the system.

Security in pub/sub systems is dealt with when publishers and subscribers connect

to their brokers. Brokers then usually implement authentication and access control

before publishing or subscribing to messages. They can also establish encrypted

connections (e.g., TLS) to implement message privacy. By implementing attestation,

we offer a stronger guarantee for all the components. Publishers, subscribers, and

brokers are guaranteed to be who they say they are, and all can ensure that their

counterparts execute appropriate (correct) software.

2.3.2 Attestation

Attestation is a security mechanism enabling an attester to prove its identity and

integrity to an verifier. In the realm of Trusted execution environments (TEEs), attesta-

tion allows a TEE to prove its configuration, identity, and state to another device or

service. Most TEE implementations support attestation, either built-in (as in SGX [97]

and its successor TDX [158, 48], AMD SEV-SNP [7]) or by means of research proto-

types [126]. The primary objective is to ensure the attester is genuine, unmodified,

and trustworthy. To achieve this objective, attestation leverages proofs (i.e., evidence),

38

D5.4 Version 1.0

a cryptographically signed document composed of claims, i.e., pieces of asserted

information, like the hash of a code running in the TEE, i.e.,measurement. The veri-

fier is bootstrapped with reference values, compared against the received claims for

validation.

We focus on Intel Software Guard Extensions (SGX) [52, 137], a popular and widely

used TEE architecture. In Intel SGX, attestation is paramount for establishing the

authenticity and integrity of code and data inside an enclave. Intel controls a set of

keys, intrinsically linked to the hardware and identity of the enclave. Such keys are

inaccessible from the enclaves themselves, and are used by the processor and Intel

signed software to issue trustworthy evidence. Intel is considered trusted, as they

provision a subset of keys into the hardware. Within this assumption, third parties can

trust evidence produced by the TEE.

2.3.2.1 Communication Channel

Over the past decades, several standards have emerged to establish trustworthy

communication between two entities. Among them, Transport Layer Security (TLS)

stands out as the most prominent protocol for such tasks. This cryptographic protocol

ensures confidentiality, integrity, and authentication for secure communication. A

typical TLS session begins with a phase known as the handshake. This TLS handshake

acts as a negotiation process, where the two parties decide on encryption settings

and authenticate one another before exchanging secure data. More precisely, the

latest version of the TLS handshake (1.3 at the time of this writing) is composed of 1)

the ClientHello sent by the client, notably containing the supporting cipher suites, key

agreement and anti-replay mechanisms, 2) the server sends the ServerHello response,

detailing analogous parameters, while signifying the handshake’s conclusion, and

finally 3) the handshake wraps up as the client reciprocates with a similar acknowl-

edgement, accompanied by data from a higher-level protocol, that is wrapped within

TLS, e.g., HTTPS. Additionally, during steps 2 and 3, both entities can opt to present an

X.509 certificate. These certificates authenticate entities and build trust by leveraging

a chain of digital signatures from trusted Certificate Authorities (CAs). These serve

as identity validators, embedding trust through a chain of digital signatures rooted

in trusted Certificate Authorities (CAs). Building on this, many existing attestation

protocols that bind with TLS typically augment the handshake, the certificate, or a

combination of the two, facilitating the negotiation of security parameters and the

exchange of attestation evidence.

2.3.2.2 Channel Binding

Channel binding [28] ensures that an entity participating in a secure communication,

typically via protocols such as TLS, is indeed the entity that has undergone attestation.

It establishes that the communications are with the attested environment, preventing

possible relay attacks where a malicious party might relay attestation challenges to

a genuine system and then claim the legitimate evidence as their own. To secure

trusted communication, attestation evidence is typically integrated into the early

phases of the communication protocol. However, combining attestation with these

protocols introduces challenges, including increased latency and additional trade-offs

like binding the system to a particular TEE technology.

The solution we propose refines the TLS protocol with minimal enhancements. Unlike

traditional approaches that embed attestation in custom fields in the broker’s X.509

39

D5.4 Version 1.0

[150]

SCBR

[25]

PubSub-SGX

[189]

MagikCube

[161]
MQT-TZ

[147]

Pei

et al.

This
work

Comm. protocol TLS TLS TLS TLS ? TLS

Fully enclaved broker 3 3 3 7 7 3

Peer authentication 7 3 3 3 ? 3

Peer attestation 7 7 7 7 ? 3

Broker authentication 3 3 3 3 ? 3

Broker attestation l 3 3 7 ? 3

Persistence ofmessages 7 3 7 7 7 3

Idiomatic pub/sub arch. 7 3 3 3 3 3

Open source 7 7 7 3 7 3

TEE technology SGX SGX SGX TZ SGX Agnostic

TEEs references: SGX (Intel SGX), SNP (AMD SEV-SNP), TDX (Intel TDX), TZ (Arm TrustZone)

3, l, 7 mean fully, partially and not implemented, respectively. ? denotes not disclosed details. Features description: 1)
Communication protocol : protocol used by peers to interact with the broker. 2) Fully enclaved broker : broker operates within the
TEE instead of only securing specific components within the secure environment. 3) Peer authentication: broker authenticates
the peers while establishing communication. 4) Peer attestation: broker attests the peers while establishing communication.
5) Broker authentication: peers authenticate the broker while establishing communication. 6) Broker attestation: peers attest
the broker while establishing communication; l means that only publishers are attested. 7) Persistence of messages : system’s
capability to store messages for future delivery (e.g., when subscribers might be temporarily offline). 8) Idiomatic pub/sub
architecture: system adheres to the principles of the pub/sub paradigm. 9) Open source: implemented solution is freely available
to the public via an open-source repository. 10) TEE technology : denotes the TEE used by the proposed system, or its capacity to
operate agnostically across various TEEs.

Table 2.1. Comparison of the state-of-the-art pub/sub systems shielded by TEEs.

certificates, our method leverages a custom TLS 1.3 encrypted extension. This ap-

proach reduces the need for additional communication roundtrips between the client

and server. It preserves the broker’s ability to use certificates issued by recognised

CAs, an aspect overlooked in previous studies.

2.3.3 Pub/sub with TEEs

In the dynamic world of distributed systems, pub/sub mechanisms have consistently

gained traction, acting as the core foundation for a variety of applications and architec-

tures. Many approaches have been conducted in research to bring dependability and

safety regarding pub/sub systems, and in many different directions [187]. An explored

aspect is encryption schemes of data transferred through the brokers, preserving the

privacy of the communicated information [93, 136, 35, 41, 118, 70, 36]. Cryptographic-

based privacy protection schemes focus on encrypting events and subscriptions, and

then performing ciphertext matching between them. However, they often suffer from

scalability issues as matching time complexity grows with the number of subscriptions,

leading to diminishing performance.

More recently, researchers have investigated the potential of Intel SGX as a secure

environment for confidential data processing. Leveraging TEEs has shown poten-

tial for enhanced performance over cryptography-based methods, as highlighted by

SCBR [150]. Their study details a custom content-based routing engine operating

within an SGX enclave. PubSub-SGX [25] introduced a scalable approach, using a load

balancer that manages multiple matchers, each operating within individual enclaves.

Following this, MagikCube [189] added an authentication service to the pub/sub sys-

40

D5.4 Version 1.0

tem, thereby enhancing broker trust among publishers and subscribers using SGX.

Finally, Pei et al. [147] further refined this paradigm by optimising subscription match-

ing times using cryptographic methods, with SGX facilitating comparison tasks but

does not disclose how secrets are exchanged. In contrast with previous work, our pro-

posal prioritises establishing an initial trust across all pub/sub participants by mutual

attestation. We do it by encapsulating conventional pub/sub systems within TEEs,

ensuring genuine execution environments and trustworthy implementations.

Other prior studies have chosen a different strategy using TrustZone, Arm’s TEE. In this

setup, the device is divided into the normal world (the standard OS) and the trusted

world (the TEE). MQT-TZ [161] migrated the broker’s data management component

within this trusted world. Publishers and subscribers negotiate symmetric keys with

the broker, which are generated inside the TEE. This approach ensures that data is

encrypted during transmission. Conversely, our proposal enhances the threat model

of MQT-TZ by relying on entity attestation in the pub/sub system and hosting the TLS

endpoint directlywithin theTEE, avoidinghandling cryptographicmaterials outside the

TLS protocol. Table 2.1 offers a comprehensive summary of state-of-the-art proposals

for securing pub/sub systems with TEEs, focusing on features relevant to our study.

2.3.4 Communication Protocols using Attestation

Research has extensively explored the integration of secure communication protocols

with attestation. While our focus primarily lies on solutions leveraging TEEs, we

[91]

SGX

EPID

[162]

Shepherd

et al.

[126]

WaTZ

[102]

RA-TLS

[82]
Palæmon

[138]

TSL

This
work

Baseline protocol Custom Custom Custom TLS TLS TLS TLS

No change in TLS spec. — — — 3 3 3 3

Attestation privacy 7 3 7 7 3 3 3

Mutual attestation 7 3 7 3 7 3 3

Evidence per session 3 3 3 7 7 3 3

Endpoint in enclave 3 3 3 3 3 7 3

Attestation privacy 7 l 7 l ? l 3

TEE-agnostic 7 l l 7 7 l 3

Support global CAs — — — 7 7 7 3

Open-source 3 7 3 3 7 7 3

TEE technology SGX TZ TZ SGX SGX Agnostic Agnostic

TEEs references: SGX (Intel SGX), SNP (AMD SEV-SNP), TDX (Intel TDX), TZ (Arm TrustZone)

3, 7 mean fully and not implemented, respectively. ? denotes not disclosed details. ”—” denotes not applicable comparisons.
Features description: 1) Baseline protocol : protocol upon which the proposal is built. 2) No change in TLS specification: proposal
respects the TLS specifications, ensuring compatibility with pre-existing TLS implementations. 3) Attestation privacy : protocol
maintains confidentiality of attestation evidence. 4) Mutual attestation: communicating entities engage in a mutual attestation
process. 5) Evidence per session: each communication session is uniquely associated with specific attestation evidence. 6)
Attestation Privacy : all attestation-related messages are encrypted; l means that only a portion of the messages remains
confidential. 7) TEE-agnostic : independent of any specific programming language or TEE-specific SDK; l means theoretical
approach proposed, but no agnostic implementation. 8) Endpoint in enclave: endpoint application fully resides within the TEE. 9)
Support global CAs : broker-displayed certificates can be vouched for by globally recognised CAs. 10) Open source: implemented
solution is freely available to the public via an open-source repository. 11) TEE technology : denotes the TEE that the attestation
API currently supports, or its capacity to operate agnostically across various TEEs.

Table 2.2. Comparison of the state-of-the-art channel binding solutions.

41

D5.4 Version 1.0

also recognise the significant contributions from prior work that leveraged TPMs

as trust anchors [75, 167, 72, 166, 24, 198, 31, 146, 185, 184]. Readers can refer to

[102, 138] for a comprehensive review of these works. Our analysis omits explicitly

works that discuss attestation through TEEs but do not bind attestation evidence to a

communication channel [120, 53, 68, 191].

Intel proposed a remote attestation protocol for key exchange based on SIGMA [103,

91], binding SGX enclaves with communication channels. Subsequent solutions aimed

to establish trusted communication channels with enclaves using custom message

exchanges [162, 108, 126]. While these initial efforts in remote attestation provided

valuable insights, their custom nature makes them challenging to integrate into exist-

ing software. In contrast, our approach harnesses TLS, the leading industry standard

for secure communication.

More recently, further research [178, 82, 138, 102, 139] have suggested using TLS for

communication and modifying the X.509 certificates in order to include additional

fields related to attestation. Although this method takes advantage of the protocol’s

standardisation to address the earlier concern, it ties the attestation mechanism di-

rectly to the certificates exposed by the endpoints. This direct connection implies that

certificates must be dynamically generated, which restricts them from being signed

by global CAs like Let’s Encrypt, commonly used for domain validation certificates.

Opting for a different route, we used the encrypted extensions of the TLS protocol

for carrying evidence of the server. Consequently, our approach is compatible with

certificates endorsed by global CAs. This is particularly beneficial if the endpoint owns

a separate network-level identity, like a DNS or domain name. Table 2.2 offers a com-

prehensive summary of cutting-edge research dedicated to binding communication

channels with attestation, focusing on features relevant to our study.

2.3.5 Threat Model

Our approach relies on a few key trusted components, which are essential for our

system to be deemed trustworthy. We further discuss these elements in the remainder

of this section.

TEEs Our proposal leverages the protection offered by TEEs for securing the execu-

tion of applications and enforcing strong isolation against powerful attackers, such as

the OS or the hypervisor. Given that our proposal is TEE-agnostic, we highlight the

minimal requirements to uphold trust in the pub/sub system and attestation mech-

anism. We assume the application code can be inspected but cannot be subverted.

Data in use remains confidential and cannot be read unless granted by the TEE. The

hardware and software strictly required to run a TEE instance are considered trusted.

Furthermore, the TEE offers a remote attestation mechanism backed by genuine enti-

ties responsible for validating the trustworthiness of attestation evidence. Although

we do not address side-channel or denial-of-service attacks [43, 192, 67], there exist

measures for these in various TEE designs [3].

OS The OS follows an honest-but-curious threat model, posing no threat to the

trusted environment but interested in gathering sensitive information. Consequently,

it canmonitor all communicationwithin the pub/sub system. Assuming theOS starts to

behavemaliciously, the trusted computing base (TCB) remains confidential and doesn’t

malfunction, though it might become unresponsive. The applications running in the

TEE are carefully developed to ignore abnormal responses and abandon execution in

42

D5.4 Version 1.0

such cases.

Wasm We presume that the Wasm runtime is implemented correctly and does not

contain vulnerabilities. The Wasm runtime acts as a shim library by encapsulating

Wasm applications and uses trusted APIs from the TEE SDK for system interactions

or sanitises the interaction with the untrusted OS when no secure option is available.

While side-channel attacks might target Wasm and TEEs [152], they fall beyond the

scope of this study.

Cryptography As we embed a TLS library and enhance it to integrate attestation

concerns, we suppose the correct implementation of the cryptographic ciphers and

operations. Additionally, we also presume that standard cryptographic techniques

cannot be subverted and are hardened against side-channel attacks.

2.3.6 Security Requirements and Trusted Primitives

We propose a series of requirements for establishing trusted communication channels

between the actors of pub/sub systems:

(SR1): Support global CAs certificates: brokers shall support exposing certificates

issued by globally recognised CAs.

(SR2): Trust assurance: pub/sub actors shall attest the TCB of the participant they

connect with and must be similarly verified in return.

(SR3): Channel and attestation bindings: communication channels must be linked

to newly created attestation evidence, preventing replay or collusion at-

tacks [138].

(SR4): Attestation privacy: attestation information shall remain confidential be-

tween the endpoints of a given communication channel.

(SR5): Pub/sub privacy: all the data bound to the pub/sub system shall be inaccessi-

ble to outside actors, including the OS, kernel and hypervisor of the broker

and peers.

(SR6): Pub/sub narrow scope: the peers shall only publish or subscribe to the topics

as required for their needs.

We identified a core set of trusted primitives that any systemmust support to host

our proposal securely. These primitives are provided by the secure environment or

the Wasm runtime:

• Isolated execution context: this ensures the runtime remains secure and unaf-

fected by any other applications running concurrently on the system. All major

TEE manufacturers support at least one Wasm runtime, though the isolation

paradigm and threat model vary.

• Attestation capabilities: the TEE must expose two primitives to the Wasm

runtimes: generate and verify. The former primitive generates evidence for

proving the trustworthiness of the secure environment with additional data

attached, such as a nonce and a public key, while the latter confirms the validity

of this proof.

43

D5.4 Version 1.0

BrokerProducer

➊

➋

➍

!

➌

!

Endpoint

TEE

W
AS

M
Br

ok
er

 lo
gi

c

M
os

qu
itt

o

TL
S

lib
ra

ry

TE
E

AP
I

TEE

" !

" !

Subscriber

!

Endpoint

TEE
" !

Persistence

W
AS

I

!TLS cer-
tificates

Global CA

Endpoint
" ! " ! " ! " !

!
#

IoT Cloud Cloud IoT

➋

Figure 2.13. The overall architecture of our proposal. (,) mean X.509 certificate and attestation

evidence, respectively. The colours of these icons correspond to the actor owning them.

• Network communication: the Wasm runtimes require access to a network API

that handles socket operations and the transfer of data.

• File system access: if the pub/sub broker needs to store publications for future

delivery, the system should offer secure ways to save and access these files.

Other concerns, such as encryption andpub/subprotocol logic, areplatform-independent

and addressed using dedicated software compiled into Wasm.

2.3.7 Architecture Overview

We designed our proposal as a versatile system capable of running on numerous

processor architectures. The system isolates security-sensitive pub/sub operations of

peers and brokers, ensuring the authenticity of connecting machines using TEEs and

mutual attestation. A key aspect of our design is the adoption of Wasm, facilitating

cross-platform support across various TEE architectures. More specifically, we rely on

trustedWasm runtimes [125, 126], to host a secure pub/sub systemwith its associated

dependencies such as TLS libraries, thus covering the large spectrumof the cloud-edge

continuum.

Figure 2.13 illustrates the key components and entities within our pub/sub solution.

Serving as the central hub, the broker first acquires a certificate from a global CA for

its TLS endpoint (Ê). Peers then initiate secure communication with the broker via our

enhanced TLS handshake, performing mutual remote attestation by exchanging their

X.509 certificate for authentication and attestation evidence (detailed in Section 2.3.8).

This ensures that the broker and peers are trustworthy (Ë). The publisher generates

data and transmits it to the broker’s TEE (Ì). The broker, in turn, relays this data to the

subscriber’s TEE (Í). Both the publisher and the subscriber use the same technology

stack in their respective TEEs, although this detail is omitted in the figure for clarity.

2.3.8 Attesting Communication Channels

We enhanced the TLS protocol to integrate the exchange of attestation evidence

when a peer is communicating with the broker. This exchange of information occurs in

the TLS handshake, as depicted in Figure 2.14. Our enhancements are highlighted in

bold.

44

D5.4 Version 1.0

TEE API Peer Broker TEE APIClientHello
EncryptedClientHello(AttReq)

À

Measure

Evidence
ServerHello

EncryptedExtensions(AttServer)

Finished
Á

Measure

Evidence
Certificate(AttClient)

Finished
Application Data

Â
Application Data

Figure 2.14. Enhanced TLS 1.3 handshake with attestation. New elements are mentioned in bold.

Attestation protocol The first message of the handshake (À) is sent by the peer,

which is comprised of an encrypted attestation request (AttReq), indicating that the

peer is establishing a TLS channel requiring attestation. Contrary to prior work, our

protocol does not specify TEE architectures in this message, as our solution supports

the verification of all the types of TEEs that can be used in the broker. Similarly, our

protocol is the only proposal that studies the encryption of the attestation request,

as further explicated below.

When received, the broker answers with a message (Á) composed of its evidence

(AttServer), freshly generated and bound to the TLS session. It is worth noting

that we deliberately chose not to embed attestation data within the broker’s X.509

certificate so the endpoint can use certificates endorsed by globally recognised CAs,

satisfying (SR1).

Subsequently, the peer verifies whether the evidence of the broker is genuine and

checks if the evidence is bound to the current TLS session (to counter reuse attacks).

Moreover, it compares the code measurement of the broker to a known reference

value, indicating that the code of the broker is trusted. Since a global CA issues the

broker’s X.509 certificate, the peer verifies that the DNS or domain name of the broker

matches the identifier exposed in the X.509 certificate [157]. If these conditions are

fulfilled, the peer issues its evidence (AttClient) and sends it to the broker (Â), also

bound to the TLS session and embedded within the peer’s X.509 certificate. We had to

rely on a customX.509 extension for the peer, as TLS 1.3 does not provide an extension

point for the last message of the handshake.

Lastly, the broker also verifies whether the evidence of the peer is genuine, and checks

if the evidence is bound to the current TLS session. Similarly, the broker ensures that

the code measurement of the peer matches a known reference value, indicating that

the code of the peer is trusted. Once completed, the peer and the broker mutually

attest themselves, ensuring their respective TEE is trustworthy, satisfying (SR2). As a

result, the TLS handshake is ended, and the applications may start pub/sub communi-

cation.

Binding the handshake with attestation evidence Integrating the attestation

mechanism in the TLS handshake has many benefits: the execution time is optimised

since no additional round-trips are necessary, and the TLS 1.3 standard is respected by

45

D5.4 Version 1.0

using extension points as designed by the protocol. Besides, we strongly bind freshly

generated evidence to individual TLS sessions, using unique TLS keying materials

computable by both parties (RFC 5705) [155], satisfying (SR3). This prevents replay

and collusion attacks, which would affect published past evidence otherwise. Since

our pub/sub system and TLS library are compiled in Wasm, evidence binding within

TLS handshakes is portable across different TEE architectures.

Securing the attestation information Weuse three distinct encryptionmechanisms

to ensure the confidentiality of the attestation information, to comply with (SR4).

First, we opted to use the recently-introduced encrypted client hello (ECH) for TLS [156],

which is currently an IETF draft to communicate early information while preserving

its privacy in the ClientHello message. To the best of our knowledge, we are the

first to leverage this draft to protect the attestation request (AttReq) in the TLS

handshake. In a nutshell, the ClientHello message is split into two parts: the outer

message, which is in plain text, and the inner message, which is encrypted using a

public key, typically distributed using DNS infrastructure. Second, we rely on the

TLS 1.3 encrypted extension in the broker reply (i.e., the ServerHello message), so

the broker’s attestation evidence remains confidential. This has been made possible

because the two parties can derive a shared secret for encryption up to this point.

Finally, the peer’s certificate, which contains the peer’s evidence, is also protected,

since the entire third message of the handhake is encrypted by design.

2.3.9 Securing pub/sub Systems

We leverage TEEs and trusted Wasm runtimes for implementing our pub/sub design,

ensuring strong hardware isolation of both code and data. This design remains versa-

tile, working with various TEE architectures as long as they offer the trusted primitives

for the Wasm runtimes (as in §2.3.6). When paired with the mutually attested TLS

protocol, we shield data in use and in transit, satisfying (SR5). As a pub/sub software,

we selected Mosquitto [110], a well-known and open-source message broker that im-

plements the latest version of theMQTT protocol. We have chosenMosquitto because

it is lightweight and suitable for use on all devices, from low-power IoT devices to cloud

servers. Besides, we usedWolfSSL, an embeddable cryptographic library, enabling the

host of the TLS termination directly in the TEE, so external systems cannot eavesdrop

on the communication, nor alter the code that maintains the endpoint. We needed to

compile Mosquitto in Wasm, which required slight modifications to the source code.

Regarding WolfSSL, we reused one of the extension works of a trusted runtime [125],

which already compiled this library in Wasm.

System interactions Mosquitto, like most software, is required to perform system

calls for interactions with the outside world. Typically, this is the case for the socket

API when exposing the TLS endpoint. For such usages, we rely on WASI, which trans-

lates the system calls to the underlying OS seamlessly. As the private and session keys

of TLS are located within the TEE, the communication remains confidential against

eavesdropping attempts, even when system calls are monitored. Besides, Mosquitto

can persist undelivered messages in a database for later transmission to offline sub-

scribers. The WASI specification includes a file system API for data storage, while

TEEs typically provide means to save files via a trusted API securely. In contrast to the

socket API, Wasm runtimes use that TEE API to transparently encrypt files, ensuring

the confidentiality of the stored messages.

46

D5.4 Version 1.0

Securing andnarrowing thepub/subdata access Ourproposal ensures that brokers

andpeers are trustworthy as they aremutually attested. As such, we inherently restrict

adversaries to propagate and observe messages going through the pub/sub system.

Nonetheless, we propose to reduce further the scope of peers using access control

lists (ACLs), which is a built-in functionality of Mosquitto. When paired with the X.509

certificates presented in the TLS handshake, this feature enables to authenticate

peers without requiring additional usernames or passwords, as this is typically the

case using Mosquitto. This narrowed publication and subscription scope satisfies

(SR6). Future work may further adapt the ACLs to be bound to evidence, provided

that code measurements differ from each actor.

Use cases Our approach is applicable to a variety of distributed pub/sub systems,

which supports scalable communication by decoupling publishers from subscribers

and ensures secure messaging through mutual attestation. In VEDLIoT, this is demon-

strated in collaboration with Siemens for secure data processing at edge nodes and

capturing results on an MQTT messaging bus, also using the Byzantine Fault-Tolerant

(BFT) attestation provided by SIRE (see Chapter 5 for ensuring trust in the attestation

reference values [182]. To balance the need for compactness with computational

capability, we used Intel NUCs as edge nodes, which are small, efficient PCs equipped

with processors that support Intel SGX. This allows the publisher on the edge nodes to

verify whether the broker is genuine based on evidence and the code hash contained

in that payload. This code hash is then compared to the trusted reference values

stored in the BFT-resilient system.

2.3.10 Concluding Remarks about Attested pub/sub

Recent evolution in TEEs by leading CPU manufacturers highlights the growing trend

in executing software within untrusted environments while processing increasingly

sensitive data. The pub/sub model stands out as an effective mechanism to scale

and distribute computations across varied architectures, and Wasm emerges as a

suitable common environment for such tasks. However, a gap remains in establishing

standardised protocols and tools that leverage the rapid research breakthroughs in

trusted execution within the cloud-edge continuum.

Addressing this, we proposed a secure and attested pub/sub system compatible with

most of the state-of-the-art TEEs. We achieve this by usingWasm and trusted runtimes

running in these TEEs. To incorporate mutual attestation in network communications,

we suggest enhancing the TLS protocol. This modification embeds attestation evi-

dence through extension points in the TLS handshake, preserving the original standard.

Our evaluation can be found in our scientific paper [124] and demonstrates that

the security and portability improvements introduced by our approach effectively

balance the additional overheads, mostly related to the TEEs. Moreover, leveraging

Mosquitto’s capability to distribute brokers among peers can further optimise the

system, leading to a scalable and secure architecture suitable for large and real-world

applications. Our implementation is freely distributed as an open-source project.2

2https://github.com/JamesMenetrey/unine-opodis2023

47

https://github.com/JamesMenetrey/unine-opodis2023

D5.4 Version 1.0

3 Trusted Certification of IoT Devices

This chapter is the continuation of the work already presented in the previous Deliv-

erable D5.3, Chapter 4. To keep this deliverable self-contained, we will repeat some

of the content, but notable additions to the previous work include details on how to

realise our proposed certification solution with X509-based certificates, a comparison

of the network overhead of the different versions, and a formal analysis of some of

the security properties claimed by our protocol with the Tamarin Prover.

3.1 TruCerT: Definitions and Concepts

This section provides an overview of the stakeholders involved in the TruCerT cer-

tification process and TPM concepts. We envisage a certification process inspired

by EU Cybersecurity Certification Framework (shown in Figure 3.1); therefore, same

terminologies and names of entities are used to allow easy mapping of TruCerT with

the upcoming Framework. However, it is also pertinent to state that these entities/s-

takeholders are common for any regional or national certification scheme.

IoT Device Manufacturer

IoT device manufacturers and vendors are entities responsible for implementing the se-

curity features, certification capabilities, providing technical and non-technical support

to end-users throughout the device lifecycle.

Industry Group

An industry group is usually a membership-based, non-profit organization of partners

who collaboratively identify challenges of the industry and potential solutions in a

particular domain. They work towards vendor-neutral initiatives and are an important

source of shared knowledge, best practices and advice.

End-users

The end-users of devices are either direct consumers or solution providers responsible

for deployment of the IoT devices and networks.

CAB

A Conformity Assessment Body (CAB) is responsible for performing the assessment

of IoT devices for certification or re-certification. A CAB is usually an independent

third-party which is neither the manufacturer nor the provider of the IoT device under

assessment.

NAB

In order to include third-party CABs in the chain-of-trust, they need to be accredited.

A National Accreditation body (NAB) is responsible for accrediting these CABs On

fulfillment of a set of requirements. An accreditation lasts for 5 years or any pre-set

period of validity.

48

D5.4 Version 1.0

Figure 3.1. The entities and stakeholders of TruCerT process adopted from the EU Cybersecu-

rity Certification Framework. The IoT device manufacturers are responsible for implementing

certification capabilities in devices and initiate certification. The CAB performs the audit and

certification protocol (i.e. TruCerT) with the IoT Device based on the Device-profile received from

guidance repo. It is also responsible for risk assessment and re-certification after IoT device’s

deployment. The industry group is an important source of shared knowledge, best practices and

advice. The NAB is charged with responsibility of accrediting the CAB/s and the NCCA oversees

the entire process and provides expertise to the NAB.

NCCA

A National Cybersecurity Certification Authority (NCCA) is a critically important entity

stated in the EU Cybersecurity Act. It is held responsible for overseeing various aspects

of the entire certification process. It provides theNABswith expertise and information

and validates CABs on the requirements to authorize them to perform assessment

and certification.

Trusted Computing is a technology that provides guarantees to the user about what

software is running on device and whether the behaviour of the software follows

the intended patterns. Trusted Platform Module (TPM) [83] is one such standardised

technology, whose primary scope is to assure platform integrity by ensuring the

behaviour of software on target device. This is done bymeasuring the software and

hardware on device. Each TPM is equippedwith a unique key pair (e.g. RSA keys) where

the private key never leaves the TPM chip and is never exposed to any component

on the device. Devices equipped with TPM, hence have the ability to establish root-

of-trust starting from the TPM-unique key. Each software stage during the boot-up

process performsmeasurements of the software components in the next phase. These

measurements are digests of the memory regions and are extended into Platform

Configuration Registers (PCR) whose size depends on the selected algorithm. The

TPM merges the measurement with the measurement of the previous phase. This

process is known asMeasured Boot.

3.2 TruCerT Protocol

The security profile of an IoT device is defined by its hardware and software com-

ponents. The scope of this paper is the security certification of the software and

does not encompass the security of individual software components. TruCerT only

focuses on audit of the device’s software-state (i.e. software stack) and perform

trusted certification. We assume a composite certification scheme [64] which would

allow TruCerT to issue a certificate based on the audited software-state. Finally, the

aim of TruCerT is to assign substantial or high assurance level certificates as required

49

D5.4 Version 1.0

Device
Vendor

CAB: Risk
Assessment

IoT
Device

CAB:
Verifier

Sign(DevID, device_profile, VKsk)

Sign (N, CABKsk)

IML, device_profile, CKpk,
AK_Cert, Sign (N, proof_CK, AKsk)

<<Initiate Certificate Request>>

<<Initiate Audit Request>>

<<TPM Functions>>

Create CK
Generate Proof_CK

<<Audit Evidence and Certification Info>>

Verify AK
Verify Signature on Proof_CK
Compute digestML from IML
Compare digestML with
pcrDigest in Proof_CK

<<Integrity Verification>>

IML, device_profile

<<Risk Evaluation>>

<<Risk calculation>>

Get Vulnerability Info
Calculate Risk Score

Risk Score
CertID, DevID, device_profile,

assurance_level, CKpk, T, CAB_Signature

<<Certificate of Assurance>>

Figure 3.2. The Device Vendor initiates TruCerT and the CAB then runs the certification process

with the IoT Device. After IoT Device attestation and risk evaluation, the CAB generates a

Certificate of Assurance.

by the EU Cybersecurity Act. On the technology side, TruCerT is based on TPM 2.0.

From a broad class of IoT devices, we only consider IoT devices supporting TPM 2.0,

e.g., Industrial IoT devices [130], and IoT Edge devices [65, 66]. The upcoming sections

describe the attributes of the certificate, the process of certification and certificate

usage. It is important to clarify that the scope of this work is strictly confined to

the certification process. Vulnerability assessment and risk evaluation are generally

considered in TruCerT but not focused. TruCerT comprises of the following steps (Fig.

3.2):

3.2.1 Initiate Certificate Request

The CABprovisions remote audit and certification service through TruCerTwhich is used

by the Device Vendor to initiate certification for individual IoT devices. TruCerT is only

available to IoT devices which are TPM 2.0 compliant; i.e, they implement measured

boot. The Device Vendor initiates a request for certificate by providing the Universal

Resource Identifier (URI) of the IoT Device (i.e. URIdev).

50

D5.4 Version 1.0

3.2.2 Initiate Audit Request

The CAB runs the TruCerT protocol directly with the IoT Device for RIV. The Verifier

module of the CAB generates a unique nonce (N) and requests the IoT Device for its

attestation data.

3.2.3 Audit Evidence and Certification Info

The certification protocol relies on a trustworthy way of reporting the current state of

IoT Device software-state to the CAB. TruCerT uses TPM sealing capabilities to bind the

issued Certificate of Assurance (Assurance_Cert) with the audited state of the IoT

Device, i.e. the certificate is automatically invalidated if IoT Device software-state

is changed. To achieve this, a TPM-based asymmetric Certificate-Binding Key (CK)

is generated. This key is an important element of Assurance_Cert. We use Elliptic

Curve Cryptography (ECC) based asymmetric keys which arewell supported by TPM2.0

due to its algorithm agility [45]. Creating this key pair using TPM2_Create() command

and passing a list of PCR(s) through the TPML_PCR_SELECTION structure parameter

(Listing 3.1) allows the generated key value to be dependent on selected PCR values.

// Declare in and out parameters for CK

TPML_PCR_SELECTION creation_pcr;

TPM2B_PUBLIC *outPublic;

TPM2B_PRIVATE *outPrivate;

TPM2B_CREATION_DATA *creationData;

TPM2B_DIGEST *creationHash;

TPMT_TK_CREATION *creationTicket;

// Generate CK keypair

tpm2_create (& creation_pcr , //in parameters

&outPrivate , &outPublic , //out parameters

&creationData , &creationHash , //out parameters

&creationTicket); //out parameters

Listing 3.1. TPM 2.0 command to generate the Certificate-Binding Key

As the selected PCR(s) contain a digest value that is computed and stored during mea-

sured boot and represent the software-state of the IoT Device, using these PCR values

inCK creation enforces TPM to validate this software-statewheneverCK is used. The

successful creation of CK returns the keypair outPublic (CKpk), outPrivate (CKsk),

creationData together with its hash creationHash. The creationData contains a list of

selected PCR(s) (pcrSelect) and their digest (pcrDigest). Moreover, a creationTicket

is also returned. The CKpk is included in the audit evidence whereas its corresponding

CKsk resides in the TPM. The creationData together with the creationHash comprise

the proof_CK and are also included in the audit evidence.

The IoT Device forwards its TPM-generated audit evidence whose fields are listed

below:

• device_profile: This identifies the usage context of the IoT Device (e.g. home

consumer, industry 4.0, healthcare) and is to be included in the Assurance_Cert.
This information is essential for the End-user viewing the Assurance_Cert and
helps in applying appropriate authorization policies for IoT devices.

• IMLdev: The IntegrityMeasurement Log (IMLdev) ia a list of all softwaremodules

and their hashes, loaded in the IoT Device. IMLdev will be used to evaluate the

51

D5.4 Version 1.0

health/integrity of the IoT Device software-state.

• AK_Cert: This is the Attestation Key Certificate issued by an Attestation CA

(trusted third-party) which certifies that the AK is a valid TPM key generated

by an authentic IoT Device, and is used for attestation of TPM-generated data

(e.g. PCR, TPM keys, etc.). It contains the public counter-part of TPM’s unique

key AKpk to be used by the CAB to validate TPM-signed data. The corresponding

AKsk is used by the IoT Device to sign data, this key is used strictly for signing

TPM-generated values. The identity information of the IoT Device (DevID) is
also included in the AK_Cert.

• CKpk: This key, as discussed earlier, is locked to the IoT Device’s software-state

reported in the IMLdev.

• proof_CK : TPM-generated proof of theCK . This information is signed by TPM’s

unique keyAKsk. The proof_CK contains the proof of PCR(s) used in the binding

of CK to the software-state. The pcrDigest in proof_CK is compared by the

CAB against the self-computed pcrDigest from the received IMLdev.

• N : If the verifier’s Nonce N does not match the device’s N, it indicates a replay

attack.

On receiving the audit evidence, the CAB performs multiple verification steps before

trusting the IoT Device. The CAB evaluates the integrity of the IoT Device by checking

the received IMLdev and performing the following checks:

1. The AKpk is received in AK_Cert which is validated by verifying the signature of
Attestation CA.

2. The CABneedsproof thatCK is a TPM-resident keywhich reflects the IoT Device’s

current software-state. This is obtained by using the TPM2_CertifyCreation()

command (Listing 3.2) which only certifies TPM-created objects (i.e. CK in our

case). The command takes the CK handle (to identify it), its creationHash and

creationTicket and compares them against the self-computed test ticket for

CK. After checking validity of the ticket, TPM creates proof_CK structure which

contains the creationData and creationHash of the CK and is signed by AKsk.

This proves that CK is a TPM-resident key [177, 176, 175].

3. The correctness of CKpk is validated by checking the signed proof_CK. This is

done by comparing theCKpk digest in the proof_CK structure with the value com-

puted from the received CKpk. Since, proof_CK is a TPM-generated attestation

information, therefore CAB can trust that CKpk is the correct key.

4. The proof_CK structure also validates that CKpk was created with certain TPM

PCR(s) to bind the CK to the software-state. The PCR information is obtained

from the creationData included in proof_CK.

As a result of the verifications, the CAB can establish trust that (a) the request is sent

by a legitimate IoT Device; and (b) the received CK is a TPM key which reflects the

software-state of IoT Device represented by IMLdev.

52

D5.4 Version 1.0

// Declare out parameters for proof_CK

TPM2B_ATTEST *proof_CK;

TPMT_SIGNATURE *signature;

// Generate CK's proof i.e. proof_CK

tpm2_certifyCreation (&CKhandle , &creationData ,

&creationHash ,& creationTicket //in parameters

&proof_CK , &signature); //out parameters

Listing 3.2. TPM 2.0 command to generate proof of CK being TPM-resident

3.2.4 Risk Evaluation

After successful RIV, the audit is complete and the CAB analyzes the software-state for

risk evaluation by comparing it to a reference list RMLdev provided by the manufac-

turer. The RMLdev contains a list of software that the IoT Devicewas shipped with

and the respective hashes. Another common approach for calculating the device’s

health is by comparing the software list to sources like MalwareTextDB [1] which lists

millions of software and calculates the status (GOOD, MALWARE, UNKNOWN, SUSPICIOUS).

Such an analysis can be used to assign an assurance level (Basic, Substantial, High)

to the device_profile as is proposed by [27, 26]. TheAssurance_Cert is generated after
this evaluation and includes the calculated assurance level.

3.2.5 Certificate of Assurance

The Assurance_Cert is generated after verification of the audit evidence and risk

evaluation of the device_profile. Critical elements of Assurance_Cert are discussed
next:

1. CertID: The unique identifier of the certificate.

2. DevID: Theunique identity informationof the IoT Device receiving theAssurance_Cert.

3. device_profile: As stated previously, device_profile identifies the usage context
of the IoT Device. It is used by the CAB to perform profile-specific risk evaluation

and is sent to the CAB by Device Vendor requesting device certification.

4. assurance_level: The assurance level of the IoT Device which can be in the form

of a rating (Basic, Substantial, High), or a score (e.g. 0-10). This rating is used

by End-user to define local access policies for different levels of security. It

is pertinent to state that the health rating can be different in a subsequent

evaluation of the same software stack due to emergence of new vulnerabilities

and threats. This results in a short-lived Assurance_Cert validity.

5. T : Validity period of the certificate.

6. CKpk: The keywhichwill later be used to communicate securelywith the certified

IoT Device.

Further Discussions: Table 3.1 summarises how TruCerT protocol fulfills the set of

requirements necessary for a broadly usable certification process, based on the EU

Cybersecurity Certification Framework. A certified IoT Device is shipped with its

Assurance_Cert to the End User. The included security assurance level allows the End-

user to apply relevant security policies to grant access in the user network. To establish

53

D5.4 Version 1.0

Table 3.1. Requirement fulfillment by TruCerT mechanisms

Req. Fulfillment

Minimum baseline TruCerT introduces device_profile, requirement of TPM-support
and calculation of assurance level to establish a minimum baseline.

Minimum overhead The communication overhead of the protocol is at par with RATS.
However, estimation of overhead of the entire certification process
requires further evaluations which are part of future work.

Lean reassessments TruCerT maintains regularity as it enables re-assessment and re-
certification automatically when the certificate is invalidated.

Risk assessment TruCerT proposes mechanisms for risk assessment and evaluation
in Section 3.2.4. It specifies the usage scenario and context of the
IoT device as the device_profile to support better risk assessment.

Penetration testing TruCerT does not discuss penetration testing.

Vuln. management TruCerT protocol is limited to audit and certification mechanisms
but describes on a high-level in Section 3.2.4 how the vulnerability
management databases can be used with TruCerT.

Integration w/ standards Section 3.3 discusses this requirement and its fulfillment in detail.

a communication session with an IoT Device, the End-user requests the certificate,

validates it and verifies the device.

3.3 Realization of TruCerT with Standards

In this section, we discuss TruCerT with respect to existing standards i.e. RATS for RIV

of device, and X509 device authentication certificates. We show how TruCerT goals

can be achieved using existing standards and regulations.

3.3.1 TruCerT with RATS

Remote Attestation Procedures (RATS) [39, 85], describes a process and guidelines

for remote attestation of the integrity of firmware and software installed on net-

worked devices that contain TPM1.2 or TPM2.0. RATS includes mechanisms for RIV

processes like (i) device identification and (ii) generation, conveyance and appraisal

of cryptographic proof of the device in question. As mentioned previously, TruCerT

relies on verifying the current state of the IoT device’s software stack for certification.

Hence, RATS can be used instead of the proposed TruCerT mechanism using TPM-

generated CK. We briefly discuss TruCerT accompanied with RATS for achieving RIV

(Fig. 3.3 is the workflow of TruCerT with RATS). This procedure successfully verifies

the integrity of the software-state but does not prevent the TOCTOU problem [42].

The Assurance_Cert received after RATS-based audit does not guarantee the same

assurance level at the time of use of the certificate. Using TPMmechanisms to bind

the certificate to the software-state, as proposed in TruCerT ensures that the certifi-

cate being used has the same assurance level that was audited and is stated in the

Assurance_Cert.

3.3.2 TruCerT and X509-based Certificates

Major IoT deployment models today support IoT device authentication based on X509

client certificates [128, 5]. These certificates consist of identity information of the

device, the Certification Authority (CA), the certificate itself and some extensions. The

54

D5.4 Version 1.0

Device
Vendor

CAB: Risk
Assessment

IoT
Device

CAB:
Verifier

Sign(DevID, device_profile, VKsk)

Sign (N, CABKsk), PCRSelection

Device_profile, AK_Cert, Sign (N,
Evidence, AKsk), Logs

<<Initiate Certificate Request>>

<<Initiate Evidence Request>>

<<TPM Functions>>

Generate Evidence
Sign Evidence and N
Collect Logs

<<Audit Evidence and Certification Info>>

Verify AK
Verify Signature on Evidence
Compare Evidence with
Appraisal

<<Evidence Appraisal>>

<<Risk
Evaluation>>

CertID, DevID, device_profile,
assurance_level, Key, T, CAB_Signature

<<Certificate of Assurance>>

Figure 3.3. TruCerT Protocol with RATS for Remote Integrity Verification

extensions defined for X.509 certificates are a way to introduce additional attributes

like users or public keys and manage relationships between CAs. Each extensions in a

certificate is designated as either critical or non-critical.

TruCerT proposes to include the Assurance Attributes represented in Assurance_Cert
using standard X509 certificates. In existing architecture, the IoT device receives

a Device Identity Certificate (we call it Cert) through Est-CoAP from the CA. These

certificates authenticate the device during client-server communications. We propose

that after the CAB performs RIV of the IoT device, it transfers the Assurance Attributes

specified in theAssurance_Cert to the CA. The CA then updates the Cert of the device

with Assurance Attributes and enrolls a new certificate, i.e. Cert + Assurance Attributes.

This would require a new certificate request, resulting in a new certificate serial

number. The new Thumbprint/Fingerprint of the certificate will represent both the

Identity and Assurance Attributes of the device. The IoT profile of standard X509

certificate is shown in figure 3.4, it shows how the attributes of Assurance_Cert can
be accommodated in the certificate extensions. Figure 3.5 depicts the original TruCerT

protocol and the alternate proposal extending the existing IoT architecture.

3.4 Network Overhead of TruCerT vs TruCerT with RATS

In this section, we discuss a deployment scenario for a TPM-based IoT device and

assess the communication overhead between the IoT device and Verifier (CAB) for

RIV. The network overhead of the communication in the original TruCerT protocol is

then compared to the TruCerT version with RATS for RIV. We consider an IoT device of

Raspberry Pi 4 [148] type supporting TPM 2.0. The device is part of an IoT network,

connected to the manufacturer’s server and the Verifier for audit and certification

55

D5.4 Version 1.0

Figure 3.4. Standard X509 IoT profile with TruCerT assurance attributes: Certificate ID, Device ID,

Device Profile and Assurance Level

purposes. Most configurations of a TPM are implementation-specific, e.g, TPM 2.0

supports varying number of PCR(s). For our evaluation, we consider a TPM supporting

32 PCRs. The size of PCR depends on the algorithm used for extending it. We use

SHA256 for generating all hashes in this analysis. The TPM signatures are performed

using RSA with a 2048 bit key. The proof_CK and Evidence are TPM-generated values

and are held in TPM2B_ATTEST structure. Standard RATS uses the YANG interface for

challenge-response communication that implements the TCG TAP model [38]. Under

this model, all communication to exchange attestation information takes place via

YANG RPCs based on XML. The values of PCRSelection and Evidence follow the YANG

model specifications. The communication in TruCerT and in TruCerT with RATS can

be labelled with 5 steps. (i) Step 1: Initiate Certificate Request, (ii) Step 2: Initiate

Evidence Request, (iii) Step 3: Audit Evidence and Certification Info, (iv) Step 4: Risk

Evaluation, and (v) Step 5: Certificate of Assurance.

Steps 2 and 3 in TruCerT can be replaced with RATS, whereas Steps 1, 4 and 5 remain

same in terms of communication overhead in both mechanisms. During Steps 2 and 3

of TruCerT, the following messages are exchanged:

• In Step 2, the Verifier sends a signedN of size n, generated using a recommended

cryptographic-strength algorithm.

• The IoT device sends IMLdev of size i and device_profileof size d. The certification

key CK sent is of 256 bits. The IoT device computes proof of the key i.e. proof_CK

of 272 bits and sends it along with the 2048 bit signature generated by TPM. The

TPM certificate AK_Cert of size a is also sent.

56

D5.4 Version 1.0

IoT Device
End-user

CA CAB

Sesure Session Establishment

Est-CoAP -
IoT receives

Cert for
Authentication

TruCert -
Remote Integrity Verification

Existing Mechanisms TruCert Procedures TruCert Procedures using Existing Options

IoT Device
End-user

CA CAB
Transfer Assurance Attributes

TruCert -
Remote Integrity Verification

+
Assurance
Attributes

Sesure Session Establishment

Cert

 Cert +
Assurance
Attributes

 Cert Assurance_
Cert

Cert Assurance_
Cert

Figure 3.5. Introduction of TruCerT and Assurance_Cert into existing IoT paradigm. IoT Device

receives a Device Identity Certificate, i.e. Cert through Est-CoAP from CA, which is used for secure

session establishment with End-user. CAB audits the device using TruCerT and achieves RIV. The

device then receives an Assurance_Cert from CAB which guarantees software-state integrity.

Another proposal presented here is combining the assurance attributes with X509 Device Identity

Certificates. TruCerT proposes this alternate mechanism to transfer the Assurance Attributes

after RIV to the CA. The CA then updates the Cert of IoT Devicewith Assurance Attributes and

enrolls a new certificate, i.e. Cert + Assurance Attributes.

• Therefore, for one successful RIV of the device, the total communication over-

head is: n+ i+ d+ 256 + 272 + 2048 + a; where n, i, d and a are constant values

in bits.

Messages exchanged in Step 2, 3 of TruCerT with RATS are:

• The Verifier sends a signed N of size n and a set of PCR indices i.e. PCRSelection.

The indices are represented using YANG datatype uint8 [94] and sending a single

index would take 8 bits, whereas sending 32 indices would require 256 bits.

• The IoT device sends Log of the same size as IMLdev i.e. size i, and a device_profile

of size d. The TPM generates the Evidence of 272 bits using the requested PCR

indices and N and sends it along with the 2048 bit signature. Finally, the IoT

device also sends the TPM certificate AK_Cert of size a (as in TruCerT protocol).

• Hence, the communication overhead for TruCerT with RATS for RIV is: n+ 8+ i+
d+ 272 + 2048 + a for one PCR index and n+ 256 + i+ d+ 272 + 2048 + a for 32
indices selected; where n, i, d and a are constant values in bits.

TruCerT communication overhead is at par with TruCerT with RATS for RIV with a

minor difference of 248 bits in worst case scenario. The size of N, device_profile, Logs,

AK_Cert and Signature remain same across both versions of the protocol. The factors

contributing to the difference in overhead are PCRSelection and Evidence for TruCerT

with RATS and CK and proof_CK in TruCerT. With TruCerT, we generate assurance

certificate and achieve automated certificationwithout being affected by the TOCTOU

problem which is our tradeoff for a few bytes of communication overhead.

3.5 Security Analysis

57

D5.4 Version 1.0

3.5.1 Introduction to Tamarin

Tamarin [122] is a symbolic analysis tool using multi-set rewriting rules —to encode a

protocol specification and the adversary’s capabilities— and first-order logic formulas

—to define security properties. These rewriting rules induce a transition system de-

scribing the potential executions of (unbounded numbers of) protocol instances in

parallel, allowing us to cover the potential interactions of enrolling at many CAs and

using various services concurrently. Tamarin’s default adversary model corresponds to

a Dolev-Yao [62] adversary who has complete control over the network: it can eaves-

drop, block, or modify messages sent by honest agents. It can also inject messages

of its own, provided it knows all the necessary information to build them (e.g. to

generate a given ciphertext, the adversary needs to know the associated private key).

This model allows all sorts of man-in-the-middle, impersonation, reflection, or relay

attacks, among others. Users can also extend this default model, either to give more

capabilities to the adversary (e.g. learn random values through an oracle) or limit what

it can do on the network (e.g. confidential channels that cannot be eavesdropped on).

3.5.2 TruCerT Formal Analysis

Wemodeled the communication between the Device Vendor, the IoT Device, and the

CABVerifier. The Verifier and Risk Assessment agents are generally the same entity and

we separated them for ease of presentation andmaking the parallels between TruCerT

and RATS clearer. In any case, as the communication between these two agents handle

no cryptographically sensitive data, it doesn’t need to be modeled. In addition to its

full control of the network, we let the adversary compromise private keys, and show

that our security properties hold for a given protocol instance as long as the secret

keys involved in this instance are not compromised. Indeed, TruCerT crucially relies

on the security properties provided by TPMs, and the CAB as a trusted third-party,

and does not give any guarantee if one of them is compromised. As for the Device

Vendor, the only attack it can perform if compromised is sending bogus certificate

request in an attempt at Denial of Service, a class of attacks that is not covered by the

Tamarin security model. Both versions, with or without RATS, have the same Tamarin

model. We proved the secrecy of CKsk, thus guaranteeing that certificates are not

spoofable, and a strong authenticity property—injective agreement in both directions

between the CAB and the Device Vendor, from Lowe’s hierarchy of authentication

specifications[117]— which guarantees that the certificate of assurance received by

the IoT Device is correct and that no replay attack is possible and that the adversary

cannot perform an attack by making several runs of TruCerT interact. Our model is

available at https://github.com/Simon-Bouget/tamarin-TruCerT/blob/main/TruCerT.

spthy and can be automatically verified with Tamarin’s default heuristic in under two

minutes.

58

https://github.com/Simon-Bouget/tamarin-TruCerT/blob/main/TruCerT.spthy
https://github.com/Simon-Bouget/tamarin-TruCerT/blob/main/TruCerT.spthy

D5.4 Version 1.0

4 Secure computing with Contiki-NG

In this chapter, we describe our implementation efforts to provide the IoT ecosystem

with a secure software stack where all critical security building blocks are readily

available. Our efforts focused on two different layers, each presented in the next two

sections.

4.1 Contiki-NG on Low-Power RISC-V Devices

4.1.1 Background knowledge and context of the work

We need a framework for work with Cybersecure IoT platforms based on RISC-V. Since

there are some open designs of RISC-V cores that can run on FPGAs, the focus is on

setting up a Contiki-NG platform for one of the open designs for FPGAs and, from that

platform, extend with security features over time.

4.1.1.1 Description of RISC-V CPU architecture (SERV)

To develop a small RISC-V Contiki-NG port, we selected a small implementation of a

32-bit RISC-V core by Olof Kindgren called SERV1, the world’s smallest RISC-V core.

Based on SERV, there is a reference platform for FPGAs called Servant, a minimal

SoC with a UART and timer, illustrated in figure 4.1. Servant supports Zephyr RTOS.

Servant can be run in verilator for testing and evaluating the Contiki-NG port.

4.1.1.2 RISC-V on FPGA

The target for the porting effort is to have the ability to research security on the

hardware side and the software side, using FPGAs for faster simulation of the full

system (e.g. SoC design and software) to support the technology exploration and

build RISC-V experience. The construction of a RISC-V testbed based on FPGA for

prototyping of open-source RISC-V processors and platforms, provides an environment

in which new platforms and ideas can be tested out without the need for continuous

investment in new physical hardware (which lags the scientific state of the art because

of the complex and expensive process of tape out/manufacturing).

The FPGA prototyping testbed used is a Xilinx VCU128 FPGA development kit, which

is a large FPGA specifically intended for hardware prototyping. It consists of 2 852k

logic cells, 9024 DSP slices, and 340,9 MB of block RAM. For external communication

it has 624 HP I/O, 8 GB of HBM, and several peripheral interfaces. Besides target

platform for the SERV architecture, which is the focus of this report, the VCU128 is

capable enough to simulate larger systems, and there is ongoing work to develop the

software stack for the Carfield project on VCU128 FPGA boards. That project is in

itself also an interesting testbed for exploration of Root of Trust (RoT) on RISC-V, as

such components are included in the soft-core platform, and a promising future step

for these efforts.

4.1.2 The Contiki-NG OS

Contiki-NG (Next Generation) is an open-source, cross-platform operating system for

severely constrained wireless embedded devices. It focuses on dependable (reliable

1https://github.com/olofk/serv

59

https://github.com/olofk/serv

D5.4 Version 1.0

Figure 4.1. Servant with SERV (from Olof Kindgrens github repository)

and secure) low-power communications and standardized protocols, such as 6LoWPAN,

IPv6, 6TiSCH, RPL, and CoAP. Its primary aims are to (i) facilitate rapid prototyping

and evaluation of Internet of Things research ideas, (ii) reduce time-to-market for

Internet of Things applications, and (iii) provide an easy-to-use platform for teaching

embedded systems-related courses in higher education. Contiki-NG supports Trust

Zone for ARM SoCs and will add support for similar trusted execution environments

for RISC-V in a later phase.

4.1.3 Porting Contiki-NG to a RISC-V CPU

The Contiki-NG port to SERV is a first step for enabling experimentation of hardware/-

software security features within the Contiki-NG ecosystem. Since there is an initial

port for Zephyr OS2, we have made use of the Zephyr SDK (including the tools needed

to build RISC-V) as a starting point. The port follows the Contiki-NG guide for new plat-

forms: it makes Contiki-NG capable of running on the “bare-bone” hardware without

any other external software components. Hence it can be called a low-level ”native”

Contiki-NG port. Contiki-NG build system is based on GNU Make. The serv/RISC-V port

adopts the elements of serv’s port of Zephyr OS. In particular, the following parts are

used:

• The software development kit’s elements – including the target-specific compiler

and linker

• The library environment and building options

• Source files implementing hardware initialization and basic services (e.g. timer)

2https://zephyrproject.org

60

https://zephyrproject.org

D5.4 Version 1.0

File structure of the port:

• contiki-ng/arch/cpu/serv/… - This is the SERV MCU part of the port. Defines

compilers, linkers, etc for the SERV target RISC-V microprocessor.

• contiki-ng/arch/platform/servant/… - This is the SoC or servant part where the

support for the complete SoC including peripherals such as UART is included.

The current version is availableona forkofContiki-NGat https://github.com/joakimeriksson/

contiki-ng, but long term our goal is to have this implementation available in the

official Contiki-NG main repo.

4.1.4 Future Work

The selected SoC, SERV / Servant, does not support any security features. Still, for

RISC-V, there are several open designs on Trust Zone-like security mechanisms that

enable a trusted execution environment (TEE). Some examples are:

• MultiZone that enables TEE for RISC-V designs. MultiZone enables multiple

equally secure domains, with full control over data, programs and peripher-

als. More details at: https://hex-five.com/multizone-security-tee-riscv/,

and source at https://github.com/hex-five/multizone-sdk

• SiFiveWorldGuard – another TEE forRISC-VdesignedbySiFive anddonated to the

RISC-V international (the RISC-V organization/alliance). WorldGuard like Multi-

Zone do supportmultiple secure domains (or worlds). More details: https://www.

businesswire.com/news/home/20230524005055/en/SiFive-Gives-WorldGuard-to-

RISC-V-International-to-Make-this-Robust-Security-Model-More-Accessible-

to-the-RISC-V-Community

The focus of future work for the Contiki-NG port is to find a TEE that is well suited to

IoT platforms that typically are relatively resource-constrained but very connected

and, therefore, will need a lightweight but very secure TEE.

In parallel with the aforementioned ”native” Contiki-NG port to the target RISC-V

platform (serv), we are alsoworking on implementing a newCMake-based build system

instead of – or in addition to - the existing one based on GNU Make. This would allow:

• Factorize Contiki-NG implementation into individual sub-components, in particu-

lar – elements of the networking stack, and be able to use them independently

of the low-level ”native” hardware Contiki-NG dependencies.

• Build Contiki-NG applications as threads in other RTOSes built around CMake - in

our case, Zephyr OS. That is, the functionality of Contiki-NG becomes available

for use within Zephyr OS SDK ”ecosystem”, including Zephyr’s existing and well-

tested ports to RISC-V CPUs/platforms, including ‘serv’

4.2 EDHOC for Contiki-NG

We are implementing the newly standardized lightweight authenticated key exchange

called EDHOC (Ephemeral Diffie-Hellman Over COSE) standard for the Contiki-NG.

61

https://github.com/joakimeriksson/contiki-ng
https://github.com/joakimeriksson/contiki-ng
https://hex-five.com/multizone-security-tee-riscv/
https://github.com/hex-five/multizone-sdk
https://www.businesswire.com/news/home/20230524005055/en/SiFive-Gives-WorldGuard-to-RISC-V-International-to-Make-this-Robust-Security-Model-More-Accessible-to-the-RISC-V-Community
https://www.businesswire.com/news/home/20230524005055/en/SiFive-Gives-WorldGuard-to-RISC-V-International-to-Make-this-Robust-Security-Model-More-Accessible-to-the-RISC-V-Community
https://www.businesswire.com/news/home/20230524005055/en/SiFive-Gives-WorldGuard-to-RISC-V-International-to-Make-this-Robust-Security-Model-More-Accessible-to-the-RISC-V-Community
https://www.businesswire.com/news/home/20230524005055/en/SiFive-Gives-WorldGuard-to-RISC-V-International-to-Make-this-Robust-Security-Model-More-Accessible-to-the-RISC-V-Community

D5.4 Version 1.0

EDHOC is a de facto standard for keymanagement for low-power IoT devices, primarily

developed for OSCORE, a new cryptographic standard for message security.

RISE worked on implementing the latest revision of Ephemeral Diffie-Hellman Over

COSE (EDHOC) in Contiki-NG. This will add an essential component to the implementa-

tion of Object Security for Constrained RESTful Environments (OSCORE) in Contiki-NG.

The current status is that the majority of a basic implementation is implemented

along with an automated testbench. The work is being validated against section 3 in

draft-ietf-lake-traces-08.

The code is available at https://github.com/pjonsson/contiki-ng/tree/edhoc-drop

The work has also resulted in user interface improvements in Cooja and build system

fixes in Contiki-NG getting merged upstream and that will be a part of the Contiki-NG

5.0 release.

62

https://github.com/pjonsson/contiki-ng/tree/edhoc-drop

D5.4 Version 1.0

5 SIRE Evaluation

In this chapter, we consider the application of SIRE (acronym for truSted verIfieR sEr-

vice) in three different use cases: for IoT membership management, for autonomous

vehicle coordination, and for robust federated machine learning.

We note that the need for membership management and attestation of IoT devices is

highlighted in a demonstration that has been prepared in VEDLIoT, in the scope of the

motor monitor use case. In this demonstration, which also brings together the secure

MQTT broker described in Section 2.3, SIRE is used for device attestation to illustrate

how the service is used. The other use case scenarios were considered both because

they are relevant and related to other work in VEDLIoT, namely to the pedestrian

detection in autonomous driving use case and to the federated learning use case

considered in the FLAIR Open Call project, and because these use case scenarios may

involve a large number of IoT devices.

The description of SIRE and its implementation was provided in Deliverables D5.2 and

D5.3. Therefore, here we directly delve into the description of the use cases, followed

by evaluation results concerning the performance of SIRE in each of them.

5.1 Use Cases

To better illustrate and motivate the need for a solution that combines remote attes-

tation and coordination primitives, we will detail a few use cases and environments in

which the employment of a solution like SIRE could be a suitable approach.

5.1.1 IoT Membership Management

The membership of a system is represented by an up-to-date list of active participants,

which is an especially complicated task in some IoT applications due to the scale and

dynamism of the device group. In cloud-based systems, membership management is

performed using a coordination service due to two fundamental characteristics: failure

detection of client processes and highly available consistent storage [61]. Typically, a

node thatwants to join the systemwill request the coordination service to add it to the

application’s membership without any concern for its correctness. Although this might

be appropriate in a data center, in an IoT scenario, accepting every device that requests

to join an application can constitute a considerable threat as these environments are

unsafe. Therefore, the coordination service must support the definition of policies

that specify the requirements for participating devices to ensure a certain degree of

security.

5.1.2 Autonomous Vehicle Coordination

It is expected that in the near future, we will have our streets filled with autonomous

self-driving vehicles, which will require coordination of their movements. Such coordi-

nation enables proper access to shared resources, such as intersections and parking

slots, and the execution of mobility tasks, such as platooning and ramp merging [119].

Some of these tasks, such as parking slot management, typically use a centralized

infrastructure tomaintain the state of both the environment and the participants (e.g.,

keep a list of the slots in a smart parking lot and their occupation state as well as the

state of the occupying vehicles [99]). Other tasks, such as platooning, rely primarily on

63

D5.4 Version 1.0

inter-vehicle communication to execute the decision-making necessary to perform the

task. In addition, there are also some tasks, such as intersection management, which

can be performed in both ways depending on the available resources (e.g., in the case

an intersection does not have a smart traffic light, the order of crossing is decided

between the vehicles [195]). For the purpose of this paper, we opted to focus on the

intersection management use case.

5.1.2.1 Intersection Management

Whenever multiple vehicles meet at an intersection, a unanimous order of passage

needs to be established to prevent traffic accidents from occurring. This decision can

be taken either by a centralized infrastructure, i.e., a ”smart” traffic light, as pictured

in Figure 5.1, or cooperatively by all the conflicting vehicles. Some systems utilize

the ”smart” traffic light by default and rely on the latter approach only when the

infrastructure is absent [195].

Although these tasks can be reduced to a matter of coordination, some characteristics

and issues inherent to the autonomous vehicle environment make existent coordina-

tion services unsuited for the field. First, this environment requires a safety-critical

design strategy as even minor faults could have high costs, both in the human and

monetary sense. Thus, assuring the correctness of every entity that composes the

system is essential. As an exception to the IoT field, the autonomous vehicle environ-

ment is fairly homogeneous, with smart vehicles having high computation capabilities

as they are required to perform heavy computational tasks, such as machine learning.

Although this might be true for the current scenario, it is fair to expect that, with

the prevalence of smart vehicles, communications will need to be performed with

other road entities, such as pedestrians and cyclists. Therefore, the field might quickly

become heterogeneous if these entities are taken into account, and as such, it is bene-

ficial to develop solutions adapted to client heterogeneity. Lastly, these environments

are composed of a large quantity of highly dynamic participants, making it difficult

to keep an up-to-date view of the system’s membership and state. Although some

systems and tasks do not require it, there is always a benefit in having an up-to-date

and centralized source of information available to joining vehicles, for example, or

even to facilitate enabling the execution of other tasks that are not available in the

system.

5.1.3 Robust Federated Machine Learning

Machine learning models have grown in complexity and in the amount of data pro-

cessed, which requires a lot of computation resources. Therefore, most machine

learning implementations are now distributed. Most of these implementations rely on

a core component, a parameter server, which is in charge of updating the parameter

vector, while workers perform the actual update estimation based on the share of

data they have access to. This data could be a fraction of a dataset provided by the

parameter server or even data directly gathered by these workers. These workers may

be devices of any kind, from simple sensors and cameras to hardware accelerators or

even regular computers. This scenario is described in Figure 5.1. Although the imple-

mentations are distributed, none can tolerate computation errors, stalled processes,

or attackers trying to compromise the system. One approach to solve this problem is

to use an aggregation rule that can tolerate Byzantine computation faults, such as

64

D5.4 Version 1.0

Figure 5.1. SIRE Use Cases: BFT federated learning and autonomous vehicle intersection manage-

ment.

Krum/Multi-Krum [40] and Bulyan [127]. Two examples of systems that implement

and utilize these rules are AggregaThor [55] and Garfield [84]. Essentially, these rules

take all the gradients computed by the workers as input and discard those that differ

greatly from the others, meaning that these rules are only effective if most workers

are correct.

Similarly to the autonomous vehicle environment, the parameter server scenario has a

few characteristics and issues that should be considered when developing appropriate

solutions. First, this scenario can be heterogeneous as the workers may be devices

of any kind with a wide range of computational capabilities. Although the Byzantine

aggregation rule can prevent malicious workers from impacting the parameter vector,

these adversaries can still interact with the parameter server and, as such, may consti-

tute a threat to the system. Therefore, some guarantees must be given regarding the

correctness and integrity of the workers. Lastly, in some systems, the aggregation rule

is executed when the parameter server has collected gradients from each worker. This

requires the utilization of failure detection to prevent crashed workers from stalling

the entire system.

5.2 Evaluation

In this section, we present the results of SIRE’s performance evaluation. These ex-

periments consist of the typical distributed systems’ read and write (i.e., get and put
operations) experiments followed by an evaluation of SIRE’s performance on the three

use cases presented in Section 5.1: IoT Membership Management (join/attest opera-
tion), autonomous vehicle intersection management, and robust federated learning.

Experimental setup: All tests were executed in 16 machines with the following char-

acteristics: Dell PowerEdge R410 with two quad-core Intel Xeon E5520 (2.27 GHz)

CPUs or two quad-core Intel Xeon E5620 (2.40 GHz); two hardware threads per core;

32 GB of RAM; gigabit ethernet connection; Ubuntu 22.04 operating system with

OpenJDK RE 11.0.19. The five machines with the more powerful CPU, Xeon E5620,

were always used to execute the server replicas. In each experiment, we utilized up to

2,000 clients distributed uniformly across 10 machines. Since the cluster only has 16

machines, we had to utilize additional machines with different specifications when

running experiments with seven and ten replicas.

65

D5.4 Version 1.0

5.2.1 Read and Write Data – get & put

We start by reporting the results of read and write performance tests that are com-

monly used to evaluate distributed systems. These tests were performed with four,

seven, and ten server replicas to tolerate one, two, and three faults (represented by

f), respectively, with each replica being executed in its own machine.1 We deployed

up to 2000 clients across multiple machines, each running its own proxy to impose a

higher load on the server replicas. One additional machine was used to gather the

measurements without executing any operations to prevent the measuring process

from affecting the results.

We performed this evaluation using rounds, with the number of clients increasing

between them, from 1 to 2000 clients, sending operations of 100 bytes. These clients

were distributed equally between each machine.

In each round, the throughput measurements are taken around every two seconds by

the leader replica that counts the number of requests in that period. This number is

divided by two to obtain the throughput and stored, updating the max throughput

accordingly. For the latency, we measure it for each request in the client, store it, and

update the max latency accordingly. The results of this evaluation are presented in

Figure 5.2 and Figure 5.3 for the get and put operations, respectively. Since the get
operation is executed unordered, i.e., it does not require the consensus protocol to be

executed, its overall performance is higher than the put, as the lattermust be executed

in order. We can also notice that a higher number of server replicas (which implies a

higher f) results in a lower throughput for both operations. The reason for this is the
number of messages that must be exchanged between the replicas and the number

of messages that must be sent to a client, as they are proportionate to the number of

replicas. This leads to an especially increased load on the network connection, which

cannot provide enough bandwidth to accommodate the large quantity of messages

exchanged. However, in the case of the get operation, the latency decreases with

higher numbers of server replicas. Since it is an unordered operation, clients only

need to receive responses from a fraction of the replicas (2f + 1) [37]. Hence, slower
replicas impact the system’s performance less, as the faster ones can compensate for

the slower responses, leading to a lower latency. Lastly, it is relevant to mention that

the measurements obtained in this experiment are very similar to the ones obtained

in the performance evaluation of BFT-SMaRt by itself.

5.2.2 Use Case 1 - IoT Membership Management

The next experiment concerns the IoT membership management application. This use

case comprises two major operations: join/attest and leave. As the leave operation is
very similar in complexity to the putoperation evaluated in thefirst experiment, wewill

focus on the join/attest. This operation requires two roundtrips andmust be executed

ordered. Additionally, it employs an expensive signature algorithm (Schnorr [159,

160]), making it significantly more computationally complex.

We will follow the same experiment outline described for the previous experiment,

measuring throughput and latency for a variable number of replicas and clients. The

results of this experiment are presented in Figure 5.4. As we can see, the performance

obtained is significantly lower than the one obtained for the get and put experiment.

1The number of replicas is given by the formula n = 3f + 1, where n is the number of replicas and f
is the number of tolerated faults.

66

D5.4 Version 1.0

Figure 5.2. Performance evaluation of the get operation using a variable number of server replicas

and a maximum of 2000 clients. f represents the number of tolerated faults.

Figure 5.3. Performance evaluation of the put operation with a variable number of server replicas

and a maximum of 2000 clients. f represents the number of tolerated faults.

67

D5.4 Version 1.0

Figure 5.4. Performance evaluation of the attest/join operation with a variable number of server

replicas and a maximum of 2000 clients.

This is mainly because the Schnorr signature [159, 160] verification is very computa-

tionally heavy, which imposes a bottleneck on the attestation protocol.

Despite these performance values being significantly lower than the ones obtained for

the get and put operations, these are still satisfying results given that the attestation
protocol should only be executed ever so often and not something devices will be

executing constantly, like the get and put Lastly, we would have liked to show a com-

parison in performance between our attestation protocol and the existing services.

However, most literature on the topic is focused on the security aspect of the protocol

and, therefore, does not present any performance metrics.

5.2.3 Use Case 2 - Intersection Management

For the intersectionmanagement use case, we adapted the algorithm from [195] as an

extension for the coordination module. This solution assumes a four-way intersection

with eight lanes where vehicles communicate their intention to a ”smart traffic light,”

i.e., which lane they want to turn to. This smart traffic light will verify if that lane is

”free” and return its decision to the vehicle. If the lane is free, the smart traffic light

will lock three other lanes while the vehicle is crossing, while if the lane is locked,

the vehicle will have to wait for the smart traffic light authorization. When a vehicle

finishes crossing the intersection, it informs the smart traffic light that it is out of the

intersection and, therefore, the previously locked lanes are now free. When the smart

traffic light frees any lanes, it will check if any vehicles are waiting for their turn to

cross and repeat the algorithm.

Since we are not utilizing actual vehicles, we simulate the crossing by setting a timer

on vehicles between the authorization for crossing and the finish of the maneuver.

We utilized a three-second timer in the scenario where a vehicle can cross immediately

and five seconds in the scenario where a vehicle has to stop. Like in the previous

experiments, we also performed multiple rounds. In this case, the rounds changed

the number of vehicles/clients per hour (i.e., how many operations were sent per

second) instead of the overall number of clients. We made this change to perform

68

D5.4 Version 1.0

Figure 5.5. Performance evaluation of the put operation in the intersection management use

case.

tests more similar to the ones utilized in other intersection management systems.

Additionally, we employed the same number of vehicles per hour commonly found in

evaluating these types of systems, 1000 to 7800 vehicles per hour. Since the number

of operations is significantly lower than the ones employed in the previous experi-

ments, measuring throughput is not an adequate metric. Additionally, crossing an

intersection takes three to five seconds, meaning the latency can never be lower than

three seconds. Since our aim is not to evaluate the efficiency of the intersection man-

agement algorithm, we opted to performmeasurements on the delay SIRE introduced

on its execution. The measured delay is presented in Figure 5.5. We obtained an

average of 3.5ms of added latency when utilizing SIRE to perform this algorithm. The

obtained time includes the execution of the consensus protocol, the execution of the

extension, and network transmission. With such a minimal delay, we can conclude that

SIRE is suitable for this use case as it achieves similar results to a dedicated service

while providing more functionalities and robustness guarantees.

5.2.4 Use Case 3 - BFT Federated Learning

Lastly, we evaluated SIRE as a parameter server in the BFT federated learning use

case. We followed a similar algorithm to the ones presented in Garfield [84] and

Agreggathor [55], i.e., a client/worker executes a training round, sends the gradients to

the parameter server, which will execute an aggregation rule and return the resulting

model. For this purpose, we adapted the Krum aggregation rule presented in [40] to

be executed as an extension of the coordination module.

Contrary to the previous experiments, a Python client was utilized as machine learning

methods are more easily implemented with this language. These clients utilized

some pre-generated random data to perform their training using linear regression

with gradient descent optimization. Machine learning tasks require large amounts of

computational power, hence why this experiment utilizes significantly fewer clients

than the previous (from 5 to 200 clients). Since this experiment aimed to evaluate

the performance of SIRE in this use case, we did not perform any measurements

regarding the accuracy of the obtained model. Instead, we followed a similar idea to

the previous experiment and measured the delay SIRE introduced to the execution of

69

D5.4 Version 1.0

Figure 5.6. Performance evaluation of the put operation in the federated learning use case.

the aggregation rule. The results of this experiment are presented in Figure 5.6. We

obtained an average of 48.03ms of added latency when utilizing SIRE as a parameter

server. The obtained time includes the execution of the consensus protocol, the

execution of the aggregation rule, and network transmission. As you may notice, this

delay is considerably higher than the one introduced in the intersection management.

This is due to the larger messages being transmitted in this scenario and the increased

complexity of the extension executed. Nonetheless, this delay is still within the

acceptable range for the federated learning use case. Therefore, we can conclude

that SIRE is suited for performing the parameter server role in this scenario as it

achieves similar results to a dedicated service while providing more functionalities

and robustness guarantees.

70

D5.4 Version 1.0

6 Simulation and Testing with Renode

During the course of VEDLIoT, as part of tasks 5.3 and 5.4, our focuswas on establishing

a framework for testing of accelerated, FPGA-oriented ML workflows in a simulated

environment.

These tasks were centered around Renode [13] - Antmicro’s open source simulation

framework.

The entire scope of Tasks 5.3 and 5.4 can be summarized in the following points:

• Improving support for generated RISC-V-based SoCs

• Supporting Custom Function Units

• Improving general co-simulation capabilities of Renode

• Enabling automated testing of complex, generated platforms with co-simulated

components

Thework performed so farwas thoroughly described as part of DeliverablesD5.1 [145],

D5.2 [100] and D5.3 [202].

The most recent work focused mainly on bringing together various improvements and

features in order to present users with a comprehensive and coherent testing and

development infrastructure based on Renode.

6.1 Introduction to Renode

Renode is Antmicro’s open source simulation framework designed for functional

simulation of embedded and IoT systems. It is based on building blocks and can

simulate full Systems-on-Chip, also with multicore support, complete boards, as well

as multinode systems. Renode features support for numerous architectures, currently

including ARM Cortex-M, Cortex-R, Cortex-A, RISC-V, PowerPC, SPARC, Xtensa, and

more.

Thanks to Renode’s high level of accuracy in recreating actual hardware, the simulated

systems bear high resemblance to their real life counterparts – it is possible to run the

same exact software in simulation as one would on hardware, making the framework

truly software-agnostic.

In the area of Machine Learning, being a central point of the VEDLIoT project, it’s quite

common to work with hardware that is still under development – either full systems

or specialized accelerators. More and more companies are working on their software

in parallel to their hardware, making mixed simulation scenarios, where part of the

system is given but the accelerator part is in progress. This includes systems that are ei-

ther supposed to be used in FPGA or aremeant to bemanufactured as ASICs. Renode’s

co-simulation capabilities let developers include in their simulated systems peripheral

models that are written in Verilog [87], one of the popular Hardware Description

Languages (HDLs), bringing such scenarios to life. These capabilities, compatible with

HDL simulation tools like the open source Verilator [183] and proprietary Questa [163]

71

D5.4 Version 1.0

Figure 6.1. CI-based Renode development flow diagram

or Vivado [196], are explored in more detail below and in Deliverables D5.2 [100] and

D5.3 [202].

Renode comes with several integrations with testing tools and libraries, which makes

the framework useful for automated testing, e.g. in a Continuous Integration envi-

ronment, where each code submission is automatically verified against a set of tests.

The simulator is integrated with the open source Robot Framework project [69], a

Python-based test automation and robotic process automation (RPA) tool, that can

help you build complex, real-world test suites for embedded devices, and provides

commands for running such tests. Renode is also integrated with Zephyr RTOS [170]

Twister [171] (or Test Runner) via the Renode-Robot flow, as well as with Unity [172],

a library for writing unit tests for C applications (and also integrated with Zephyr).

Simulation in Renode is deterministic which lets developers precisely reproduce sim-

ulated conditions every single time, resulting in reliable and replicable results, as

opposed to testing on physical hardware, where certain conditions are extremely

difficult to control, especially at scale.

All of these features, combined with extensive introspection capabilities allowing

developers to extract detailed data from every software run, allow developers to

set up CI-based development flows inside their organizations, similar to the flow

presented in Fig 6.1, including Renode both in their local development work, but also

running their collections of tests on remote systems.

6.2 Robust Automatic Platform Generation Features

One of the goals of our work was to enable developers to work on software targeting

a platform created as part of the Task 4.7. As a result of automatic SoC generation,

the platform is created from composable building blocks and can be loaded onto an

FPGA platform.

72

D5.4 Version 1.0

Renode is able to use data created by the SoC generator in JSON format to create a

Renode Platform description file (REPL) [14].

The concept of automatic platform generation was explored in other areas as well,

both in the context of VEDLIoT and outside of the project’s scope.

Renode is now able, using additional scripting, to analyze machine-readable platform

descriptions in the following formats:

• JSON, created by the SoC generator used in Task 4.7

• HJSON, generated from the OpenTitan [141] build system

• Device Tree, used in Zephyr, U-Boot and Linux

• CMSIS-SVD, used in Renode mainly for logging purposes

All of these formats are used to describe Renode platforms in production environ-

ments.

JSON is used as part of the CFU Playground [78], a Google project that was the axis

for introducing Custom Function Unit [8] support in Renode. A sample JSON file can

look as follows:

{

"csr_bases": {

"ctrl": 4026531840,

"ddrphy": 4026533888,

"uart": 4026535936,

[...]

},

"csr_registers": {

"ctrl_reset": {

"addr": 4026531840, "size": 1, "type": "rw"

},

[...]

"uart_rxtx": {

"addr": 4026535936, "size": 1, "type": "rw"

},

"uart_txfull": {

"addr": 4026535940, "size": 1, "type": "ro"

},

[...]

},

"memories": {

"clint": {

"base": 4026597376, "size": 65536, "type": "io"

},

[...]

"sram": {

"base": 268435456, "size": 6144, "type": "cached"

73

D5.4 Version 1.0

},

[...]

}

}

A REPL platform description generated from this input would be similar to:

rom: Memory.MappedMemory @ sysbus 0x0

size: 0x10000

sram: Memory.MappedMemory @ sysbus 0x10000000

size: 0x2000

clint: IRQControllers.CoreLevelInterruptor @ sysbus 0xf0010000

frequency: 100000000

numberOfTargets: 4

[0, 1] -> cpu0@[101, 100]

[2, 3] -> cpu1@[101, 100]

[4, 5] -> cpu2@[101, 100]

[6, 7] -> cpu3@[101, 100]

cpu0: CPU.VexRiscv @ sysbus

cpuType: "rv32ima"

privilegeArchitecture: PrivilegeArchitecture.Priv1_10

hartId: 0

timeProvider: clint

ctrl: Miscellaneous.LiteX_SoC_Controller_CSR32 @ { sysbus 0xf0000000 }

uart: UART.LiteX_UART @ { sysbus 0xf0001000 }

-> plic@0

[...]

HJSON is used by the OpenTitan project [141] - an open source root of trust reference

design, which is also well supported in Renode. This support was heavily developed

and used within another Google project - Open Se Cura [12]. The goal of Open Se

Cura is to provide an open source framework to accelerate the development of secure,

scalable, transparent and efficient AI systems - a goal that is close in spirit to the goals

of VEDLIoT.

Another recent mention-worthy development in the space of platform generation for

Renode revolves around Device Trees [113]. Device Trees are used by a range of open

source operating systems such as Zephyr or Linux, or bootloaders such as U-Boot, to

describe platforms in a machine-readable way.

Some systems, like Linux, use device tree data in runtime to select appropriate drivers

to initialize relevant devices. In other cases, like in Zephyr, a Device Tree Blob (DTB) is

used in compile time to select drivers to be included in the final binary, thus reducing

the final payload size and adding additional control during the build procedure.

74

D5.4 Version 1.0

Figure 6.2. CFU instruction flow diagram

Regardless of the approach, Renode can leverage this data with its dts2repl tool [11],

generating Renode platform description from Device Trees.

This work has become a basis for our other efforts, likemassive Continuous Integration

systems for Zephyr — the Zephyr Dashboard [20] or the U-Boot Dashboard [19]. The

goal of these systems is to illustrate the breadth of hardware covered in Renode by

using the framework to run automated test scenarios and display all supported targets

for the given operating system or bootloader at any given moment. These systems

also verify Zephyr and U-Boot themselves, and has since become a source of multiple

improvements and bug reports to their upstream repositories.

6.3 CFU Simulation

The main aim of Task 5.3, as described earlier, was extending Renode’s capabilities

with support for RISC-V Custom Function Units (CFUs). Custom Function Units are AI

accelerators for Field-Programmable Gate Arrays, tightly integrated with RISC-V CPUs

via the custom instructionsmechanism, exercising a custom instruction space reserved

by the RISC-V ISA spec (Fig. 6.2). This specification provides a standard that covers

complex operations common for such accelerators, encouraging reuse and cutting

down time spent on defining and implementing this type of interfaces.

Support for CFUs is implemented in Renode via its co-simulation integration layer for

Verilator, a free and open source Verilog/SystemVerilog simulator.

75

D5.4 Version 1.0

In a collaboration with Google, we have also implemented a Renode-based testing and

verification flow for CFUs in an open source project named the CFU Playground [78].

CFU Playground is a framework designed for developing CFUs and reasoning about

ML accelerators in simulation and using FPGAs. Thanks to Renode’s modular nature,

it is possible to automatically generate platform descriptions from CFU Playground

samples, enabling automatic testing with every change to either the CFU, the SoC it

works with or the software they run. The framework is based on VexRiscv [164], an

open source RISC-V soft processor, optimized for FPGAs.

A CFU can be written in Verilog or any other language that outputs Verilog. In the

CFU Playground demos, CFUs are mostly written in Amaranth [4], which allows you to

write code in Python and generate Verilog output. The Python-based flow simplifies

development for software engineers who may not be familiar with writing Verilog

code. Since the code is generated from Python, it is also very easy to incrementally

modify in a structured way until the expected acceleration targets are met.

6.4 Co-simulation Improvements

The improvements developed during this project are not just limited to CFUs, but

rather extend to general co-simulation capabilities. These developments can be uti-

lized for developing accelerators that are less tightly coupled with the CPU— accessi-

ble via bus accesses. AXI4 and AXI4Lite buses were our main focus within the project,

however APB3 and Wishbone buses are supported as well.

In Deliverable D5.3 [202], we described our work around extending Renode with co-

simulation capabilities with Verilator in order to support development of RISC-V-based

ML accelerators. During this part of the project, we were able to improve the accuracy

of transactions between theCPUandperipherals from theperspective of conformance

with bus specification. We have also introduced developments in trace generation

and model evaluation procedures, bridging the gap between the ways Verilator and

Renodehandle them, andmaking themeasy to follow for hardwareengineers. Another

area where we introduced improvements was focused on scenarios where a peripheral

converted via Verilator acts as both the initiator and as the recipient of a transaction.

Here, by redesigning the simulation flow, we were able to significantly reduce the

runtime for some of the test scenarios.

These improvements, however, were specific to Renode’s integration with Verilator

and use a bespoke interface. In order to be able to use Renode to co-simulate in

tandem with most prevalent industry solutions, e.g. Questa, Vivado, we extended

the framework with support for Direct Programming Interface (DPI) [10], a standard

interface for connecting SystemVerilog models to native code - in our case used to

interact with Renode.

While our custom Verilator interface works via sockets and native calls, the DPI in-

terface is only available via sockets at the moment. The DPI interface supports AXI4,

AXI4Lite, and APB3, with AHB underway.

Ourwork on this task in the recent periodwas focused on simplification and unification

of examples providedwith Renode [18] and improving the integration layer itself [17].

All changes are released publicly and are used by research and commercial partners.

76

D5.4 Version 1.0

6.5 Improvements to the Testing Infrastructure

Renode has been created with testing in mind, on all levels of complexity — from

simple single core microcontrollers to large, multinode Linux-based systems with

peripherals connected over wires and wirelessly.

The improvements to co-simulation integrations mentioned in the previous section

allowed us to prepare two repositories containing examples that let developers easily

recreate GitHub Continuous Integration flows and adjust them to their needs:

• renode-verilator-integration [16]

• renode-dpi-examples [15]

6.5.1 Renode-Verilator Integration

This repository contains samples of Verilog models and wrapper code that uses the

co-simulation integration layer for Verilator that also implements support for CFUs. De-

velopers can use this repository in order to generate their own models of peripherals,

either accessible via bus or as CFU modules.

In order to create their own CFU unit, users need to fork the repository to their

organization and copy one of the available sample.

If they prefer to create a sample from scratch, they must follow several unified steps

described below. Please note, however, that the most important part of this period

development focused on enabling users to simply copy an example and easily adjust it

to their requirements.

First they need tomake sure that the following C++ headers from the Renode Verilator

Integration Library are included in themain.cpp file for their model:

#include “src/renode_cfu.h”

#include “src/buses/cfu.h”

Then the RenodeAgent, the model’s top instance, and the eval() function need to be
initialized:

RenodeAgent *cfu;

Vcfu *top = new Vcfu;

void eval() {

top->eval();

}

Optionally, users can include evaluation tracing code in the eval() function, following
the prepared samples.

Next, the Init() function that initializes a bus and its signals needs to be added along
the eval() function. Upon initialization, it will return a RenodeAgent object connected
to a bus:

77

D5.4 Version 1.0

RenodeAgent *Init() {

Cfu* bus = new Cfu();

//===

// Init CFU signals

//===

bus->req_valid = &top->cmd_valid;

bus->req_ready = &top->cmd_ready;

bus->req_func_id = (uint16_t *)&top->cmd_payload_function_id;

bus->req_data0 = (uint32_t *)&top->cmd_payload_inputs_0;

bus->req_data1 = (uint32_t *)&top->cmd_payload_inputs_1;

bus->resp_valid = &top->rsp_valid;

bus->resp_ready = &top->rsp_ready;

bus->resp_ok = &top->rsp_payload_response_ok;

bus->resp_data = (uint32_t *)&top->rsp_payload_outputs_0;

bus->rst = &top->reset;

bus->clk = &top->clk;

//===

// Init eval function

//===

bus->evaluateModel = &eval;

//===

// Init peripheral

//===

cfu = new RenodeAgent(bus);

return cfu;

}

Before the project is compiled, three environment variables first need to be exported:

• RENODE_ROOT - path to Renode source directory

• V ERILATOR_ROOT - path to the directory where Verilator is located (this is

not needed if Verilator is installed system-wide)

• SRC_PATH - path to the directory containing yourmain.cpp

With these variables in place, it is now possible to build the CFU in SRCPATH :

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release "$SRC_PATH"

make libVtop

78

D5.4 Version 1.0

Inorder to attach the verilatedCFU toaRenodeplatform, theCFUV erilatedPeripheral
needs to be added to the RISC − V CPU as follows:

cpu: CPU.VexRiscv @ sysbus

cpuType: "rv32im"

cfu0: Verilated.CFUVerilatedPeripheral @ cpu 0

frequency: 100000000

Finally, a path to the compiled CFU is required. It can be provided in the .repl platform
or using a .resc script.

6.5.2 Renode DPI Examples

This repository contains samples that leverage the integration between Renode and a

Verilog model via DPI calls. All samples in the repository are designed to work with

Verilator as well as Questa. The CI flow included in the repository is configured to

build and run samples in Verilator and the CI configuration can serve as a point of

departure and a reference for preparing other examples. The repository contains

samples for peripherals connected over AXI4, AXI4Lite, and APB3.

Once a user has Verilator built and Renode installed, they can build one of the sample

peripherals and confirm that the communication of the Verilated peripheral with

Renode behaves as expected by using one of the Robot Framework tests present in

the repository, which connects to either Verilator or Questa and performs operations

specific to the simulated block.

Developing a completely open-source workflow allowed us to easily integrate the

new features into a CI pipeline that automatically builds and tests the DPI integration

against samples of varying complexity on different target OSes, for example Linux

on Zynq-7000 with a verilated FastVDMA controller. The renode − dpi − examples
repository lets you run such a demo using a single command:

renode/renode samples/axi_fastvdma_prebuilt/platform.resc

This lets developers verify their Verilog models upon every single change, so that they

can easily find, recreate, and fix problems in a deterministic, controlled environment.

As with Verilator-based exmples, DPI repository encourages user to fork and adjust

one of the samples to their needs.

The SystemVerilog-based integration is slightly more involved when creating a sample

from scratch.

With the code ready the compilation process is unified for all samples:

cd {path_to_a_sample}

mkdir build

cd build

cmake .. -DUSER_RENODE_DIR={path_to_renode_instrallation} \

-DUSER_VERILATOR_DIR={path_to_verilator_installation}

make

79

D5.4 Version 1.0

Please note that due to significant improvements introduced to Verilator itself during

the course of the project (mostly related to issues handling SystemVerilog code),

Verilator version v5.010 is recommended.

6.6 Coherent Co-simulation Flow for ML Development

Work performed during the VEDLIoT project allowed us to greatly increase Renode

capabilities in the co-simulation space.

Not only were we able to improve support for two types of co-simulation interfaces,

to introduce support for CFU Machine Learning accelerators and to prepare example

repositories with multiple samples and tests, we also verified the usefulness and

correctness of our implementations in the commercial context.

Multiple blog posts [9] described created developments and gathered significant

interest, also leading to external contributions towards Renode in the area of co-

simulation capabilities.

In future co-simulationwill remain one of themost important use-cases for the Renode

Framework, with expected improvements to ease of use, range of supported scenarios

and performance of simulation.

80

D5.4 Version 1.0

7 Robustness for Deep Neural Networks

During this last period of the VEDLIoT project, as part of task 5.5, our focus was on

implementing two algorithms aimed at verifying and quantifying, as well as enhancing

the resilience of deep neural networks (DNNs) against adversarial attacks. These algo-

rithms seek to ensure the robustness of DNNs without compromising their predictive

accuracy. They were designed and could be used in the Automatic Emergency Braking

With Pedestrian Detection (AEB-ped) use case within the project, where reliability

is critical. Another use case where these algorithms can be used is related to the

smart mirror, allowing improved gesture recognition. In a generic application of these

algorithms, they can be integrated with any other use case involving DNNs.

The designed algorithms were aimed to withstand potential threats and serve as

critical components in safeguarding the integrity and effectiveness of AEB-ped sys-

tems, reflecting our commitment to advancing the robustness and reliability of deep-

learning technology. Our contributions align seamlessly with the broader VEDLIoT

mission. These algorithms can be used to address the need for robust, secure, and

efficient deep-learning technologies in autonomous vehicles, explicitly emphasizing

the critical aspect of automatic emergency braking with pedestrian detection.

Complementary to these algorithms, we are implementing a self-ensemble horizontal

gating-based mixture of experts image classification deep learning model. The idea

is to implement a framework able to handle diverse driving scenarios, considering

adversarial and drift inputs. This is ongoing work. However, in this deliverable, we

describe the framework and its mechanisms.

7.1 Robustness Verification of Neural Networks

Deep neural networks (DNNs) are characterized by their nonlinearity and large-scale

architecture, making it challenging to analyze their behaviors comprehensively as

to why a particular decision has been made. They are often deployed as ”black box”

models without formal robustness and safety assurances. Therefore, verifying their

robustness to potential real-world scenarios is pivotal and necessary for their de-

velopment in safety-critical systems such as self-driving cars. In particular, NNs are

not robust to input perturbations (adversarial examples), which makes them highly

vulnerable to adversarial attacks in run-time settings. For example, in the context

of image classification in a self-driving car, the neural vision of a well-trained NN can

be easily fooled if an imperceptible perturbation is applied to the same image it was

trained on without altering the entire representation of the image. In such scenar-

ios, the scene analysis layer could confidently analyze a stop traffic sign as a speed

limit traffic sign with high confidence in the driving environment. As a result, the

decision-making model could generate misleading steering commands, which could

lead to catastrophic consequences [131]. Thus, it is essential to formally understand

the areas where NNs may be likely to wane in their decisions under extreme scenarios

and estimate their sensitivity level under variations in the input space.

As part of this report, we investigate and design a network block segmentation ap-

proach that divides the entire hidden layer of the network into segments parallel to

each other, applies the α-β-CROWN [33] algorithm to each segment, maps together

81

D5.4 Version 1.0

the outputs of all segments, and computes the overall verification score at the final

output layer. Our approach improves the scalability of the α-β-CROWN verification

tool, reduces the need for high computational demands, and speeds up the verification

process on large-scale NNs in a Branch and Bound (BaB) [95] setting. Interestingly,

compared to applying the standard α-β-CROWN verifier to the entire network simulta-

neously, our proposed approach delivers superior verification scores and generates

tighter certified bounds for ReLU-neurons in each block. It requires less computational

time to generate the quantification score of the model’s robustness level to input

perturbation.

7.1.1 Related Works

Three dimensionsmay be used to evaluate the effectiveness of robustness verification

algorithms for NNs. The first dimension measures the tightness of the verification

constraints (lower and upper bounds), the second measures the computational com-

plexity, and the third measures how compatible it is with DL models using different

state-of-the-art activation functions, such as ReLU, Tanh, Leaky ReLU, Sigmoid, Param-

eterized ReLU, and ELU. Lomuscio et al. [116] leveraged mixed-integer programming

(MIP) algorithms to perform exact robustness verification of a nonlinear DNN, which

they claimed reduced the computational burden and complexity of verifying the ro-

bustness of NNs. However, their solution is not optimal for generating tighter linear

bounds and is only constrained to nonlinear NNs. In a similar work, Kwiatkowska et

al. [106] suggested an automated DNN safety and robustness verification approach.

The author’s methodology is based on Bayesian techniques, feature-guided search,

and global optimization to verify the robustness of NNs. Wong et al. [193] introduced

a linear programming (LP) relaxation of piece-wise linear NN and set upper bounds on

theworst-case loss by employing less strong duality to verify the robustness of the net-

work. Similarly, Raghunathan et al. [153] proposed a semidefinite programming (SDP)

convex relaxation of a single-layered sigmoid-based NN that employs a first-order

Taylor expansion to bound the worst-case losses. Their method is not computationally

efficient for verifying the robustness of large-scale DNNs.

To our knowledge, the only convincing algorithm that tries to address these limita-

tions by solving the split constraint imposed by the BaB algorithm and verifying the

robustness of large-scale NN is α-β-CROWN [33] verifier. This verifier received the

highest verification score in the 2021 and 2022 International Verification of Neural

Networks Competition. However, this study shows that α-β-CROWN is not as scalable

as it appears on large-scale NNs because it requires a lot of computational power to

compute the Lipschitz constant of the network’s output concerning the input. To ad-

dress this limitation, we have a scalable approach that produces tighter linear bounds

with fewer computational resources compared to using the standard α-β-CROWN over

the entire network.

7.1.2 Robustness Verification and Quantification Approach

The traditional CROWN verifier was the most commonly used incomplete verification

tool for complementing the complete verification process in adversarial settings. How-

ever, it is too weak to satisfy the split constraint imposed by the BaB method because

CROWNoperates entirely on bound propagation, similar to the backpropagation [194]

in the normal NN. However, it is pretty effective in the incomplete verification pro-

cess but too weak in the complete verification process. In this context, incomplete

82

D5.4 Version 1.0

verification algorithms are verifiers that can indicate whether an NN is robust but

cannot offer or indicate the robustness level of the network. In contrast, complete

verification algorithms can indicate or prove the robustness state of an NN and, at the

same time, quantify the robustness level of the network.

Figure 7.1. Block diagram of a DNN

Using CROWN, if the requirement that y∗CROWN > 0 =⇒ ymin > 0 is satisfied, the net-
work’s robustness can be guaranteed for all inputs. In a backward bound propagation,

CROWN computes the network’s output y(x∗) by linearizing the input of the ReLU

activation to determine the lower bound (ymin) of each ReLU-neuron. This entails re-
laxing the convexity so that the network’s input and output have a linear relationship.

Hence, in a CROWN setting, y(x∗) is express as:

y(x∗) = W 3σ

(
W 2σ

(
W 1x∗)) (7.1)

Where;

W is the weight of the network

y(x∗) is the output of the network concerning the perturbed input σ is the non-linear

activation function

Given that, we can now compute the CROWN-based linear lower bound of the final

output neurons as:

y∗CROWN = −||aCROWN ||∞ + aTCROWNx
∗ + ConstCROWN (7.2)

The y∗CROWN represents the verification score value obtained by the CROWN algorithm

considering x∗. The −||aCROWN ||∞ represents the negative product of the L∞ norm

of aCROWN . The constant ε signifies a penalty term based on the L∞ norm or a factor

that controls the magnitude of the L∞ norm. aTCROWNx
∗ represents the dot product of

the transpose of the vector aCROWN and perturbed input x∗. Finally, the ConstCROWN

represents a small constant value, which allows the network to capture complex

relationships between x∗ and y∗CROWN more effectively.

Although we have proven that CROWN established a linear relationship between the

output and the input of the network as it computes the lower bounds of the final

output neurons in a backward bound propagation as shown in equation (7.2). However,

it cannot optimize the neuron-split constraint introduced by BaB because it gener-

ates certain slack bounds that prevent the convex from being relaxed appropriately.

Therefore, it could not provide an accurate robustness guarantee to the model for all

inputs.

83

D5.4 Version 1.0

Therefore, using our benchmark datasets, we experiment with the α-CROWN incom-

plete verifier proposed by Xu et al. [197], an extension of the traditional CROWN

verifier that takes advantage of reverse-phase linear relaxation-based perturbation

analysis (LiRPA) during the BaB process.

We consider the CROWN-based linear lower bound in equation (7.2) as a function of

αbecause since αis an adjustable parameter, it can generate different lower bounds,

among which we can use any of them as long as its slope exists between 0 and 1 across
the origin. Our experiment shows that α-CROWN can generate tighter linear lower

bounds than the CROWN algorithm.

The linear lower bound of a ReLU-neuron in an α-CROWN setting can be expressed as;

y∗ = Min
x∗∈C

y(x∗) ≥ Max
0≤α≤1

Min
x∗∈C

yCROWN(x;α) (7.3)

Although α-CROWN is a good verification tool, generating a verification score for a

single image often takes several iterations. It also requires higher computational time

to provide an accurate robustness verification score in a BaB setting due to the split

constraint when z1 ≤ 0 during backward bound propagation.

Due to these limitations of the α-CROWN verifier, we further leverage the β-CROWN

verifier proposed by Wang et al. [188], an advanced incomplete NN verifier, which

is also an extension of the traditional CROWN verifier but quicker and more flexible

compared to the α-CROWN algorithm for solving the split constraints (sub-problems)

in a BaB setting when z1 ≤ 0.

It encapsulates neuron split constraints in a BaB setting via an optimizable parameter

(β), which is a ”Lagrangianmultiplier” [32] built fromeither primeval or dual dimensions.

The ”Lagrangianmultiplier” always conditioned the split constraint (z1 > 0) to be either
0 or 1, making β-CROWN faster and producing better tighter bounds compared to

the α-CROWN algorithm while remaining as efficient and parallelizable as CROWN on

GPUs [188].

The mathematical expression for β-CROWN is given as:

Min
x∈C, z(2)<0

y(x∗) ≥ Max
β≥0

Min
x∈C

w(3)T D(2) z(2) +

+ βT S(2) z(2) + Const. (7.4)

Where βT S(2) z(2) is the Lagrangian multipliers in which S is a diagonal matrix with

+/− 1 and 0.

According to our experiment, besides the β-CROWN verifier, the α-β-CROWN [33] is

the fastest andmost accurate NN verifier that works well on powerful GPUs to provide

robustness verification of large-scale NNs in a BaB setting. However, it requires a

lot of GPU power to be scalable on large-scale networks. It combines the αand the
βparameters in a traditional CROWN setting. Its application in a BaB setting produces

a complete verification algorithm, which indicates the network’s robustness status

and its level of robustness at the same time. α-β-CROWN is expressed as:

84

D5.4 Version 1.0

Min
x∈C, z(2)<0

y(x∗) ≥ Max
α≥0, β≥0

Min
x∈C

w(3)T D(2) z(2) +

+ αT , βT S(2) z(2) + Const. (7.5)

Where αT , βT S(2) z(2) is the Lagrangian multipliers in which S is a diagonal matrix

with +/− 1 and 0.

We developed a network block segmentation approach to divide the network into

three parallel segments. Instead of applying the α-β-CROWN algorithm to the entire

network in each forward or backward pass, we applied it to each segment andmapped

the outputs. This technique improved the α-β-CROWN’s scalability and minimized the

requirement for the heavy computational demands imposed by its standard use, as

proposed in [33].

7.2 Mitigation of Adversarial Data Poison Attacks Against Deep

Neural Networks

In terms of mitigation of adversarial poison attacks in deep neural networks, we

implement a novel method of robustifying a distilled network against data poisoning

attacks by integrating a denoising autoencoder (DAE) [34] in the defensive distillation

pipeline. Defensive distillation involves training two DNNs, the instructor model and

the studentmodel, such that the knowledge of the former is transferred into the latter,

making it robust to adversarial examples and previously unseen input [86, 46]. A DAE

is a type of DNN trained in an unsupervised setting to learn a latent representation of

input data x, enabling it to reconstruct distorted inputs back to their original form.

It learns how to reconstruct the perturbed version of x while removing noise and

reducing the reconstruction loss between x and the reconstructed input xr as much

as possible during the training phase [34].

The necessity of DNNs’ robustness against adversarial attacks has shown a growing

concern as their use in real-world safety-critical systems has increased exponentially.

Adversarial attacks [46] attempt to trickDNNsbymaking subtle alterations to the input

sample x. Several defence strategies have been proposed to overcome this problem,

including defensive distillation, which has successfully defended DNNs from input

perturbations ε in run-time settings [143]. Nevertheless, one of the drawbacks of the

defensive distillation technique is that it remains susceptible to data poisoning attacks,

in which adversaries aim to impair the model’s performance by either maliciously

altering the existing training data or inserting erroneous data entries into it.

We used the fast gradient sign method (FGSM) [77] and the iterative-fast gradient

sign method (I-FGSM) [104] to evaluate the effectiveness of the proposed algorithm.

The proposed approach offers a more potent protection mechanism against data

poisoning attacks. It enables the distillation algorithm to mask or lower the gradient

around the input space and widen the search space that attackers need to explore to

craft adversarial examples in the input spaceX . Our approach significantly reduces the

limitations and susceptibility of the defensive distillation algorithm to data poisoning

attacks.

85

D5.4 Version 1.0

7.2.1 Related Works

Knowledge distillation was first proposed in [86]. The author aimed to lower the

computational resources required to deploy large-scale DNNs on resource-constrained

devices such as smartphones. Therefore, they extrapolate the probability vector or

class knowledge produced by the instructor network and use it to train small networks,

reducing the network’s scalability without compromising accuracy and allowing de-

ployment on resource-constrained devices. Statistically and experimentally, Papernot

et al. [143] further explore this idea as a preventivemeasure against adversarial inputs.

Using class knowledge from the instructor network and distilling it to the student

network, the authors minimize the amplitude of the student network’s gradients that

attackers required access to generate adversarial examples in the input spaceX . A

similar approach was Goldblum et al., [74], they developed an Adversarially Robust

Distillation (ARD), which involves creating small NNs and distilling their robustness

in a more extensive network. Previous works leveraging the defensive distillation

technique include [105, 44, 142]. Yue et al. [199] demonstrated that DAEs are highly

helpful in spotting and reconstructing contaminated images in the training data mani-

fold. They apply this approach to identify and mitigate adversarial poison attacks in

the federated learning setting. Other works in which DAE is used as a filter against

poison data include [98, 174].

7.2.2 Mitigation of Adversarial Data Poison Attacks

Defensive distillation involves training two homogeneous or non-homogeneous DNNs:

the instructor network Fφ1 and the student network Fφ2. This work uses a standard

NN training procedure to train Fφ1 using the original dataset, increasing the softmax

temperature T to 5 degrees.

The softmax layer normalizes an output vector or logits Z(X) of the Fφ1 final hidden

layer into a probability vector F (X) more closely aligned with the data manifold’s

uniform statistical distribution. This assigns a probability value to each class of the

dataset for each input x. A specific neuron in the softmax layer that corresponds to a

class indexed by i0....N−1, where (N = numberofclasses) calculates element i of the
probability vector given by;

F (X) =

[
eZi

(X)
T∑N−1

l=0 eZl
(X)
T

]
i∈0−−−−N−1

(7.6)

Where;

X is the input space

F (X) is probability vector

T is the softmax temperature parameter

The F (X) is used as a label for the inputs in the training data to train Fφ2 with the

same temperature value as used in Fφ2. T is usually reset to its default value of 1
during testing so that the distilled network can produce more discrete output. This

also discourages overconfidence in the distilled network’s output and improves its

generalization to new inputs.

86

D5.4 Version 1.0

A Denoising Autoencoder (DAE) is designed to learn a compressed representation of x,
correct any abnormalities in the data, and reconstruct it back to its original, undistorted

state with the help of the latent vector h. The design comprises an encoder network

fe and a decoder network fd, represented as a composition of i− th encoding layer
f
(i)
e and decoding layer f

(i)
d , respectively. During training, the first layer of fe receives

the erroneous form of data x∗ from the input space X and translates it to a lower-

dimensional latent vector h(i). The subsequent layer maps h(i) from the previous

layer to generate more compressed latent features. This process continues until the

last layer, which represents the final lower-dimensional latent representation of the

input h. Conversely, the last layer of fd takes in h. It maps it to the next layer in a

backward pass direction until the first layer, which maps the reconstructed features

to the original input space, producing the reconstructed output image xr. The latent

representation of the i− th layer can be expressed as;

h(i) = f (i)
e (h(i−1)), whereh(0) = x (7.7)

where;

h(i) = latent representation at the i− th encoder layer.
i = the layer index of the encoder

f
(
ei) = composition of individual encoder functions

Adversarial attacks are types of malicious data modification that seek to deceive ML

models in their decision-making [46]. In contrast, adversarial robustness describes the

model’s capacity to maintain its expected performance in the presence of malicious

interruptions or adversarial attacks [56]. A model is deemed robust if it correctly

classifies x ∈ X within or outside a range of perturbation sets defined in X . In our

experiment, we used the following parameters to generate adversarial perturbations

for FGSM and IFGSM; εfgsm = 0.01, εifgsm = 0.01, α = 0.01, num_iterations = 10. The
epsilon ε determines themagnitude of the perturbation needed to trigger themodel’s

sensitivity to changes in the image’s pixel values. The alpha αparameter controls the

step size of the perturbations in each iteration of the IFGSMattack. numiterations = 10
indicates that the IFGSM will be applied at every 10 iteration.

Following the methodology used in [142], the student model in our experiment is

built to be uncertain about its prediction when a new input xn is statistically different

from the training set (i.e., discouraging overconfidence in its classification). We used

the Kullback–Leibler (KL) divergence [154] to quantify the statistical differences

between the xn and the ground truth. This approach allowed the model to offer

uncertainty estimates for the predictions and estimate Bayesian inference. Analyzing

the instructor model’s predictions yields the uncertainty measurements needed to

train the student model.

The effectiveness of the trainedDAE is evaluated on a different test dataset containing

both clean and distorted images. A specified reconstruction threshold is set, which

serves as a yardstick or decision line to verify the integrity of each data point after

reconstruction. The images whose reconstruction error is above the threshold are

termed adversarial inputs and are subsequently discarded before reaching the teacher

model.

87

D5.4 Version 1.0

7.3 Self-ensemble Horizontal Gating-based Mixture of Expert Im-

age Classification Deep Neural Networks

Complementary to the work done in Sections 7.1 and 7.2, we are implementing a self-

ensemble horizontal gating-basedmixture of expert image classification deep learning

models that should be able to handle diverse driving scenarios and be able to handle

adversarial and drift input in adverse situations. A mixture of experts (MOE) model is

a machine learning technique that uses different neural networks, each specializing in

a different part of the training, and a gate network that is trained on the entire input

space, enabling it to assign different weights to each different expert based on their

contribution during inference. We are currently in the preliminary stage of this work,

where our work is currently limited to the use of the German Traffic Sign Recognition

Benchmark (GTSRB) dataset. We exclusively train and evaluate 43 expert models and

one gate network, where each expert is trained only on a particular class within the

GTSRB dataset.

We introduced a dynamic batch size and learning rate technique where different batch

sizes and learning rates are assigned to experts based on the number of samples they

receive as inputs in the class folder. The rationale behind this technique is thatwewant

to make sure an appropriate batch size and learning rate are assigned to each expert

based on the number of training samples in its corresponding class folder rather than

using a fixed batch size and learning rate for all the experts, which may introduce

some bias into some experts, especially those with lesser number of samples since we

are currently dealing with an unbalanced dataset with a high proportion.

Assigning each expert to a specific class within the dataset allows it to specialize in

learning and understanding the features relevant to that class. However, with a fixed

batch size, the number of samples from each class per iteration is the same. This

means that experts in classes with fewer samples might not receive sufficient data

to specialize effectively. If a fixed batch size is used, the classes not presented with

enough examples during training may not be well generalized by the overall model.

This can lead to poor performance in infrequent classes during inference. Therefore,

experimenting with different setups and monitoring the performance of each expert

in their associated classes can help find an effective configuration for the MoE model

when dealing with large datasets.

We currently use a simple LeNet5 deep learning model for all the experts. In the

second phase of this work, wewill use a complex dataset that covers all the inputs from

different driving scenarios and conditions. Each expert may be trained on multiple

classes since the dataset will be clustered based on input-output mapping. In that

stage, we will improve the scalability of the experts by using large-scale networks

such as the ResNet family (ResNet 50, 100, 120, etc.) or the VGG family (VGG 19, 16,

18, 32, 64, 101, etc.).

The third stage of this work will involve evaluating the robustness of the MOE frame-

work by verifying and quantifying its robustness by introducing different types of

adversarial attacks and data drift in the evaluation or testing phase. Wewill determine

the robustness of the framework by evaluating its ability to generalize on unseen

inputs in the presence of adversarial and drift inputs in the run-time setting.

88

D5.4 Version 1.0

8 Generating, Sharing and Using Data for Increased

Safety – Advantages and Challenges

In this chapter we discuss the possibility of sharing data between vehicles in a traffic

scenario to increase road safety. The availability of data received from surrounding

vehicles can be used to improve perception, namely by fusing it with data collected

from local sensors. For instance, data about pedestrian detection, which is produced

in the Automatic Emergency Braking With Pedestrian Detection use case, could be

exchanged with other vehicles in the vicinity, hence contributing to increasing the

accuracy of pedestrian detection, and possibly serving as input for other functions.

However, exchanging data with other vehicles also raises some problems, namely

of data trustworthiness. Therefore, in the following sections we discuss the several

facets of this problem, laying down the path for possible future work.

8.1 Reasons for Sharing Data

There are many potential benefits of sharing data in the traffic environment and using

it to improve safety and flow. First comes reducing the number of accidents and the

severity of those that do occur. Considering motorized vehicles, the ride could be

made more comfortable with smoother accelerations and less harsh braking which

in turn could reduce the energy consumption and the emissions. The environmental

impact can even be said to go as far as making the traffic environment more quiet. By

improving the traffic flow, the time spent on transportation could be reduced and

make room for other activities in people’s lives. The benefits of the concept, which is

called many things e.g., Collective Perception, Collaborative Driving, Collective Safety

to mention a few, are obvious, but the implementation has proven to be difficult.

There are several dimensions of challenges that need to be addressed. A few of

them are that the vehicle fleet is heterogeneous and there are no all-encompassing

regulations concerning the generation and sharing of information. Also, the traffic

environment includes vulnerable road users, e.g., pedestrians and cyclists, that don’t

benefit from the same type of decision support that a vehicle can provide its driver.

Furthermore, suitable infrastructure has to be deployed and its use by different par-

ties negotiated. In short, aspects concerning business, engineering, safety and legal

matters have to be handled before data sharing on a big scale can become reality.

8.2 Available Sharing Options/Infrastructure

The idea of sharing data to avoid incidents and accidents is not new and there are fully

operation systems for distribution of information and work is ongoing to introduce

more recently developed and more technologically advanced systems.

8.2.1 Broadcast

There are systems in use (Radio Data System in Europe, Radio Broadcast Data System

in North America) where signals are added to broadcast FM radio to transmitmessages

to relevant to the near geographical area. Road uses can report incidents which is

then distributed, but this is mostly a one-way communication that usually reaches

more users than necessary.

89

D5.4 Version 1.0

8.2.2 Two-way Communication

Currently, state of the art in wireless two-way communications for traffic purposes

is developing in two branches. First, dedicated short-range communications (DSRC)

for Vehicle to Everything (V2X) is a wireless two-way communications technology,

operating at 5.9 GHz and based on IEEE 802.11p, and second, cellular V2X, C-V2X

which uses cellular communications, where 3GPP are developing the standards. Both

branches offer the ability to establish communications directly between two vehicles,

but C-V2X also has the option to communicate with the network V2N and thus with

non-vehicle user equipment, e.g., cellphones.

Work is ongoing within the Hexa-X-II project [180] where communication and sensing

is one field that is being studied in a 6G-context.

8.3 Creating the Big Picture

One intermediate goal that supports traffic safety is to generate what can be called

a ”Recognized Ground Picture” which contains information on all entities in a traffic

situation. This RGP would be the result of a combination Then the question arises:

”What information is relevant for entity number n?” In order for information to be

truly useful it must be correct, timely and relevant. Only then can it be most beneficial

to traffic participants. In this section the perspective starts from a single vehicle,

expanding to encompass an entire traffic situation.

8.3.1 Generating Data and Local Information

Data about the traffic situation can be generated in several ways. Vehicles are becom-

ing equippedwith increasingly advanced sensor systems using cameras, radar and even

infra-red imaging and lidar in some cases which makes it possible to simultaneously

use data from different sensor modalities and obtain information that can be used

to support the driver’s situational awareness. The downside is that the reach of the

vehicle’s sensors is limited whichmakes the benefits of including external data clear as

it can provide information about obscured dangers. External data could be generated

by other vehicles, but sensors can also be found in traffic infrastructures, e.g., cameras

for monitoring road conditions and radars for velocity that are also becoming prolific

in some countries. Communication devices, e.g., cellular phones, could also provide

additional data.

When generating data, it is important to consider privacy, both for personal and legal

reasons. Traffic participants must be able to trust the system to only use the data to

increase the safety in the local traffic system for the time it is needed.

8.3.2 Sharing and Processing

Turning data from single sources into something bigger and useful requires data trans-

fer. When data becomes information is subject for discussion and no clear definition is

commonly accepted. Each sensor generates data that can undergo further processing

and at some level, be fused with other data. How to do this in the best way is a field in

its own right, and a challenge even if the data is generated by sensors attached to one

single vehicle. Fusing data/information from several different vehicles is even more

difficult because there is a need to relate the entities and the data they provide to

each other in both space and time and also to geographical information. This puts

requirements on the sensing equipment, the ability to transfer and process data.

90

D5.4 Version 1.0

First, the data must be associated with some kind of quality measure to ensure that

the accuracy and robustness of the resulting information is upheld. As the vehicle

fleet is heterogeneous and there traffic participants of all kinds, from vulnerable road

users e.g., pedestrians, bicyclists, to large transport trucks, the data can for example

have different levels of resolution, accuracy and update rate.

Second, the data transfer must have a sufficiently high capacity and be organized,

or orchestrated, so that the resources are distributed to maximize throughput. It is

important to consider what data to share and how in order have a reasonable margin

left in the systems and also to consider the energy consumption for the service.

Third, the processing of the data requires computational power which can be found

both onboard vehicles but even more importantly, in communications infrastructure.

The latter may offer computational power as a service which could provide an in-

creased equality in the traffic environment as vehicles with less advanced processing

equipment would be able to contribute and benefit.

The next step is the continuously ongoing process is to distribute relevant data to

road users so that they can either incorporate the information into their sensor data

processing or act upon it.

8.3.3 Distributing and Using Information

Assuming that trustworthy information has been generated in time to be useful, it

needs to be distributed to the road users. It can be done locally broadcasting informa-

tion which is tagged to be relevant for a limited geographical area, or even tailored

specifically to particular vehicles, depending on how the distribution is implemented.

Depending on the needs of an individual traffic participant, the information can be

useddirectly, for example ane-scooter driver receiving awarning about crossing traffic.

In this case, the own vehicle may not contain any relevant sensors, but could have

means of communication to receive information. If the consumer of the information

uses a vehicle with a sensor system it may be beneficial to combine the received

information with current vehicle sensor information or in some instances, perform

a peer-to-peer information sharing. The latter is important in traffic environments

where the communications networks are less dense, which is often the case in rural

areas, or if the network for some reason is not operational.

When consuming information, being able to trust its quality and reliability is of utmost

importance. When the vehicle’s own sensor systems are used, the functional safety

aspects concern a system with known characteristics. Incorporating data from other

sources can have implications on safety as well as legal matters, which can be one of

the reasons that information sharing in the traffic environment is still limited.

8.4 Outlook

To obtain the advantages outlined in Section 8.1 there is a need for an infrastructure

than can provide secure communication, computational power and the ability to

orchestrate the data flow. As nothing comes for free, the question is what the business

case looks like. Using cellular communications infrastructure is most likely the most

cost-effective way that would provide the best coverage. Emergency services work

across the boundaries of different network operators, which could be seen as example

of a successful implementation.

91

D5.4 Version 1.0

In order for a system to be efficient and actually be used it needs to provide a clear

advantage to the users, which means encompassing several ways of using it. Granted,

all traffic participants will not get the full advantage of the system, either because

their vehicle is not fully equipped or because the information cannot be shared to a

human as fast as it can a car with advanced driver-assistance systems and automated

driving. A realistic goal can be to share as much as data as is deemed possible and by

preventing vehicles from colliding with vulnerable road users, much can be gained. In

a long term perspective, information sharing services are likely to be a key component

both to support safe automated driving.

92

D5.4 Version 1.0

9 Overall Achievements

In this deliverable we presented the work done in WP5 during the last part of the

project. This included the presentation of extended evaluation results (e.g., SIRE

evaluation), improvements and additions to previously presented tools (e.g., Renode

improvements), discussion of paths ahead (e.g., use of shared data in autonomous

driving scenarios), new and improved methods (e.g., for ML robustness), and comple-

tion of several solutions for computation and communication security (e.g., Twine and

Fortress).

In a very objective and systematized way, some of the key contributions of WP5 to

advance the state of the art on security, safety and robustness in IoT applications are

listed and briefly described below. A complete and more detailed list of achievements

is provided in Deliverable D1.4.

The contributions listed consist in several building blocks that can be used in ML-based

IoT applications, and some were developed and or demonstrated in the context of

the defined VEDLIoT use cases, namely in the context of the Automatic Emergency

Braking With Pedestrian Detection use case, the Motor Condition Classification use

case, and the Arc Detection use case.

The key contributions from Task 5.1 were the following:

• Extended the TLS handshake in webAssembly runtime, to include attestation.

• SIRE, providing distributedByzantine Fault-Tolerant attestation andmembership

management.

• AutoCert, providing TOCTOU-security by combining Remote Attestation results

about assurance of device health with standard Public Key Infrastructure (PKI)

authentication processes.

The main building blocks produced by Task 5.2 were the following:

• Twine (and Twine2), which is an execution environment suited for runningWasm

applications inside TEEs.

• WaTZ, which is an efficient and secure runtime for trusted execution of Wasm

code inside TrustZone, adding support for remote attestation.

• Identification of vulnerabilities in TrustZone-M and proposal of efficient solu-

tions.

• Fortress, which is a robust and comprehensive framework to enhance security

and privacy in IoT infrastructures.

• Secure publish/subscribe solution applied to the Mosquitto MQTT broker.

• Improved security of the “Secure IoT Gateway” VPNmanagement solution.

93

D5.4 Version 1.0

Thedevelopmentof a simulationplatform in the context of Task 5.3 and the continuous

integration workflow aimed by Task 5.4 were addressed closely together by means of

the following contributions:

• Renode Custom Function Unit support

• Renode co-simulation framework improvements

Finally, Task 5.5 produced the following main contributions:

• Definition of safety methods for AI/ML systems, including safety require-

ments, safety verification and safety runtime methods.

• Definition of strategies for monitoring and mitigation of run-time errors in

the context of pedestriandetection in autonomousdriving systems, for increased

reliability and safety.

• Methods for increasing the robustness of image processing DNNs, in the

context of autonomous driving systems.

Overall, given: a) the successful definition and development of several solution con-

tributing to advance the state of the art, substantiated not only by WP5 deliverables,

butmainly by themany achieved publications (as listed in Deliverable D8.4); b) the inte-

gration and demonstrating of several of the developed building blocks in the VEDLIoT

use cases; and c) the fact that the KPIs defined for WP5 were met (as presented in

Deliverable D1.4), we conclude that the work done in WP5 was of high quality and the

main objectives set forth for the work package were fully achieved.

94

D5.4 Version 1.0

10 References

[1] MalwareTextDB: A Database for Annotated Malware Articles.

https://www.aclweb.org/anthology/P17-1143/, July 2017.

[2] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. OBLIVIATE: A data oblivious filesystem for Intel SGX. In NDSS ’18, NDSS

’18. The Internet Society, 2018.

[3] A. K. M. Mubashwir Alam and Keke Chen. Making your program oblivious:

a comparative study for side-channel-safe confidential computing. CoRR,

abs/2308.06442, 2023.

[4] Amaranth community. Amaranth hdl. https://github.com/amaranth-lang/

amaranth. Accessed on: Jan. 29, 2024.

[5] Amazon. X.509 client certificates, Mar 2021.

[6] Amazon. Pub/sub messaging, 2023.

[7] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More. White Paper, page 20, January 2020.

[8] Tim Ansell, Tim Callahan, Jan Gray, Karol Gugala, Maciej Kurc, Guy Lemieux,

Charles Papon, Zdenek Prikryl, and Tim Vogt. Draft proposed risc-v composable

custom extensions specification. https://github.com/grayresearch/CFU/blob/

main/spec/spec.pdf.

[9] Antmicro. Antmicro blog. https://antmicro.com/blog/. Accessed on: Jan. 3,

2024.

[10] Antmicro. Dpi support in renode for hdl co-simulation with verilator and questa.

https://u-boot-dashboard.renode.io. Accessed on: Jan. 4, 2024.

[11] Antmicro. Dts2repl. https://github.com/antmicro/dts2repl. Accessed on: Jan.

3, 2024.

[12] Antmicro. Enabling secure open source ml products with open se cura. https://

antmicro.com/blog/2023/11/secure-open-source-ml-with-open-se-cura/. Ac-

cessed on: Jan. 3, 2024.

[13] Antmicro. Renode. https://renode.io. Accessed on: Jan. 3, 2024.

[14] Antmicro. Renode documentation - describing platforms. https://renode.

readthedocs.io/en/latest/basic/describing_platforms.html.

[15] Antmicro. renode-dpi-examples. https://github.com/antmicro/renode-dpi-

examples. Accessed on: Jan. 5, 2024.

[16] Antmicro. renode-verilator-integration. https://github.com/antmicro/renode-

verilator-integration. Accessed on: Jan. 5, 2024.

95

https://github.com/amaranth-lang/amaranth
https://github.com/amaranth-lang/amaranth
https://github.com/grayresearch/CFU/blob/main/spec/spec.pdf
https://github.com/grayresearch/CFU/blob/main/spec/spec.pdf
https://antmicro.com/blog/
https://u-boot-dashboard.renode.io
https://github.com/antmicro/dts2repl
https://antmicro.com/blog/2023/11/secure-open-source-ml-with-open-se-cura/
https://antmicro.com/blog/2023/11/secure-open-source-ml-with-open-se-cura/
https://renode.io
https://renode.readthedocs.io/en/latest/basic/describing_platforms.html
https://renode.readthedocs.io/en/latest/basic/describing_platforms.html
https://github.com/antmicro/renode-dpi-examples
https://github.com/antmicro/renode-dpi-examples
https://github.com/antmicro/renode-verilator-integration
https://github.com/antmicro/renode-verilator-integration

D5.4 Version 1.0

[17] Antmicro. renode-verilator-plugin. https://github.com/renode/renode/tree/

master/src/Plugins/VerilatorPlugin. Accessed on: Jan. 5, 2024.

[18] Antmicro. renode-verilator-samples. https://github.com/renode/renode/tree/

master/scripts/single-node. Accessed on: Jan. 5, 2024.

[19] Antmicro. U-boot dashboard. https://u-boot-dashboard.renode.io. Accessed

on: Jan. 3, 2024.

[20] Antmicro. Zephyr dashboard. https://zephyr-dashboard.renode.io. Accessed

on: Jan. 3, 2024.

[21] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A smart home is no castle:

Privacy vulnerabilities of encrypted iot traffic. arXiv preprint arXiv:1705.06805,

2017.

[22] ARM-Software. Trusted board boot. https://github.com/ARM-software/arm-

trusted-firmware/blob/master/docs/design/trusted-board-boot.rst, 2023.

[23] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin

Unger, Gianluca Ramunno, and Davide Vernizzi. An efficient implementation

of trusted channels based on OpenSSL. In STC ’08, STC ’08, pages 41–50, New

York, NY, USA, 2008. ACM.

[24] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin

Unger, Gianluca Ramunno, and Davide Vernizzi. An efficient implementation of

trusted channels based on openssl. In Shouhuai Xu, Cristina Nita-Rotaru, and

Jean-Pierre Seifert, editors, Proceedings of the 3rd ACMWorkshop on Scalable

Trusted Computing, STC 2008, Alexandria, VA, USA, October 31, 2008, pages

41–50. ACM, 2008.

[25] Sergei Arnautov, Andrey Brito, Pascal Felber, Christof Fetzer, Franz Gregor,

Robert Krahn, Wojciech Ozga, André Martin, Valerio Schiavoni, Fábio Silva, Mar-

cus Tenorio, and Nikolaus Thummel. PubSub-SGX: Exploiting trusted execution

environments for privacy-preserving publish/subscribe systems. In 37th IEEE

Symposium on Reliable Distributed Systems, SRDS 2018, Salvador, Brazil, October

2-5, 2018, pages 123–132. IEEE Computer Society, 2018.

[26] Mudassar Aslam, Christian Gehrmann, andMats Björkman. Asarp: automated se-

curity assessment & audit of remote platforms using tcg-scap synergies. Journal

of Information Security and Applications, 22:28–39, 2015.

[27] Mudassar Aslam, Bushra Mohsin, Abdul Nasir, and Shahid Raza. Fonac-an auto-

mated fognode audit and certification scheme. Computers & Security, 93:101759,

2020.

[28] N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-middle in tunnelled

authentication protocols. In Bruce Christianson, Bruno Crispo, James A. Mal-

colm, and Michael Roe, editors, Security Protocols, 11th International Workshop,

Cambridge, UK, April 2-4, 2003, Revised Selected Papers, volume 3364 of Lecture

Notes in Computer Science, pages 28–41. Springer, 2003.

96

https://github.com/renode/renode/tree/master/src/Plugins/VerilatorPlugin
https://github.com/renode/renode/tree/master/src/Plugins/VerilatorPlugin
https://github.com/renode/renode/tree/master/scripts/single-node
https://github.com/renode/renode/tree/master/scripts/single-node
https://u-boot-dashboard.renode.io
https://zephyr-dashboard.renode.io
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst

D5.4 Version 1.0

[29] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keffe, Divya Muthukumaran, Chris-

tian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter

Pietzuch. TaLoS: Secure and transparent TLS termination inside SGX enclaves.

Technical report, Department of Computing, Imperial College London, 2017.

[30] AWS. Aws iot. https://aws.amazon.com/com/iot/.

[31] NorazahAbd Aziz, Nur Izura Udzir, and Ramlan Mahmod. Extending TLS with

mutual attestation for platform integrity assurance. J. Commun., 9(1):63–72,

2014.

[32] Ivo Babuška. The finite elementmethodwith lagrangianmultipliers. Numerische

Mathematik, 20(3):179–192, 1973.

[33] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verifi-

cation of neural networks competition (vnn-comp 2021): Summary and results.

arXiv preprint arXiv:2109.00498, 2021.

[34] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. arXiv preprint

arXiv:2003.05991, 2020.

[35] Raphaël Barazzutti, Pascal Felber, Hugues Mercier, Emanuel Onica, and Etienne

Rivière. Efficient and confidentiality-preserving content-based publish/sub-

scribe with prefiltering. IEEE Trans. Dependable Secur. Comput., 14(3):308–325,

2017.

[36] Stefano Berlato, Umberto Morelli, Roberto Carbone, and Silvio Ranise. End-

to-end protection of IoT communications through cryptographic enforcement

of access control policies. In Shamik Sural and Haibing Lu, editors, Data and

Applications Security and Privacy XXXVI - 36th Annual IFIP WG 11.3 Conference,

DBSec 2022, Newark, NJ, USA, July 18-20, 2022, Proceedings, volume 13383 of

Lecture Notes in Computer Science, pages 236–255. Springer, 2022.

[37] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. State

machine replication for the masses with bft-smart. 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pages 355–362,

2014.

[38] H. Birkholz, M. Eckel, S. Bhandari, E. Voit, B. Sulzen, L. Xia, T. Laffey, and G. Fe-

dorkow. A YANG Data Model for Challenge-Response-based Remote Attesta-

tion Procedures using TPMs. Internet-Draft draft-ietf-rats-yang-tpm-charra-05,

Internet Engineering Task Force, July 2021. Standards Track.

[39] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan.

Remote Attestation Procedures Architecture. Internet-Draft draft-ietf-rats-

architecture-02, Internet Engineering Task Force, March 2020. Work in Progress.

[40] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-

chine learning with adversaries: Byzantine tolerant gradient descent. In NIPS,

2017.

[41] Cristian Borcea, Arnab Deb Gupta, Yuriy Polyakov, Kurt Rohloff, and Gerard W.

Ryan. PICADOR: end-to-end encrypted publish-subscribe information distribu-

tion with proxy re-encryption. Future Gener. Comput. Syst., 71:177–191, 2017.

97

https://aws.amazon.com/com/iot/

D5.4 Version 1.0

[42] Bratus, Sergey andD’Cunha, Nihal and Sparks, Evan and Smith, SeanW. TOCTOU,

Traps, and Trusted Computing. In Proceedings of the 1st International Conference

on Trusted Computing and Trust in Information Technologies: Trusted Computing -

Challenges and Applications, Trust ’08, pages 14–32, Berlin, Heidelberg, 2008.

Springer-Verlag.

[43] Sébanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder, Jean-Louis Lanet,

and Axel Legay. How TrustZone could be bypassed: Side-channel attacks on

a modern system-on-chip. In Gerhard P. Hancke and Ernesto Damiani, editors,

Information Security Theory and Practice - 11th IFIP WG 11.2 International Confer-

ence, WISTP 2017, Heraklion, Crete, Greece, September 28-29, 2017, Proceedings,

volume 10741 of Lecture Notes in Computer Science, pages 93–109. Springer,

2017.

[44] Erh-Chung Chen and Che-Rung Lee. Ltd: Low temperature distillation for robust

adversarial training. arXiv preprint arXiv:2111.02331, 2021.

[45] Liqun Chen and Rainer Urian. Algorithm agility–discussion on tpm 2.0 ecc func-

tionalities. In International Conference on Research in Security Standardisation,

pages 141–159. Springer, 2016.

[46] Yongkang Chen, Ming Zhang, Jin Li, and Xiaohui Kuang. Adversarial attacks and

defenses in image classification: A practical perspective. In 2022 7th Interna-

tional Conference on Image, Vision and Computing (ICIVC), pages 424–430. IEEE,

2022.

[47] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu

Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. Intel tdx demysti-

fied: A top-down approach. arXiv preprint arXiv:2303.15540, 2023.

[48] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu

Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. Intel TDX demysti-

fied: A top-down approach. CoRR, abs/2303.15540, 2023.

[49] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias

Payer. ACES: Automatic compartments for embedded systems. In 27th USENIX

Security Symposium (USENIX Security 18), pages 65–82, Baltimore, MD, August

2018. USENIX Association.

[50] CNBC. Google admits partners leaked more than 1,000 private conversa-

tions with google assistant. https://www.cnbc.com/2019/07/11/google-admits-

leaked-private-voice-conversations.html, 2019.

[51] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux device

drivers. ” O’Reilly Media, Inc.”, 2005.

[52] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint

Arch., page 86, 2016.

[53] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware

extensions for strong software isolation. In Thorsten Holz and Stefan Savage,

editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,

August 10-12, 2016, pages 857–874. USENIX Association, 2016.

98

https://www.cnbc.com/2019/07/11/google-admits-leaked-private-voice-conversations.html
https://www.cnbc.com/2019/07/11/google-admits-leaked-private-voice-conversations.html

D5.4 Version 1.0

[54] cpp-httplib developers. cpp-httplib: A C++ header-only HTTP/HTTPS server and

client library. https://github.com/yhirose/cpp-httplib.

[55] Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis,

and Sébastien Rouault. Aggregathor: Byzantine machine learning via robust

gradient aggregation. In Conference on Machine Learning and Systems, 2019.

[56] Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and Miryung Kim.

An analysis of adversarial attacks and defenses on autonomous driving models.

In 2020 IEEE international conference on pervasive computing and communications

(PerCom), pages 1–10. IEEE, 2020.

[57] Mongoose developers. Mongoose. https://wolfssl.com.

[58] WolfSSL developers. WolfSSL. https://mongoose.ws.

[59] WolfSSL developers. WolfSSL for Intel SGX. https://github.com/wolfSSL/

wolfssl/tree/master/IDE/LINUX-SGX.

[60] AdvancedMicro Devices. AMD SEV-TIO: Trusted i/o for secure encrypted virtual-

ization. https://www.amd.com/content/dam/amd/en/documents/developer/sev-

tio-whitepaper.pdf.

[61] Tobias Distler, Christopher Bahn, Alysson Neves Bessani, Frank Fischer, and

Flavio Paiva Junqueira. Extensible distributed coordination. Proceedings of the

Tenth European Conference on Computer Systems, 2015.

[62] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE

Transactions on information theory, 29(2):198–208, 1983.

[63] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[64] European Cyber Security Organisation (ECSO). European Cyber Security Certifi-

cation: A meta-scheme approach. Technical Report December, 2017.

[65] Eurotech. Dynagate 10-12, Mar 2021.

[66] Eurotech. Reliagate 10-12, Mar 2021.

[67] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Security vulnerabilities

of SGX and countermeasures: A survey. ACM Comput. Surv., 54(6):126:1–126:36,

2022.

[68] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Ko-

modo: Using verification to disentangle secure-enclave hardware from software.

In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,

China, October 28-31, 2017, pages 287–305. ACM, 2017.

[69] Robot Framework Foundation. Robot framework. https://robotframework.

org/. Accessed on: Jan. 29, 2024.

99

https://github.com/yhirose/cpp-httplib
https://wolfssl.com
https://mongoose.ws
https://github.com/wolfSSL/wolfssl/tree/master/IDE/LINUX-SGX
https://github.com/wolfSSL/wolfssl/tree/master/IDE/LINUX-SGX
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://robotframework.org/
https://robotframework.org/

D5.4 Version 1.0

[70] Sarah Abdelwahab Gaballah, Christoph Coijanovic, Thorsten Strufe, and Max

Mühlhäuser. 2PPS – publish/subscribe with provable privacy. In 40th Interna-

tional Symposium on Reliable Distributed Systems, SRDS 2021, Chicago, IL, USA,

September 20-23, 2021, pages 198–209. IEEE, 2021.

[71] Cesare Garlati and Sandro Pinto. Secure IoT Firmware For RISC-V Processors.

Embbedded world, 2021, 2021.

[72] YacineGasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, andN. Asokan.

Beyond secure channels. In Peng Ning, Vijay Atluri, Shouhuai Xu, and Moti Yung,

editors, Proceedings of the 2nd ACMWorkshop on Scalable Trusted Computing,

STC 2007, Alexandria, VA, USA, November 2, 2007, pages 30–40. ACM, 2007.

[73] GlobalPlatform. Specification library. https://globalplatform.org/specs-

library/, 2023.

[74] Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially

robust distillation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 3996–4003, 2020.

[75] Kenneth A. Goldman, Ronald Perez, and Reiner Sailer. Linking remote attesta-

tion to secure tunnel endpoints. In Ari Juels, Gene Tsudik, Shouhuai Xu, and

Moti Yung, editors, Proceedings of the 1st ACM Workshop on Scalable Trusted

Computing, STC 2006, Alexandria, VA, USA, November 3, 2006, pages 21–24. ACM,

2006.

[76] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. AccTEE:

A webassembly-based two-way sandbox for trusted resource accounting. In

Middleware ’19, Middleware ’19, pages 123–135. ACM, 2019.

[77] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[78] Google. Cfu playground. https://github.com/google/CFU-Playground/. Ac-

cessed on: Jan. 3, 2024.

[79] Google. More information about our processes to safeguard speech data.

https://www.blog.google/products/assistant/more-information-about-our-

processes-safeguard-speech-data/, 2019.

[80] Google. Pub/sub, 2023.

[81] Christian Göttel, Pascal Felber, and Valerio Schiavoni. Developing secure ser-

vices for IoT with OP-TEE: A first look at performance and usability. In José

Pereira and Laura Ricci, editors, Distributed Applications and Interoperable Sys-

tems - 19th IFIP WG 6.1 International Conference, DAIS 2019, Held as Part of the

14th International Federated Conference on Distributed Computing Techniques,

DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings, volume

11534 of Lecture Notes in Computer Science, pages 170–178. Springer, 2019.

[82] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le Quoc,

Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber, and Christof

Fetzer. Trust management as a service: Enabling trusted execution in the face

100

https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/
https://github.com/google/CFU-Playground/
https://www.blog.google/products/assistant/more-information-about-our-processes-safeguard-speech-data/
https://www.blog.google/products/assistant/more-information-about-our-processes-safeguard-speech-data/

D5.4 Version 1.0

of byzantine stakeholders. In 50th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2,

2020, pages 502–514. IEEE, 2020.

[83] Trusted Computing Group. Trusted Platform Module (TPM) Summary.

https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-

summary/, Feb 2021.

[84] Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and

Sébastien Rouault. Garfield: System support for byzantine machine learn-

ing (regular paper). 2021 51st Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), pages 39–51, 2021.

[85] Jessica Fitzgerald-McKay Guy Fedorkow, Eric Voit. TPM-based Network Device

Remote Integrity Verification. Internet-Draft draft-ietf-rats-tpm-based-network-

device-attest-06, Internet Engineering Task Force, June 2021. Informative.

[86] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. stat, 1050:9, 2015.

[87] IEEE. Ieee standard for verilog hardware description language. IEEE Std 1364-

2005 (Revision of IEEE Std 1364-2001), 2006.

[88] Inclavare Containers. RATS architecture based TLS using librats. https://github.

com/inclavare-containers/rats-tls.

[89] Intel. Introduction to Intel SGX sealing, April 2016. https://intel.com/

content/www/us/en/developer/articles/technical/introduction-to-intel-

sgx-sealing.html.

[90] Intel. Overview of Intel Protected File System Library Using SGX, 2016. https:

//intel.ly/34NpzMn.

[91] Intel. Intel software guard extensions remote attestation end-to-end example,

July 2018.

[92] Intel Corporation. Intel Software Guard Extensions (Intel SGX) SDK for Linux OS

— Developer Reference, August 2023. version 2.19.

[93] Mihaela Ion, Giovanni Russello, and Bruno Crispo. Design and implementation

of a confidentiality and access control solution for publish/subscribe systems.

Comput. Networks, 56(7):2014–2037, 2012.

[94] Ed. J. Schoenwaelder. Common YANG Data Types. Internet-Draft Request for

Comments: 6991, Internet Engineering Task Force, July 2013. Standards Track.

[95] Florian Jaeckle, Jingyue Lu, and M Pawan Kumar. Neural network branch-and-

bound for neural network verification. arXiv preprint arXiv:2107.12855, 2021.

[96] André Joaquim, Miguel L. Pardal, and Miguel Correia. Vulnerability-tolerant

transport layer security. In James Aspnes, Alysson Bessani, Pascal Felber, and

João Leitão, editors, 21st International Conference on Principles of Distributed

Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, volume 95 of

LIPIcs, pages 28:1–28:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2017.

101

https://github.com/inclavare-containers/rats-tls
https://github.com/inclavare-containers/rats-tls
https://intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://intel.ly/34NpzMn
https://intel.ly/34NpzMn

D5.4 Version 1.0

[97] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.

Intel software guard extensions: Epid provisioning and attestation services.

White Paper, 1(1-10):119, 2016.

[98] Antanas Kascenas, Nicolas Pugeault, and Alison Q O’Neil. Denoising autoen-

coders for unsupervised anomaly detection in brain mri. In International Confer-

ence on Medical Imaging with Deep Learning, pages 653–664. PMLR, 2022.

[99] Abhirup Khanna and Rishi Anand. Iot based smart parking system. 2016 Interna-

tional Conference on Internet of Things and Applications (IOTA), pages 266–270,

2016.

[100] Anum Khurshid. Extended design and first implementation of security, safety

and robustness mechanisms and tools. https://vedliot.eu/deliverable/

d5-2-extended-design-and-first-implementation-of-security-safety-and-

robustness-mechanisms-and-tools/, 2022.

[101] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung Lee,

Xiangyu Zhang, and Dongyan Xu. Securing real-time microcontroller systems

through customized memory view switching. In Network and Distributed System

Security (NDSS) Symposium, 2018.

[102] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and

Mona Vij. Integrating remote attestation with transport layer security. CoRR,

abs/1801.05863, 2018.

[103] Hugo Krawczyk. SIGMA: The ’SIGn-and-MAc’ approach to authenticated Diffie-

Hellman and its use in the IKE-protocols. In Dan Boneh, editor, Advances in

Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,

Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of

Lecture Notes in Computer Science, pages 400–425. Springer, 2003.

[104] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning

at scale. arXiv preprint arXiv:1611.01236, 2016.

[105] Murat Kuzlu, Ferhat Ozgur Catak, Umit Cali, Evren Catak, and Ozgur Guler. Ad-

versarial security mitigations of mmwave beamforming prediction models using

defensive distillation and adversarial retraining. International Journal of Infor-

mation Security, pages 1–14, 2022.

[106] Marta Z Kwiatkowska. Safety verification for deep neural networks with prov-

able guarantees. 30th International Conference on Concurrency Theory (CONCUR

2019), 2019.

[107] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.

Keystone: An open framework for architecting trusted execution environments.

In EuroSys ’20, New York, NY, USA, 2020. ACM.

[108] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn Song.

Keystone: an open framework for architecting trusted execution environments.

In Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic, and

Margo I. Seltzer, editors, EuroSys ’20: Fifteenth EuroSys Conference 2020, Herak-

lion, Greece, April 27-30, 2020, pages 38:1–38:16. ACM, 2020.

102

https://vedliot.eu/deliverable/d5-2-extended-design-and-first-implementation-of-security-safety-and-robustness-mechanisms-and-tools/
https://vedliot.eu/deliverable/d5-2-extended-design-and-first-implementation-of-security-safety-and-robustness-mechanisms-and-tools/
https://vedliot.eu/deliverable/d5-2-extended-design-and-first-implementation-of-security-safety-and-robustness-mechanisms-and-tools/

D5.4 Version 1.0

[109] Yanlin Li, Jonathan M. McCune, James Newsome, Adrian Perrig, Brandon Baker,

and Will Drewry. Minibox: A two-way sandbox for x86 native code. In Garth

Gibson and Nickolai Zeldovich, editors, ATC ’14, ATC ’14, pages 409–420. USENIX,

2014.

[110] Roger A. Light. Mosquitto: server and client implementation of the MQTT

protocol. J. Open Source Softw., 2(13):265, 2017.

[111] Arm Limited. Exception levels. https://developer.arm.com/documentation/

102412/0103/Privilege-and-Exception-levels/Exception-levels, 2023.

[112] Linaro Limited. Open source secure software. https://www.trustedfirmware.

org/, 2023.

[113] Linaro. The devicetree specification. https://www.devicetree.org/. Accessed

on: Jan. 3, 2024.

[114] Naiwei Liu, Meng Yu, Wanyu Zang, and Ravi Sandhu. On the cost-effectiveness

of trustzone defense on arm platform. In Information Security Applications: 21st

International Conference, WISA 2020, Jeju Island, South Korea, August 26–28,

2020, Revised Selected Papers, page 203–214, Berlin, Heidelberg, 2020. Springer-

Verlag.

[115] Niels Lohmann. JSON for modern C++, 2023. https://github.com/nlohmann/

json.

[116] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for

feed-forward relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[117] Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer Se-

curity Foundations Workshop (CSFW 1997), pages 31–43. IEEE Computer Society,

1997.

[118] Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny, and Radek Fujdiak.

A secure publish/subscribe protocol for internet of things. In Proceedings of the

14th International Conference on Availability, Reliability and Security, ARES 2019,

Canterbury, UK, August 26-29, 2019, pages 75:1–75:10. ACM, 2019.

[119] Stefano Mariani, Giacomo Cabri, and Franco Zambonelli. Coordination of au-

tonomous vehicles: taxonomy and survey. ACM Computing Surveys (CSUR),

54(1):1–33, 2021.

[120] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil D.

Gligor, and Adrian Perrig. Trustvisor: Efficient TCB reduction and attestation.

In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,

Berleley/Oakland, California, USA, pages 143–158. IEEE Computer Society, 2010.

[121] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Re-

bekah Leslie-Hurd, and Carlos V. Rozas. Intel Software Guard Extensions support

for dynamic memory management inside an enclave. In HASP ’16, HASP ’16,

pages 10:1–10:9. ACM, 2016.

103

https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels
https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels
https://www.trustedfirmware.org/
https://www.trustedfirmware.org/
https://www.devicetree.org/
https://github.com/nlohmann/json
https://github.com/nlohmann/json

D5.4 Version 1.0

[122] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin

prover for the symbolic analysis of security protocols. In International Conference

on Computer Aided Verification (CAV’13), pages 696–701. Springer, 2013.

[123] Jämes Ménétrey, Christian Göttel, Anum Khurshid, Marcelo Pasin, Pascal Fel-

ber, Valerio Schiavoni, and Shahid Raza. Attestation mechanisms for trusted

execution environments demystified. In David M. Eyers and Spyros Voulgaris,

editors, Distributed Applications and Interoperable Systems: 22nd IFIP WG 6.1

International Conference, DAIS 2022, Held as Part of the 17th International Fed-

erated Conference on Distributed Computing Techniques, DisCoTec 2022, Lucca,

Italy, June 13-17, 2022, Proceedings, volume 13272 of Lecture Notes in Computer

Science, pages 95–113. Springer, 2022.

[124] Jämes Ménétrey, Aeneas Grüter, Peterson Yuhala, Julius Oeftiger, Pascal Fel-

ber, Marcelo Pasin, and Valerio Schiavoni. A holistic approach for trustworthy

distributed systems with webassembly and tees. In Proceedings of the 27th

International Conference on Principles of Distributed Systems (OPODIS 2023),

2023.

[125] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. Twine:

An embedded trusted runtime for webassembly. In ICDE, pages 205–216. IEEE,

2021.

[126] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. WaTZ: A

trusted WebAssembly runtime environment with remote attestation for Trust-

Zone. In 42nd IEEE International Conference on Distributed Computing Systems,

ICDCS 2022, Bologna, Italy, July 10-13, 2022, pages 1177–1189. IEEE, 2022.

[127] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden

vulnerability of distributed learning in byzantium. In International Conference

on Machine Learning, 2018.

[128] Microsoft. Introducing azure iot support for x.509 certificates, Aug 2016.

[129] Microsoft. Publisher-subscriber pattern, 2023.

[130] Modberry. Modberry, Mar 2021.

[131] Nir Morgulis, Alexander Kreines, Shachar Mendelowitz, and Yuval Weisglass.

Fooling a real car with adversarial traffic signs. arXiv preprint arXiv:1907.00374,

2019.

[132] Jämes Ménétrey. WAMR – remote attestation and secure channel of

communication. https://github.com/bytecodealliance/wasm-micro-runtime/

discussions/1664.

[133] Jämes Ménétrey. Twine runtime and experiments, 2023.

[134] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. WaTZ: A

trusted WebAssembly runtime environment with remote attestation for Trust-

Zone. In ICDCS ’22, ICDCS ’22, pages 1177–1189. IEEE, 2022.

104

https://github.com/bytecodealliance/wasm-micro-runtime/discussions/1664
https://github.com/bytecodealliance/wasm-micro-runtime/discussions/1664

D5.4 Version 1.0

[135] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, Valerio Schiavoni, Giovanni

Mazzeo, Arne Hollum, and Darshan Vaydia. A comprehensive trusted runtime

for webassembly with intel sgx. IEEE Transactions on Dependable and Secure

Computing, pages 1–18, 2023.

[136] Mohamed Nabeel, Stefan Appel, Elisa Bertino, and Alejandro P. Buchmann.

Privacy preserving context aware publish subscribe systems. In Javier López,

Xinyi Huang, and Ravi S. Sandhu, editors, Network and System Security - 7th

International Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings,

volume 7873 of Lecture Notes in Computer Science, pages 465–478. Springer,

2013.

[137] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schiavoni, Pascal

Felber, andDanielHagimont. Everything you should knowabout intel SGXperfor-

mance on virtualized systems. Proc. ACMMeas. Anal. Comput. Syst., 3(1):5:1–5:21,

2019.

[138] Arto Niemi, Vasile Adrian Bogdan Pop, and Jan-Erik Ekberg. Trusted sockets

layer: A TLS 1.3 based trusted channel protocol. In Nicola Tuveri, Antonis Micha-

las, and Billy Bob Brumley, editors, Secure IT Systems - 26th Nordic Conference,

NordSec 2021, Virtual Event, November 29-30, 2021, Proceedings, volume 13115

of Lecture Notes in Computer Science, pages 175–191. Springer, 2021.

[139] Arto Niemi, Sampo Sovio, and Jan-Erik Ekberg. Towards interoperable enclave

attestation: Learnings from decades of academic work. In 31st Conference of

Open Innovations Association, FRUCT 2022, Helsinki, Finland, April 27-29, 2022,

pages 189–200. IEEE, 2022.

[140] Emanuel Onica, Pascal Felber, Hugues Mercier, and Etienne Rivière.

Confidentiality-preserving publish/subscribe: A survey. ACM Comput.

Surv., 49(2):27:1–27:43, 2016.

[141] OpenTitan. Opentitan project. https://opentitan.org.

[142] Nicolas Papernot and Patrick McDaniel. Extending defensive distillation. arXiv

preprint arXiv:1705.05264, 2017.

[143] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

Distillation as a defense to adversarial perturbations against deep neural net-

works. In 2016 IEEE symposium on security and privacy (SP), pages 582–597. IEEE,

2016.

[144] Marcelo Pasin, Jämes Ménétrey, Anum Khurshid, Alysson Bessani, Piotr Zier-

hoffer, and Micha vor dem Berge. D5.1 — design and early release of security,

safety and robustness mechanisms and tools. Technical report, VEDLIoT, 2021.

[145] MarceloPassin. Design andearly releaseof security, safety and robustnessmech-

anisms and tools. https://vedliot.eu/deliverable/deliverable-d51/, 2021.

[146] A Paverd. Enhancing communication privacy using trustworthy remote entities.

PhD thesis, University of Oxford, 2015.

105

https://opentitan.org
https://vedliot.eu/deliverable/deliverable-d51/

D5.4 Version 1.0

[147] Jinglei Pei, Yuyang Shi, Qingling Feng, Ruisheng Shi, Lina Lan, Shui Yu, Jinqiao Shi,

and Zhaofeng Ma. An efficient confidentiality protection solution for pub/sub

system. Cybersecur., 6(1):34, 2023.

[148] Raspberry Pi. Raspberry pi 4, May 2021.

[149] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive

survey. ACM Comput. Surv., 51(6), jan 2019.

[150] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. Secure content-

based routing using Intel software guard extensions. In Proceedings of the

17th International Middleware Conference, Trento, Italy, December 12 - 16, 2016,

page 10. ACM, 2016.

[151] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,

Vasily A. Sartakov, and Peter R. Pietzuch. SGX-LKL: securing the hostOS interface

for trusted execution. CoRR, abs/1908.11143, 2019.

[152] Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto, and Srdjan

Capkun. On (the lack of) code confidentiality in trusted execution environments.

CoRR, abs/2212.07899, 2022.

[153] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses

against adversarial examples. arXiv preprint arXiv:1801.09344, 2018.

[154] Fiana Raiber and Oren Kurland. Kullback-leibler divergence revisited. In Proceed-

ings of the ACM SIGIR International Conference on Theory of Information Retrieval,

pages 117–124, 2017.

[155] Eric Rescorla. Keying material exporters for transport layer security (TLS). RFC

5705, March 2010.

[156] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS en-

crypted client hello. Internet-Draft draft-ietf-tls-esni-16, Internet Engineering

Task Force, April 2023. Work in Progress.

[157] Peter Saint-Andre and Jeff Hodges. Representation and verification of domain-

based application service identity within internet public key infrastructure using

X.509 (PKIX) certificates in the context of transport layer security (TLS). RFC

6125, March 2011.

[158] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. Demystifying

attestation in Intel trust domain extensions via formal verification. IEEE Access,

9:83067–83079, 2021.

[159] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In

Conference on the Theory and Application of Cryptology, pages 239–252. Springer,

1989.

[160] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of

cryptology, 4(3):161–174, 1991.

106

D5.4 Version 1.0

[161] Carlos Segarra, Ricard Delgado-Gonzalo, and Valerio Schiavoni. MQT-TZ: Hard-

ening IoT brokers using ARM TrustZone : (practical experience report). In

International Symposium on Reliable Distributed Systems, SRDS 2020, Shanghai,

China, September 21-24, 2020, pages 256–265. IEEE, 2020.

[162] Carlton Shepherd, Raja Naeem Akram, and Konstantinos Markantonakis. Es-

tablishing mutually trusted channels for remote sensing devices with trusted

execution environments. In Proceedings of the 12th International Conference on

Availability, Reliability and Security, Reggio Calabria, Italy, August 29 - September

01, 2017, pages 7:1–7:10. ACM, 2017.

[163] Siemens. Questa advanced simulator. https://eda.sw.siemens.com/en-US/ic/

questa/simulation/advanced-simulator/. Accessed on: Jan. 29, 2024.

[164] SpinalHDL. Vexriscv. https://github.com/SpinalHDL/VexRiscv. Accessed on:

Jan. 4, 2024.

[165] Ron Stajnrod, Raz Ben Yehuda, and Nezer Jacob Zaidenberg. Attacking trust-

zone on devices lacking memory protection. J. Comput. Virol. Hacking Tech.,

18(3):259–269, 2022.

[166] Frederic Stumpf, Andreas Fuchs, Stefan Katzenbeisser, and Claudia Eckert. Im-

proving the scalability of platform attestation. In Shouhuai Xu, Cristina Nita-

Rotaru, and Jean-Pierre Seifert, editors, Proceedings of the 3rd ACMWorkshop

on Scalable Trusted Computing, STC 2008, Alexandria, VA, USA, October 31, 2008,

pages 1–10. ACM, 2008.

[167] Frederic Stumpf, Omid Tafreschi, Patrick Röder, Claudia Eckert, et al. A ro-

bust integrity reporting protocol for remote attestation. In Proceedings of the

Workshop on Advances in Trusted Computing (WATC), page 65, 2006.

[168] Antero Taivalsaari, Tommi Mikkonen, and Cesare Pautasso. Towards seamless

IoT device-edge-cloud continuum: Software architecture options of IoT devices

revisited. In Maxim Bakaev, In-Young Ko, Michael Mrissa, Cesare Pautasso, and

Abhishek Srivastava, editors, ICWE 2021 Workshops - ICWE 2021 International

Workshops, BECS and Invited Papers, Biarritz, France, May 18-21, 2021, volume

1508 of Communications in Computer and Information Science, pages 82–98.

Springer, 2021.

[169] Team libtom. Libtomcrypt. https://github.com/libtom/libtomcrypt, 2023.

[170] The Linux Foundation. The zephyr project. https://zephyrproject.org/. Ac-

cessed on: Jan. 29, 2024.

[171] The Linux Foundation. The zephyr project twister. https://github.com/

zephyrproject-rtos/zephyr/blob/main/scripts/twister. Accessed on: Jan. 29,

2024.

[172] Throw The Switch. Unity test project. https://github.com/ThrowTheSwitch/

Unity. Accessed on: Jan. 29, 2024.

[173] Tate Tian. Understanding SGX protected file system, January 2017. https:

//git.io/JtDP9.

107

https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://github.com/SpinalHDL/VexRiscv
https://github.com/libtom/libtomcrypt
https://zephyrproject.org/
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/twister
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/twister
https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Unity
https://git.io/JtDP9
https://git.io/JtDP9

D5.4 Version 1.0

[174] Milan Tripathi. Facial image denoising using autoencoder and unet. Heritage

and Sustainable Development, 3(2):89, 2021.

[175] Trusted Computing Group. Trusted Platform Module Library Part 1: Architecture,

3 2014. Level 00 Revision 01.07.

[176] Trusted Computing Group. Trusted Platform Module Library Part 3: Commands,

9 2016. Family 2.0, Level 00 Revision 01.38.

[177] Trusted Computing Group. Trusted Platform Module Library Part 2: Structures, 9

2018. Level 00 Revision 01.50”.

[178] Trusted Computing Group. DICE Attestation Architecture, 2021.

[179] TrustedFirmware.org. Pseudo trusted applications. https://optee.

readthedocs.io/en/latest/architecture/trusted_applications.html#

pseudo-trusted-applications, 2023.

[180] European Union. European level 6g Flagship project, December 2023.

[181] Peter VanNostrand, Ioannis Kyriazis, Michelle Cheng, Tian Guo, and Robert J.

Walls. Confidential deep learning: Executing proprietary models on untrusted

devices. ArXiv, abs/1908.10730, 2019.

[182] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani.

COBRA: dynamic proactive secret sharing for confidential BFT services. In 43rd

IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May

22-26, 2022, pages 1335–1353. IEEE, 2022.

[183] Veripool. Verilator. https://www.veripool.org/verilator/. Accessed on: Jan.

29, 2024.

[184] Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. Establishing secure

communication channels using remote attestationwith TPM2.0. In Konstantinos

Markantonakis and Marinella Petrocchi, editors, Security and Trust Management

- 16th International Workshop, STM 2020, Guildford, UK, September 17-18, 2020,

Proceedings, volume 12386 of Lecture Notes in Computer Science, pages 73–89.

Springer, 2020.

[185] Kevin Walsh and John Manferdelli. Mechanisms for mutual attested microser-

vice communication. In Ashiq Anjum, Alan Sill, Geoffrey C. Fox, and Yong Chen,

editors, Companion Proceedings of the 10th International Conference on Utility

and Cloud Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017, pages

59–64. ACM, 2017.

[186] Robert Walther, Carsten Weinhold, and Michael Roitzsch. RATLS: integrating

transport layer security with remote attestation. In Jianying Zhou, Sridhar

Adepu, Cristina Alcaraz, Lejla Batina, Emiliano Casalicchio, Sudipta Chattopad-

hyay, Chenglu Jin, Jingqiang Lin, Eleonora Losiouk, SuryadiptaMajumdar, Weizhi

Meng, Stjepan Picek, Jun Shao, Chunhua Su, Cong Wang, Yury Zhauniarovich,

and Saman A. Zonouz, editors, ACNS ’22, volume 13285 of ACNS ’22, pages

361–379. Springer, 2022.

108

https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications
https://www.veripool.org/verilator/

D5.4 Version 1.0

[187] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander L Wolf. Security

issues and requirements for internet-scale publish-subscribe systems. In Pro-

ceedings of the 35th Annual Hawaii International Conference on System Sciences,

pages 3940–3947. IEEE, 2002.

[188] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and

J Zico Kolter. Beta-crown: Efficient bound propagation with per-neuron split

constraints for neural network robustness verification. Advances in Neural

Information Processing Systems, 34:29909–29921, 2021.

[189] Shuran Wang, Dahan Pan, Runhan Feng, and Yuanyuan Zhang. Magikcube:

Securing cross-domain publish/subscribe systems with enclave. In 20th IEEE

International Conference on Trust, Security and Privacy in Computing and Commu-

nications, TrustCom 2021, Shenyang, China, October 20-22, 2021, pages 147–154.

IEEE, 2021.

[190] WebAssembly community. WebAssembly system interface —WASI application

ABI, September 2020. https://git.io/JT3L1.

[191] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Man-

gard, and Ahmad-Reza Sadeghi. TIMBER-V: Tag-isolated memory bringing fine-

grained enclaves to RISC-V. In 26th Annual Network and Distributed System

Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.

The Internet Society, 2019.

[192] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and

Fabian Monrose. The severest of them all: Inference attacks against secure

virtual enclaves. In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter

Gollmann, Engin Kirda, and Zhenkai Liang, editors, Proceedings of the 2019

ACM Asia Conference on Computer and Communications Security, AsiaCCS 2019,

Auckland, New Zealand, July 09-12, 2019, pages 73–85. ACM, 2019.

[193] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via

the convex outer adversarial polytope. In International Conference on Machine

Learning, pages 5286–5295. PMLR, 2018.

[194] Logan G Wright, Tatsuhiro Onodera, Martin M Stein, Tianyu Wang, Darren T

Schachter, Zoey Hu, and Peter L McMahon. Deep physical neural networks

trained with backpropagation. Nature, 601(7894):549–555, 2022.

[195] Weigang Wu, Jiebin Zhang, Aoxue Luo, and Jiannong Cao. Distributed mutual

exclusion algorithms for intersection traffic control. IEEE Transactions on Parallel

and Distributed Systems, 26:65–74, 2015.

[196] AMD Xilinx. Vivado. https://www.xilinx.com/products/design-tools/vivado.

html. Accessed on: Jan. 29, 2024.

[197] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and

Cho-Jui Hsieh. Fast and complete: Enabling complete neural network veri-

fication with rapid and massively parallel incomplete verifiers. arXiv preprint

arXiv:2011.13824, 2020.

109

https://git.io/JT3L1
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

D5.4 Version 1.0

[198] Yue Yu, Huaimin Wang, Bo Liu, and Gang Yin. A trusted remote attestation

model based on trusted computing. In 12th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications, TrustCom 2013 /

11th IEEE International Symposium on Parallel and Distributed Processing with Ap-

plications, ISPA-13 / 12th IEEE International Conference on Ubiquitous Computing

and Communications, IUCC-2013, Melbourne, Australia, July 16-18, 2013, pages

1504–1509. IEEE Computer Society, 2013.

[199] Chaoqun Yue, Xiaomin Zhu, Zhiyong Liu, Xiaodong He, Zhihua Zhang, and Wei

Zhao. A denoising autoencoder approach for poisoning attack detection in

federated learning. IEEE Access, 9:43027–43036, 2021.

[200] Peterson Yuhala, JämesMénétrey, Pascal Felber, Marcelo Pasin, and Valerio Schi-

avoni. Fortress: Securing IoT peripherals with trusted execution environments.

In Proceedings of the The 39th ACM/SIGAPP Symposium On Applied Computing,

2024.

[201] Zeuson0. Pull request – linux-sgx: Improve the remote attestation. https:

//github.com/bytecodealliance/wasm-micro-runtime/pull/1695.

[202] Piotr Zierhoffer. Second implementation of security, safety and robust-

ness mechanisms and tools. https://vedliot.eu/deliverable/d5-3-second-

implementation-of-security-safety-and-robustness-mechanisms-and-tools-

ant-pu-m27/, 2023.

110

https://github.com/bytecodealliance/wasm-micro-runtime/pull/1695
https://github.com/bytecodealliance/wasm-micro-runtime/pull/1695
https://vedliot.eu/deliverable/d5-3-second-implementation-of-security-safety-and-robustness-mechanisms-and-tools-ant-pu-m27/
https://vedliot.eu/deliverable/d5-3-second-implementation-of-security-safety-and-robustness-mechanisms-and-tools-ant-pu-m27/
https://vedliot.eu/deliverable/d5-3-second-implementation-of-security-safety-and-robustness-mechanisms-and-tools-ant-pu-m27/

	Executive Summary
	Introduction
	Secure Communication and Execution on IoT platforms
	Trusted Communication with WebAssembly and Intel SGX
	Twine Design
	Implementation Details
	Use Case: Credit Scoring in Crypto Finance
	Evaluation
	Security Analysis
	Retrospective

	Protecting IoT Peripherals with ARM TrustZone
	TrustZone, a TEE for Edge Devices
	Open Portable TEE (OP-TEE)
	MMIO and DMA
	Threat Model
	Fortress Architecture
	Assessment of Fortress and Concluding Remarks

	Attesting MQTT Brokers within Intel SGX
	Pub/sub Systems
	Attestation
	Pub/sub with TEEs
	Communication Protocols using Attestation
	Threat Model
	Security Requirements and Trusted Primitives
	Architecture Overview
	Attesting Communication Channels
	Securing pub/sub Systems
	Concluding Remarks about Attested pub/sub

	Trusted Certification of IoT Devices
	TruCerT: Definitions and Concepts
	TruCerT Protocol
	Initiate Certificate Request
	Initiate Audit Request
	Audit Evidence and Certification Info
	Risk Evaluation
	Certificate of Assurance

	Realization of TruCerT with Standards
	TruCerT with RATS
	TruCerT and X509-based Certificates

	Network Overhead of TruCerT vs TruCerT with RATS
	Security Analysis
	Introduction to Tamarin
	TruCerT Formal Analysis

	Secure computing with Contiki-NG
	Contiki-NG on Low-Power RISC-V Devices
	Background knowledge and context of the work
	The Contiki-NG OS
	Porting Contiki-NG to a RISC-V CPU
	Future Work

	EDHOC for Contiki-NG

	SIRE Evaluation
	Use Cases
	IoT Membership Management
	Autonomous Vehicle Coordination
	Robust Federated Machine Learning

	Evaluation
	Read and Write Data – get & put
	Use Case 1 - IoT Membership Management
	Use Case 2 - Intersection Management
	Use Case 3 - BFT Federated Learning

	Simulation and Testing with Renode
	Introduction to Renode
	Robust Automatic Platform Generation Features
	CFU Simulation
	Co-simulation Improvements
	Improvements to the Testing Infrastructure
	Renode-Verilator Integration
	Renode DPI Examples

	Coherent Co-simulation Flow for ML Development

	Robustness for Deep Neural Networks
	Robustness Verification of Neural Networks
	Related Works
	Robustness Verification and Quantification Approach

	Mitigation of Adversarial Data Poison Attacks Against Deep Neural Networks
	Related Works
	Mitigation of Adversarial Data Poison Attacks

	Self-ensemble Horizontal Gating-based Mixture of Expert Image Classification Deep Neural Networks

	Generating, Sharing and Using Data for Increased Safety – Advantages and Challenges
	Reasons for Sharing Data
	Available Sharing Options/Infrastructure
	Broadcast
	Two-way Communication

	Creating the Big Picture
	Generating Data and Local Information
	Sharing and Processing
	Distributing and Using Information

	Outlook

	Overall Achievements
	References

