

ICT-56-2020 - Next Generation Internet of Things

D 7.5
Final report on use case

development, optimisation,
benchmarking and evaluation

Document information

Contract number 957197

Project website www.vedliot.eu

Dissemination Level PU

Nature R

Contractual Deadline 31.01.2024

Author Micha vor dem Berge (CHR)

Contributors Oliver Brunnegard (Magna), Carina Marcus (Magna), Johan

Thor (Magna), Nils Kucza (UNIBI), Franz Meierhöfer (Siemens),

Roland Weiss (Siemens), Yufei Mao (Siemens), Andreas Ask

(EmbeDL)

Reviewers Mario Porrmann (UOS), Hans Salomonsson (EmbeDL)

The VEDLIoT project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957197.

http://www.vedliot.eu/

D7.5 Version 3.0

2

Changelog

v0.1 2022-01-20 Initial draft of D7.2

v0.2 2022-04-01 Initial input of all partners merged

v0.3 2022-04-05 Summary, Introduction, Conclusion added

v0.4 2022-04-08 Updating all chapters, ready for internal review

v0.5 2022-04-18 Internal review back

v0.6 2022-04-25 Updated all chapters after internal review

v1.0 2022-04-30 Final version (D7.2)

v1.1 2022-08-26 Initial version of D7.3, based on D7.2

v1.2 2022-10-07 Major content of all chapters updated

v1.3 2022-10-18 Ready for internal review

v1.4 2022-10-25 Updated all chapters after internal review

v1.5 2022-10-31 Finalization

v2.0 2022-10-31 Final version (D7.3)

v2.1 2023-12-05 Initial version of D7.5, based on D7.3

v2.2 2024-01-08 Major content updates of all chapters merged

v2.3 2024-01-09 Updated Summary, Introduction, Conclusion

v2.4 2024-01-10 Consolidated version ready for internal review

v2.6 2024-01-25 Updated version, based on internal review

v2.7 2024-01-29 Consolidated version, pre-final

v3.0 2024-01-30 Final version of D7.5

D7.5 Version 3.0

3

Table of contents
Executive Summary.. 4

1 Introduction .. 6

2 Smart Industrial IoT: Motor Condition Classification Use Case .. 7

2.1 Introduction .. 7

2.2 Overview of Developments and Optimisations .. 8

2.3 System Design .. 9

2.4 Deep learning on smart field device ... 10

2.5 Implementation on IoT system .. 21

2.6 Conclusion ... 23

3 Smart Industrial IoT: Arc Detection Use Case ... 25

3.1 Introduction .. 25

3.2 Development Procedure... 28

3.3 Implementation .. 31

3.4 Conclusion ... 42

4 Automotive AI Use Case .. 44

4.1 Development of automotive AI model ... 44

4.2 Test Setup.. 52

4.3 Evaluation Parameters .. 59

4.4 Results .. 59

4.5 Discussion and Conclusion .. 68

4.6 Challenges and Future Work .. 70

5 Smart Home Use Case ... 71

5.1 Developments & Optimisation .. 72

5.2 Hand Gesture Dataset and Automated Capturing ... 74

5.3 Optimization of YOLOv7... 75

5.4 FPGA usage for Object and Gesture Detection .. 80

5.5 Creation of a Virtual Mirror Image from 3D Point Clouds .. 80

5.6 Hardware Evaluation ... 81

5.7 Local Voice Assistant ... 82

5.8 Secure Smart Microphone with Hotword Recognition .. 82

5.9 Evaluation of the Key Performance Indicators ... 84

6 Conclusion ... 85

7 References .. 87

8 List of Figures ... 93

D7.5 Version 3.0

4

Executive Summary
This deliverable describes the use case developments and optimisations and the transition
from traditional algorithms towards machine learning. It covers the work from M7 to M39 of
the project and is based on the previous deliverables D2.3 [1], D7.2 [2] and D7.3 [3].

In the beginning of the project, for all four use cases, unified and formalised specifications
were defined, covered in D2.3. Based on this, the four use cases started to develop a basic
working prototype (in case of the home assistant use case, it was already available from a
previous project) which acted as a platform to define the baselines for the selected metrics
and KPIs, which is mainly covered in D7.2 and D7.3. Also, these prototypes provided a
platform to gather lots of different measurements for ML learing training data. After this
phase was finished roughly at the mid of the project, the neural networks were defined,
trained and optimised in iterative loops. With these trained neural networks, the
benchmarking and evaluation phase at the end of the project started. Various environments
and situations were measured and compared to the baseline benchmarks from the
beginning of the project. Also, for all use cases, visually attractive demonstrators were
developed for fairs, conferences and the reviews.

The major outcome for the IIoT use case of Motor Condition Classification is the setup of a
testbench, the capturing and labelling of training data and the design and development of
a neural network and the development, manufacturing and integration of a use case
optimised cognitive hardware platform where the neural network runs on. Also, an AR
visualisation based on a tablet was developed and Christmann’s Secure IoT Gateway
integrated for high network security. Furthermore, a draft for the integration of the SIRE
protocol and external MQTT for system security was developed. Overall, the targeted KPIs
of e.g. a maximum power consumption of 6.6 mW was met, the system only needs 5.8 mW
under certain conditions. Also, the total energy consumption of 30 Wh per year is reached
and the NN model accuracy can reach 88.6% after training and 82.3% after quantization on
the test dataset.

The IIoT use case for Arc Detection re-activated, improved several times during the project
and secured an existing testbench for arc generation and measurements to generate
training data for the NN development. With this training data, a NN was designed, trained,
optimized and ported to run on different hardware architectures: CPU, embedded GPU AI
accelerators and FPGAs. The NN optimization with the VEDLIoT toolchain resulted in over
80% reduction on inference time compared to 10 ms for one inference during the initial
implementation. The real running arc testbench was also re-designed to make it portable for
demonstrations on fairs, conferences etc. The achieved NN accuracy of up to 100% is a great
success and an excellent base for future product developments.

The Automotive AI use case implemented the Pedestrian Automatic Emergency Breaking
(AEB) as goal to be realized with the help of a NN. Therefore, vast amounts lots of training
data was captured, labelled and a NN was designed and trained. It took several iterations
and optimizations until the NN reached the desired quality for local processing, and it was
optimized for embedded GPU compute units and ported to the also developed u.RECS.
Further research fields of distributing the NN processing via different wireless networks
(WiFi or 5G mmWave) in various ways to near edge and far edge computing units resulted in
the knowledge that for a time-critical use case like the AEB, distribution is not well-suited
due to the latency, but technically possible. The latency during the experiments overshot
the KPI by four to five times. As most of this latency can be referred to the data transfer and
not the NN operations, there is room for improvement. Regarding the accuracy of the results
from the NN it was shown that it was able to detect the dummy representing a predestrian
that was used and didn't mistake another test object, a trash can, for a dummy.

D7.5 Version 3.0

5

The Smart Home use case improved the pre-existing smart mirror demonstrator in the
course of the VEDLIoT project massively, building several attractive prototypes for lots of
fairs and conferences where it was shown with great success. Lots of developments have
been accomplished like the change of the internal framework to ROS2, restructuring of the
Face Recognition NNs were merged and optimised, porting and optimising towards
heterogeneous hardware like different Nvidia embedded ARM/GPUs, dedicated AI
accelerators like the Hailo.8 and FPGAs, the creation of a virtual mirror image from 3D point
clouds and the development and integration of on offline voice assistant were added. Many
of these developments led to improved user experience and functionality, but also
enhanced the energy efficiency. The latest measurements, taken on an Nvidia AGX Orin and
Hailo8 AI acceleratod resulted in 1.266 Watt / FPS, having 9.375 Watt / FPS as baseline which
is a 7.4x improvement and further improvements towards 0.933 Watt / FPS are expected if
the hardware was further optimised.

D7.5 Version 3.0

6

1 Introduction
This deliverable describes the developments and optimisations as well as the optimisation,
benchmarking and evaluation of the four project use cases. They are classified in three
sections:

UC1A Smart Industrial IoT: Motor Condition Classification use case
UC1B Smart Industrial IoT: Arc Detection use case
UC2 Automotive AI use case
UC3 Smart Home use case

All four use cases have been formally described and defined in the confidential Deliverable
2.3 [1]. For reasons of readability, however, all use cases are presented briefly so that this
deliverable is self-contained. All use cases have been developed and optimised, from using
traditional algorithmic methods to machine learning and energy-efficient hardware, using
the VEDLIoT tool flow and methods as shown in Figure 1. These developments and
optimisations are described in this deliverable. They are partially based on previous work,
but some use cases have been developed from scratch.

It is important to mention that this deliverable is the third of three consecutive deliverables,
so it is partially based on D7.2 [2] and D7.3 [3], but describes the final state of developments
and optimisations and gives an overview of the impoved metrics and KPIs.

Figure 1: Global picture of the VEDLIoT project, the use cases are outlined in red

Applications
(WP7)

Requirements
(WP2)

Security &
Safety (WP5)

Trusted Exec.

Hardware
(WP4)

Accelerator
(WP3)

Middleware
(WP6)

Embedded / Far Edge (µ.RECS) Near Edge (t.RECS) Cloud (RECS|Box)

FPGA Reconfigurable Infrastructure

Communication
Run-Time

reconfiguration
Management

ASIC AI AcceleratorsUltra
Low

Power
Mid

Range
High

Performance

AI Toolchain (EmbeDL)

OptimizationModel Zoo

RobustnessDeployment

Industrial IoT

Motor
Condition

Classification

Arc
Detection

Automotive AI

Automatic
Emergency

Breaking

Safety and
Robustness
Monitoring

RISC-V
extensions

Trusted Web
Assembly VM

Root of Trust

Distributed
Attestation

RISC-V evaluation
(Embench Tester)

Benchmark
Framework (Kenning)

Smart Home

Smart
Mirror

Require-
ments

Engineering

Ethics

Safety and
Robustness

Modelling
and

Verification

IoT/Edge Emulation
Framework (Renode)

Processing
Platforms

Peripherals

Communication
Infrastructures

ARM, x86, RISC-V, GPU, FPGA, ASIC

Open Calls

… … …

Trusted Com.

Secure IoT
Gateway

LORA/5G

D7.5 Version 3.0

7

2 Smart Industrial IoT: Motor Condition Classification Use
Case

This chapter describes the development and result of the industrial use case motor
condition monitoring. This use case aims to demonstrate the utilisation of deep learning in
industrial scenario by using ultra-low power cognitive Internet of Things (IoT) devices. The
application area is the condition monitoring of middle size motors, especially the monitoring
of the status of cooling systems. The chapter introduces the background of the use case, the
development procedure, and the evaluation of the system.

2.1 Introduction
Condition monitoring is an important topic in an industrial environment. The Equipment is
required to run 24 /7 and the condition monitoring system should be constantly available.
The demand for system performance enhances the request for condition monitoring and
predictive maintenance during runtime. The Current solution is based on IoT systems where
end devices, which are typicaly based on microcontrollers, are mounted on equipment to
monitor different features of those devices. Figure 2 shows an example of a battery
powered smart field device (SFD) in real industrial application. The SFD is expected to last
at least two years on battery power and should be easy to mount, maintain and replace.
However, network congestion and limited bandwidth in large-scale IoT systems pose a
significant hurdle. To address this, on-site data processing within SFDs using deep learning
is explored to reduce the volume of data transmitted via radio, necessitating the integration
of DL algorithms into resource constrained SFDs while maintaining hardware power
efficiency.

Figure 2: Smart Field Device for Industrial IoT [source: Siemens]

The distributed computing- and DL-power provides improved adaptability and thus also
improved flexibility for the whole system. The useful usage of SFDs for motor condition
classification depends highly on the power class of equipped motors. For large drives, the
implementation of special monitoring systems is more efficient than SFD. For small drives,
even the costs of an SFD are too high compared to the costs of the motor. So, the expected
range of target drives is within an axis height of 150 to 400 mm or a power range of 5kW to
500 kW. This is also the state-of-the-art solution in industrial operational environment [4].

However, the cost-effective adoption of ML-based monitoring systems utilizing Surface-
mounted SFDs faces several key challenges, primarily in the realms of data generation,
validation, and labeling, as well as energy efficiency. The diversity of states for training poses
a substantial challenge. Recording training data for cooling condition classification demands
comprehensive coverage of error types, such as loose or broken fan blades and obstructed
air inlets. Similarly, for mechanical condition classification, accounting for error types like
loose machine basements, broken bolts, misalignment, housing damage, and bearing issues
is crucial, among others. Energy efficiency emerges as a critical concern, especially for

D7.5 Version 3.0

8

battery powered SFDs with a lifespan of around two years. Integrating additional DL
capabilities amplifies the energy efficiency challenge. Extending battery life necessitates
implementing a low-power operational state (sleep-mode) as the primary mode,
supplemented by brief, infrequent algorithmic slots managed by a sophisticated power
manager. This combination is essential to achieve prolonged battery life while ensuring
optimal functionality.

2.2 Overview of Developments and Optimisations
This section provides a brief review of the use case background and the development
progress compared to the previous deliverables the D7.2 first report on use cases [5] and
the D7.3 second report on use cases [6].

Figure 3: Development process presented in deliverables

The first stage of the development is described in D7.2 where a test-bench as field
simulation was developed. This test-bench was built based on a small size motor of 750W,
powered by a single-phase inverter, and the setup of the medium size motor of over 55 kW,
which is the target system in real use scenario, is delayed due to delivery of missing
components. At this stage, an initial concept for utilizing DL and IoT on the use case was also
depicted in D7.2.

The result in between from the second stage is presented in D7.3. At this point, the hardware
was selected based on the benchmarking on various AI accelerators. MAX78000 was chosen
for the cognitive IoT device and experiment was conducted for the operation of MAX78000.
At the meantime, data collection procedure started on the test-bench. The setup of the
middle size motor is still delayed.

This deliverable presents results from this use case and the major development and
improvement since D7.3. During the final stage, a model is trained based on the given data
and the IoT hardware is designed, manufactured and assembled. Both components are
implemented on the test-bench. Besides, an IoT system around the testbench has evolved
with the help of other project partners for the improvement in aspects of security and
integrity. Along the development process, results in between are evaluated and further
challenges are addressed. In order to address these challenges, problem analysis techniques
are deployed with the help from project partner University Gothenburg for better design of
AI-based solutions.

D7.2 First Report
•Testbench setup
•Conceptual system design

D7.3 Second Report
•Prepartion on MAX78000
evluation board

•Data collection

D7.5 Final Report
•Hardware design
•Model deployment
•IoT backend
•IoT network

D7.5 Version 3.0

9

2.3 System Design
The basic requirement for this use case is to monitor three independent conditions with DL
models, as already introduced in D2.3 [7]:

• Operational state (ON / OFF)
• Cooling system state
• Mechanical state

Due to the complexity of the problem, the development of the demo focuses on the
classification of the state of the motor cooling system. The solution for this can be simple if
a large and expensive sensor system with multiple temperature sensors or air flow sensors
is deployed. But such a large and expensive complex system is not feasible fro mid-sized
motors due to economic reasons. An attachable one-piece sensor device without external
temperature, airflow or pressure sensors is a more realistic option.

Figure 4: Motor monitoring system overview

The demonstration system is depicted in Figure 4. The on-site side of the figure is the
testbench we built for the simulation of the operational environment. This part consists of
an SFD for sensing and data processing, a power management device to control the motor
operational status, and a raspberry pi as a local server that exchanges information between
the on-site devices and the remote users through the secure IoT gateway. The remote user
side is designed as applications on tablets to control the motor, to fetch data from the
system, and to visualize the data in real time.

D7.5 Version 3.0

10

Figure 5: Data flow in the motor monitoring system

The communication between these two parts in the system is shown in Figure 5. Bilateral
communication is demonstrated there. The sensor data is sent from the SFD to the tablet.
The control signal are sent from the tablet and are forwarded to the power management
system to control the operation of the motor. The SFD records sensor data from the
environment and processes it with embedded deep learning model. All the data are
forwarded to the raspberry pi 3B+ via a UART interface. The raspberry pi further publishes
the data to a MQTT server. On the other side, users that subscribe to the motor data can
access the information by using the MQTT protocol. In this way, the data is forwarded to the
user side and further visualised. On the other hand, the raspberry pi also runs an HTTP
server, which port listens to the control signal sent from the connected user. Users can
control the speed of the motor by designed interface.

2.4 Deep learning on smart field device
This section presents the development of the essential components of the use case
demonstrator -- the deep learning model and the hardware design. The description of the
test bench setup and the data collection as preparation is presented separately in D7.2 [5]
and D7.3 [6]. In this deliverable, the efforts for the design of the algorithm around the deep
learning model and the related results are presented. In the end, the hardware design and
the model implementation is summarized. Details about hardware design and its workflow
were described in detail in D4.7 [8].

D7.5 Version 3.0

11

2.4.1 AI-powered Smart Field Device on the test bench

Figure 6: SFD with dedicated AI-Accelerator as a “mount-on” solution

The testbench setup is depicted in D7.2 where the motor with a shutter for the simulation
of environmental effects on the cooling system is included. An SFD without AI power was
first attached to the motor and has been utilized for data collection. Along the development
of the use case, the AI powered SFD is designed, manufactured, tested, and further
evaluated on the test-bench. The new SFD installation is depicted in Figure 6.

2.4.2 Data collection
Data collection strategy is described in D7.3, where sensor data under different situations
are collected. The feature dimensions of the data are rotation per minute (rpm) and shutter
position. They represent the motor speed and the condition of the cooling system condition
representatively. A data sample from the small motor testbench with unblocked cooling
system is depicted in Figure 7. To demonstrate the operational environment where motors
are switched on and off alternately, the motor on the testbench is turned on and off
periodically (every ten minutes, 120 data points for one time interval). The figure denotes
the motor status with vertical dashed line. At the first phase in the figure, the motor is
turned on and the temperature decreases because the cooling system is working. When the
motor is off on the second phase, the temperature increases because the cooling system
stops to work when the motor is switched off. The residual heat generated by the motor
during operation can gradually disperse into its surroundings. Compared to the data from

D7.5 Version 3.0

12

operational environment depicted in Figure 13, similar temperature change tendency can
be observed.

On the other hand, the rate of temperature change exhibits a direct correlation with the
motor's rpm as shown in Figure 7. Elevated motor speeds result in a proportionately
increased rate of temperature change within the surrounding environment.

 Figure 7: Data example from small motor testbench, cooling system unblocked

For better understanding of the data and the problem, Figure 8 depicts the collected
temperature data under different cooling system conditions – blocked air intake and free air
intake. It is obvious that when the cooling system is blocked, the temperature is likely to stay
stable and do not change even when the fan is working along the motor operation.

Figure 8: Temperature change when cooling system is blocked and unblocked

The data collection is conducted based on the matrix shown in Deliverable 7.3. The two
dimensions mentioned above are covered: rpm and shutter position (air intake). The number
of data used for model training is approximately 24000 datapoints, which sums up to around
33 operation hours of operation.

D7.5 Version 3.0

13

2.4.3 Algorithm
The model used for the cooling system condition classification is trained according to the
workflow as described in Deliverable 4.7, where the hardware, which is based on the
microcontroller MAX78000 with integrated DL-acclerator, and thecorresponding workflow
is described. For the model training and algorithm implementation, the already mentioned
standard procedure is used: data pre-processing, model training and post-processing.

2.4.3.1 Pre-processing
For the model training, only data from temperature sensor are used, because the data from
the magnetic flux sensor and the vibration sensor are stable. The reason for that is the lack
of variability of the rotation speed during the operation of the motor. For the data pre-
processing stage, a suitable input size from the time series data points should be selected.
After hyperparameter tuning, the window size is settled to 128 data points that represent
the temperature change within 5 minutes. After that, input data frame is quantized and
normalized as preparation for a quantization-aware training procedure. Figure 9 depicts an
example of for a normalized and quantized data input.

To improve the model performance, data augmentation is also implemented to enlarge the
limited dataset and increase the variety of the datasets. Three techniques for data
augmentation are implemented: jittering, time wrapping and slicing, as well as averaging
and interpolation. Jittering adds random noise to existing data points, time wrapping and
slicing stretch existing time series data by different factors; averaging and interpolation
combines two time series data with same window size and create average series data. The
combination of three augmentation techniques shows slight improvement of the
performance of the model. The accuracy of model has improved slightly – around 1%
increment with an extra augmented dataset.

2.4.3.2 Model training

Figure 9: Quantized input data after normalization

The model training is similar to a conventional ML model training with pytorch library, but it
needs to be designed with consideration for the way in which processors and instance
memory device are operating to ensure the optimal memory and processor usage. Details
for the training workflow are described in Deliverable 4.7.

D7.5 Version 3.0

14

The model implemented for the cooling system condition classification is a 1D convolutional
neural network (CNN) with three convolutional layers and one dense layer. Two layers are
fused with max pool layer and all three convolutional layers come with ReLU as activation
functions. Details of the model structure are shown in the code snippet in Figure 10. The
model class is comprised of both model architecture and model parameters. The filter size
specified here with “128” and “64” in each layer is compatible with the CNN engine processor
unit for optimal DL acceleration on MAX78000. The number of filters for one-dimensional
time series in the model reflects the number of channels connected to specific processors,
which should also be divisible by 4 to facilitate easier activation for 4 processors at a time,
as each of the 4 processor is connected to a specific instance memory. In case the number of
the inputs channels or filters exceeds the limit of the 64 activated processors, a multi-pass
technique is employed. For technical details regarding processor allocation and multi-pass
refer to [9]. The architecture is then followed by flatten layers that connect the
convolutional part to softmax for classification. To optimize processor usage. The number
of flatten layer’s nodes is also designed to be divisible by 4, depending on the channel
number of the last convolutional layer and the length of of the time series, which may vary
after each layer depending on the number of paddings strides. Additional layers, such as
dropout, can be incorporated for regularization.

class AI85motorNet2_on_off_off_on(nn.Module):
 def __init__(
 self,
 num_classes=3,
 num_channels=1,
 dimensions=(128, 1), # pylint: disable=unused-argument
 bias=False,
 **kwargs
):
 super().__init__()
 self.drop = nn.Dropout(p=0.2)
 # Time: 128 Feature : 13
 self.current_conv1 = ai8x.FusedConv1dReLU(num_channels, 64, 3, stride=1, padding=0, bias=bias, **kwargs)
 # T: 126 F: 64
 self.motor_conv1 = ai8x.FusedMaxPoolConv1dReLU(64, 32, 2, stride=1, padding=1, bias=bias, **kwargs)
 # pool-stride is 2 and pool-padding is 0
 # T : 64 F: 16
 self.current_conv2 = ai8x.FusedConv1dReLU(32, 16, 3, stride=1, padding=0,
 bias=bias, **kwargs)
 # T: 62 F: 16
 self.motor_conv2 = ai8x.FusedMaxPoolConv1dReLU(16, 16, 2, stride=1, padding=1,
 bias=bias, **kwargs)
 # pool-stride is 2 and pool-padding is 0
 # T : 32 F: 16
 self.fc = ai8x.Linear(512, num_classes, bias=bias, wide=True, **kwargs)

 def forward(self, x): # pylint: disable=arguments-differ
 """Forward prop"""
 # Run CNN
 x = self.current_conv1(x)
 x = self.drop(x)
 x = self.motor_conv1(x)
 x = self.current_conv2(x)
 x = self.drop(x)
 x = self.motor_conv2(x)
 x = x.view(x.size(0), -1)
 x = self.fc(x)
 return x

Figure 10: Code for CNN model structure

D7.5 Version 3.0

15

The CNN accelerator of the MAX78000 employs signed integers for weights storage and
calculation. However, in the training phase, floating-point values are commonly applied to
both data and weights, constrained within a specific range. Quantization is then required to
save the memory and to reduce the energy consumption of the calculation. This reduction
in memory size is accompanied by a compromise in model accuracy. To evaluate the impact
of weight quantization on model precision, an assessment of the quantized model and the
original model in terms of accuracy and performance metrics was made.

The evaluation was carried out using identical hyperparameters and augmentation values
that were used during training the normal weights. These values were then applied to train
the quantized weights. Finally, the evaluation was performed on the same test set to assess
the performance of the model with the new quantized weights. When it comes to
quantization, all metric values experience a decline. This occurs because the values are no
longer free to take any arbitrary value. Instead, they need to be quantized within a specific
range determined by the weights. While this drop in performance cannot be avoided, it
serves the purpose of reducing memory requirements. By quantizing the weights, the
memory usage can be reduced by a factor of four. However, this reduction in memory comes
at the cost of a decrease in accuracy, typically around 6%.

Table 1: Evaluation on quantization

Data Type of
Model

Weights

Model
Precision

Model
Recall

Model
F1-score

Model
Accuracy

Negative
Accuracy

Float32 0.9138 0.9268 0.9203 88.64% 75.86%

Int8 0.8835 0.8718 0.8766 82.78% 72.19%

2.4.3.3 Post-processing
Post-processing constitutes a pivotal phase of the algorithm, contributing significantly to
system enhancement and reliability. The strategy voting system implemented in this use
case involves executing model inferences repeatedly and collating the outcomes. Increasing
the number of inferences provides the model with more opportunities to detect mistakes,
ultimately improving the accuracy of the classification. In the case of the motor monitoring
system, which is not a time-constrained problem, a time delay caused by multiple inferences
is not considered critical.

During the experiment, four system designs are evaluated: one inference time system, a
triple voting system, a 5-time voting system, and a 7-time voting system. The final result is
based on the classification results of all inferences through an additional voting process. For
instance, if majority inferences indicate a blocked state and one inference indicates an
unblocked state, the final decision will be a blocked state. Figure 11 depicts the inference
trend for three inference times system designs. In the case of a triple voting system, the
system maintains the storage of 75 data points. With each new data point, the oldest point
is replaced by the newest one. This process continues until there is a switch in the
operational state from on to off. At that point, the system collects the remaining 53 data
points, concatenate them with the 75 data points, and performs the CNN model inference.
Following this, it acquires 11 new data points, replaces the oldest 11 points, and conducts
the second inference where the operational state change is in the middle point at data point
64. This process is repeated for the third inference where the change of the operational
state occurs at data point 53.

D7.5 Version 3.0

16

For the 5-time voting system, the same procedure is followed, but the model starts by saving
85 data points instead of 75. The inference in five votes, with the change of the operational
state positioned in the middle of the data points or shifted by 11 and 22 data points to the
left and right. Similarly, For the 7-time voting system, the same procedure is followed, but
the model starts by saving 96 data points instead of 75. The inference in five votes, with the
change of the operational state positioned in the middle of the data points or shifted by 11,
22, and 33 data points to the left and right.

Figure 11: Triple inference voting system

Figure 12: (a) One-time inference system, (b) Triple voting system, (c) 5-times voting system, and (d) 7-time voting
system

D7.5 Version 3.0

17

The evaluation of these different sequences is conducted by the assessment of accuracy
across the various cases described above. The results shown in Figure 12 indicate that the
inference accuracy on one same test dataset improves as the voting system incorporates
more votes. The accuracy of the algorithm with the voting systems for 7-time, 5-time, 3-time,
and single inference are 93.75%, 91.04%, 87.91%, and 79.85% respectively. This trend is
expected, as the higher the number of votes, the more room there is for mistakes to occur.
Worth to mention is that the accuracy presented in Table 1 is based on shuffled dataset,
however the voting system requires unshuffled dataset for the evaluation, thus leads to
different model accuracy.

It is notable in Figure 12 that the improvement is skewed towards the unblocked class, as its
accuracy is 84% is higher than that of the blocked class (accuracy 75%). This discrepancy in
accuracy originates from the higher probability of the better class being selected when two
or three votes are considered in the system. Therefore, the improvement for the blocked
class is more pronounced compared to the unblocked class.

With an inference time of 202 𝜇𝜇s, the CNN model in our case demonstrates suitability for
time-constrained prediction problems. This indicates that the accelerator can deliver
efficient and timely predictions within the required time constraints for other applications.

2.4.4 Limitation
The hardware implementation has confirmed the practicality of integrating AI methods into
SFDs. It also demonstrates the viability of the workflow in creating AI-driven solutions within
Cyber-Physical-System (CPS). Nonetheless, in pursuing further advancements and potential
product development, it's crucial to address existing limitations of the above described
result.

2.4.4.1 Limitations of testbench setup and data collection
With resoect to the testbench setup, which was used for data collection and demonstration
can hardly simulate or even represent the real scenario. First of all, the motor type due to
its small size cannot simulate the temperature characteristic of target medium size motors,
whose temperature change characteristic is depicted in Figure 13. Besides, the rotation
speed of the motor in the testbench setup has low variation. This leads to highly constrained
datasets with limited hidden features and information.

The inverter of the testbench for the medium size motors was damaged during tests for
another project in the first phase of the VEDLIoT Project. The replacement components had
a long lead time and were delivered late in Q3 2023. At this time the data needed for the DL
based evaluation within the project was already recorded and prepared.

Furthermore, a strategic reorganization within the SIEMENS AG impeded access to other
similar sized testbeds and to their datasets.

D7.5 Version 3.0

18

Figure 13: Example of temperature data for the middle size motor, from D7.2

Furthermore, time for data collection is a bottleneck for the development of industrial AI
based use cases, because compared to e.g. image processing there are no large pre-
processed data sets for typical industrial applications available.

As described before, the model is trained with a data set that represents 33 hours of
experimental recording time. This does not include time between every experiment, and this
is necessary to have motor cool down to room temperature. For each factor combination
e.g. rpm of 1400 when air intake is blocked, data collection of 1440 data points (2 hours) is
minimal for one scenario. This also requires turning motor on and off every 10 minutes.

2.4.4.2 Limitation on model
The size and quality of the dataset affects the performance of the trained model. For this
binary classification used for the cooling condition monitoring, a thorough evaluation on the
model is conducted, and its performance on different data classes are compared.

Figure 14: Histogram of model inference result on the test dataset

The histogram shown in Figure 14 provides insights into the condition results. The score
represents the probability for unblocked condition. In the case of the unblocked condition,
there are three dominant scores: 0.9930, 0.6633, and 0.8133. The highest score of 0.9930
and 0.8133 is associated with the 1400-rpm and 900-rpm conditions respectively, while the

D7.5 Version 3.0

19

score of 0.6633 is more commonly observed for the 500-rpm condition and rarely for the
other two conditions.

For blocked conditions, the same three dominant scores are present: 0.007, 0.3367, and
0.1867. The most dominant score is 0.3367, which corresponds to a score of 0.6633 for the
blocked case. This suggests that the model struggles to differentiate between the blocked
case and the unblocked case at 500 rpm. Misclassification between the 500-rpm low speed
and blocked cases occurs due to the relatively small temperature changes observed for both
conditions.

This pattern strongly correlates with the constraints of the testbench, particularly in
scenarios where temperature variations remain indiscernible at low rotation speeds,
especially in smaller motors. This circumstance can be improved by applying a load to the
motor, albeit this adjustment may amplify power consumption, consequently resulting in
more pronounced temperature alterations.

2.4.4.3 Limitation on hardware
The MAX78000 hardware imposes constraints on the network configurations, affecting
parameters and capacity [9]:

- One-dimensional convolutional layers are limited to kernel lengths of 1 to 9, with
specific padding options and stride values. Dilation is constrained based on kernel
length and limited to 1 for longer kernels.

- Input and output channel capacities are capped at 1024, with bias support restricted
to 512 output channels.

- Layer count is limited to 32, excluding pooling and element-wise operations
preceding a convolution, while data dimensions are restricted to 1023 rows or
columns.

- Weight memory capacity varies based on kernel size and bit usage, diminishing with
increased channel counts.

- Data normalization involves mapping values to 256 specific levels rather than scaling
between 0 and 1. This method is critical for optimal hardware CNN engine operation.

- Deviations beyond a 1/256 value range post-augmentation and normalization might
not significantly alter data, potentially leading to overfitting risks. Careful
adjustment of hyperparameters is crucial to avoid this and to achieve the desired
effects.

2.4.4.4 Limitation on power consumption
Another challenge for the deployment of the DL model in real application scenario is the
power consumption. The model is trained with data collected every 5 seconds. However, in
an operation environment, the SFDs is designed to collect data for certain time interval
every five to ten minutes. The SFD in an industrial environment usually in sleep mode most
of the time to save energy. Otherwise the battery will be empty after several weeks and not
after several years. In this case, it is difficult to implement a model that requires data for a
duration of 5 minutes or more.

2.4.5 Problem Analysis
For this use case only the result from the second stage is presented, because the validation
of the causality graph on it is intractable.. Besides, conditions simulation based on the
causality graph also requires more discussion on feasibility and safety issues due to the
complexity of the problem. Furthermore, massive data collection is also time-consuming due
to the nature of the problem.

D7.5 Version 3.0

20

Based on the given requirements for the motor condition monitoring use case and the
limitations of the testbench of the use case, workshops for a thorough problem analysis
were conducted with a novel approach for an optimized design of an AI-based software
solution.

Figure 15: Causal model for motor monitoring

This approach is proposed and largely supported by the University Gothenburg. Engineers
with experience in related field are involved for the discussion and derivation of the causal
graph shown in Figure 15. The graph starts with the classification object “cooling” and the
classification result “Classification”. Factors that are involved in the causality derivation
between them are deduced. The white circles indicate observable parameters and grey
circles indicate unobservable factors. Table 2 lists all the variables in the causal graph. Based
on the analysis, requirements for further developments can be derived in aspect of data
collection and model training:

- Sensed temperature should be conditioned on environmental temperature.
- The final classification of the status of cooling system should take temperature

criteria and vibration criteria into consideration.
- All input measurements in dataset should be augmented by characteristic sensor

noises.

The input layer must take data from the measurement of the temperature, the magnetic
flux, and the vibration.

Table 2: Variables for motor condition monitoring causal graph

Variable Definition

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Fan system status

𝑄𝑄 Airflow

Mech. Fault Mechanical fault of motor

𝑃𝑃𝑀𝑀 Mechanical power

𝑅𝑅1 Electrical (inner) losses

𝑇𝑇𝐸𝐸 Environmental temperature

𝑈𝑈𝐻𝐻 𝑈𝑈𝑇𝑇 𝑈𝑈𝑉𝑉 Unmeasured noises

D7.5 Version 3.0

21

𝑇𝑇 (𝑇𝑇𝑠𝑠) Surface temperature (measured)

𝐻𝐻 (𝐻𝐻𝑠𝑠) Magnetic Flux (measured)

𝑉𝑉 (𝑉𝑉𝑠𝑠) Vibration (measured)

This causality modeling completes the development procedure and improves problem
understanding for all stackholders. This approach is especially beneficial for the design of
AI-based solution for Cyber Physical Systems (CPSs). It does not only provide a systematical
framework for system analysis and derivation of data and model specification, but also a
proper standard for the documentation of the generation of datasets.

2.5 Implementation on IoT system
Other than the integration of deep learning in the IoT end device, the development of IoT
infrastructure is also an important part in the development of this use case. The
infrastructure consists of a secure IoT network provided by Christmann, raspberry Pi
backend service setup and an AR applications for an improved human machine interface
(HMI).

2.5.1 Secure IoT Network
The infrastructure for the secure data transmission is provided by the project partner
Christmann. The system consists of two access points in different locations, one for user and
the other one for the on-site system as depicted in Figure 4. A central monitoring interface
is provided as shown in Figure 16. The interface can be used to monitor the status of the
access points and connected devices, and to configure the communication protocols.

Figure 16: Central monitoring interface for the Secure IoT Gateway

D7.5 Version 3.0

22

2.5.2 Raspberry Pi Backend Server

Figure 17: Raspberry Pi as backend server with multi functions integrated

The raspberry pi serves as the central backend server and is the core of the IoT
infrastructure. The services installed on the raspberry pi are shown in Figure 17. The sensor
sends data to the raspberry pi through a UART interface. A customized data receiver script
collects the data and forwards the data to a MQTT broker. Currently, the MQTT broker is
deployed on the raspberry pi. In the backend, a device mapping server is also present and
subscribes to all messages from the sensor. This function is for the AR interface, which
requires a coaty [10] protocol for the data transmission. The Device Mapping creates a
virtual sensor node in the server and converts all the sensor data to the coaty standard. The
message is then published to the MQTT server and subscribed by the AR application on the
tablet, a copy of the data is also stored in the database, here the mongodb [11] is deployed.

Besides, the user can control the motor remotely with a HTTP requests. A web server is
running on the raspberry pi server and the requests are converted to a signal to the power
management unite of the demonstrator. Thus e.g. the speed of the motor can be changed.

Also, the integration of the SIRE protocol for device authentication in cooperation with
University Lisboa is also in progress. The SIRE attestes of the connected end devices and
make the authenticity of them available for the user. And the MQTT broker is also about to
be replaced by an external MQTT server from the University Neuchatel to enhance the data
security of the motor condition monitoring system.

2.5.3 Human interface
AR applications for Android and iOS systems are developed as an easy to use HMI. As the
operation systems are different, applications are developed with different libraries and
approaches. Since the development of such applications require large time investment and
aesthetic design is not the focus, the applications demonstrate the data flow to the user end
and work as prototype for data visualization.

D7.5 Version 3.0

23

The iOS application is designed with the coaty library. The application could subscribe to the
MQTT topic channel. The data is transmitted and received in JSON Format. An example of
interface is shown in Figure 18. In this figure, temperature is displayed as a bar chart and
motor startus is shown as an emoji.

Figure 18: iOS AR interface under development

2.6 Conclusion
The motor condition monitoring use case demonstrates the possibility of integrating a deep
learning model in on-site SFDs. The following achievements have been made during the
development process:

- The cognitive hardware was designed, soldered, tested, and iterated to a second
version.

- The first model was trained with a dataset and further quantized.
- The first monitoring algorithm was developed and deployed on the hardware.
- The cognitive IoT hardware was tested on the test bench.
- Problem analysis was undertaken as the first step for the second development

iteration in cooperation with the University of Gothenburg.
- The first IoT system with a backend (Raspberry Pi 3B+) and a frontend (AR on a tablet)

was designed and prototyped.
- The Secure IoT Gateway was integrated in cooperation with Christmann.
- An initial system evaluation was conducted.
- The first draft for the integration of the SIRE protocol and an external MQTT server

for system security was developed in cooperation with the University of Neuchâtel
and the University of Lisbon.

For benmarking, since signal processing was not implemented on SFDs, the goal set in
Delivearble 7.2 is used to evaluate the final result. The achieved improvements regarding
the KPIs are listed below:

- Memory: 128kB SRAM and 512kB flash integrated in the controller meets the set
requirement. Besides, 1Mb external SRAM and 128 Mb external flash memory are
also integrated in the PCB, which exceeds the set goal and provides flexibility in
furture application.

D7.5 Version 3.0

24

- Cost: The MAX78000 as the micro-controller costs 15€ per piece. The price can reach
13€ when order with big amount. The cost of the system is around 60€ for all the
main components. Therefore, the set price requirement 14 € [controller] / 70 €
[System] is met.

- Power: the KPI was set to 6.6mW. With the system settled on MAX78000, the power
consumption of the controller is 5.8mW under certain conditions.

- Energy: the system can reach set goal on power consumption of 30 Wh per year given
duty cycle of two inference per hour and 7 minutes of data measurement per
inference. (Refer to the energy estimation in Deliverable 7.3)

- Accuracy: The model accuracy can reach 88.6% after training and 82.3% after
quantization on the test dataset as mentioned in Table 1. The accuracy depends
highly on the quality of data. Various limitations are listed in section 2.4.4.

The power consumption of the controller can vary based on multiple factors. It can be
optimized by changing the operation mode of the controller and the peripheral devices, it
can also change based on the clock frequency set for the processor and the scheduling for
the model inference. Thus, the power consumption given here is a realistic calculation result
based on the system design. A detailed discussion on the factors for energy calculation can
be found in Deliverable 4.7.

D7.5 Version 3.0

25

3 Smart Industrial IoT: Arc Detection Use Case
This chapter is a detailed report on the solution for integrating deep learning into the
industrial IoT use case – direct current (DC) series arc fault detection. This solution is
developed along the course of the VEDLIoT project and has received support from many
project partners. The research on this use case focuses not only on the technical
implementation, but also on improvements in the development procedure for the general
implementation of deep learning methods on far edge devices in industrial IoT systems.

3.1 Introduction
This section emphasizes the motivation behind the use case, reviews the work on this use
case along the build-up of our deliverables. It also provides a detailed description on our
contributions and cooperation during the development process of the use case.

3.1.1 Motivation
In recent years, DC distribution systems have gained prominence over AC (alternating
current) distribution systems due to the improved efficiency and the cost-effective
integration of energy storage devices [12]. This transition holds significance in renewable
energy production, the ICT-Industry (Information and Communication Technology), and the
electro-mobility market, marking a shift toward DC grids for energy production,
consumption, and distribution [13].

Arc fault detection in DC distribution systems poses significant challenges compared to AC
systems. While abnormal behaviors in AC systems, such as the recognizable "flat shoulder"
at zero-crossing, facilitate easier detection, the complexity arises in detecting series arc
faults in DC systems [12]. Unlike parallel arc faults (short circuits) or ground arc faults that
trigger circuit protection due to a high current flow, series arc faults can be easily overlooked
as their current fluctuations might blend with system noise.

Conventional methods for detecting these faults often prove low adaptability in real
scenarios and requires more work for data analysis ahead. On the other hand, the
implementation of AI-based methods in arc fault detection presents a promising
advancement. The integration of AI algorithm posts another challenge: deep learning
algorithms requires usually high computational power and thus needs longer runtime.

The VEDLIoT project's methodology offers valuable tools for deploying deep learning
algorithms in industrial scenarios, meeting high precision, time, and adaptability
requirements. Our arc fault detection system aims to provide an AI-based (artificial
intelligence) solution for series arc detection in low voltage direct current (LVDC) systems
with high accuracy in real-time, addressing the unique challenges within this domain where
mature solutions or products in the market are currently lacking: to ensure the detection
accuracy and the critical requirements on the runtime at the same time.

D7.5 Version 3.0

26

3.1.2 Development milestones

Figure 19: Development Milestones for arc fault detection

Figure 19 shows milestones reached within related deliverables. On the first stage
Deliverable 7.2, the first model based on historical data was built. The models were fully
connected neural networks and can reach 97% accuracy on the historical AC dataset and
95% on historical DC dataset respectively. Besides, for the improvement of the project, a
testbench is designed and built based on the standard UL1699B [14], the testbench is
capable for arc generation and current data sampling with our own designed ADC board
(refer to D7.2). The runtime was not evaluated at this stage because the availability and
delivery of planed AI accelerator for the use case was delayed.

On the second stage, whose achievements were summarised in D7.3, the testbench for arc
generation was put into operation and the first datasets were collected. Besides, the model
was updated on this stage with the new dataset and the performance can reach 97% on this
dataset. However, the dataset lacked of variety and thus the testbench was expended with
extra components to increase the variety of the dataset. At the meantime, the accelerator
was integrated and the initial evaluation of the system regarding runtime was conducted.

The final stage presented in this chapter further improves the testbench setup, especially in
the respect of its safety and integrity. Besides, the goal of a real-time detection of DC arc
fault was reached. An initial test on the runtime reports an average delay time of 13 ms for
the detection algorithm, in which 11ms is contributed by the model inference. This is already
close to the requirements. With further iteration on the project (procedure optimised with
University Gothenburg) and compression of the deep learning model (in cooperation with
Embedl [15]).

D7.2 First Report
•Initial modes for AC and DC
•Initial DC testbench setup
•Initial ADC board

D7.3 Second Report
•First dataset from testbench
•Model improved based on the

dataset
•Testbench imrovement
•Accelerator integration

D7.5 Final Report
•Data variatiy
•Model variaty and robustness
•Runtime optimisation
•Problem investigation
•Testbench safty

D7.5 Version 3.0

27

3.1.3 System design

Figure 20: Development and system overview for AI-based DC series arc fault detection

The development on the use case focuses not only the improvement of hardware and
software, but also the optimisation of the development procedure. Figure 20 shows the
development iteration we took and technical implementation.

- Development iteration
o Problem analysis: Problem analysis is the step where the problem is

inspected, and the requirements are reviewed for a more standardized and
efficient development procedure. It is conducted from aspects of machine
learning models, data requirements and hazard analysis of the application
scenario.

o Dataset buildup: Dataset buildup this is the step where we collect data,
based on the analysis result.

o ML model training: the models with different hyperparameters are trained
and evaluated.

o Runtime evaluation: The model is converted to onnx and implemented for
evaluation of its accuracy and runtime.

- Technical implementation
o Arc testbench: The arc testbench is a prototype that we built for DC series

arc generation. It also serves as the scenarios simulation for the test of real
time detection system.

o Matlab configuration: The generation of arc fault on the testbench is
controlled by a Matlab application. The programmable components in the arc
testbench can be configured to work in different modes.

o Matlab Semi-automatic labelling: Matlab application that can import,
visualize and label data according to user’s input.

o ADC sampling: the ADC board is developed, improved, and implemented for
high quality data collection.

o Model Compression: the model is compressed for size reduction and
furthermore runtime optimisation on the hardware.

o Real time arc fault detection: the inference of deep learning model

D7.5 Version 3.0

28

3.2 Development Procedure

Figure 21: CRISP-DM model for data science process (Based on [16])

A systematic development procedure is important for product development and software
iteration. It provides a standardized method for communication, documentation, and
system design. The development of the arc fault detection system follows the standard
process CRISP-DM (Cross industry standard process for data mining) for data science
process, as depicted in Figure 21. This is a development step that was underestimated at
the beginning of the development process of our use case.

The requirements were vagueand the goal was not discussed thoroughly with respect to
feasibility. With the help from the University of Gothenburg, we reviewed each step from
the procedure in our development and improved iteratively, which is similar to the
procedure describe in the other use case in section 2.4.5. Besides, during the cooperation,
drawbacks of convention method for software development is spotted and a method as
extension for the development of AI-based software is proposed.

- Business understanding: we examined again related studies and products,
compared them with our project requirements and the development status in
between. The development direction is aligned, and the iteration is boosted.

- Data understanding: we conducted data analysis before feeding into model
training. The problem itself is better understood and improvement on the detection
algorithm is proposed for better results.

- Data preparation: a massive data collection is conducted with various configurations
of the arc generation circuit.

- Modelling: the results from the step data understanding are implemented in the
algorithm design and the model training procedure. The trained model is further
validated on new data and optimized with pruning techniques.

- Evaluation: the algorithm is first evaluated on a test dataset, and then tested on the
detection system prototype on Nvidia Jetson Xavier NX [17] for real time arc fault
detection. Furthermore, the algorithm is also implemented on the FPGA board
Ultra96-V2 and evaluation of its performance is conducted based on the test dataset.

- Deployment: the final deployment in real scenarios still requires further iterations
of procedure above.

3.2.1 Problem analysis
This step is conducted together with the University of Gothenburg where multiple
workshops are held under the given framework. The workshop first focuses on the use case
definition, requirement definition and hazard analysis.

D7.5 Version 3.0

29

An agreement on the definition of use cases regarding various criteria on the product
performance does not exist as a universal standard. A suggested performance criteria is the
response time for DC system of different level is suggested in UL1699B [14]. The most
critical situation is the limit of 0.8 s response time: a DC system with 900 W power, max
current of 14 A and an arc distance of 6.4 mm. Since the response time consists of the time
for data transmission from the sensor to the edge device, the detection time, the actuator
signal transmission time and the time for actuator reaction. The system is optimised to keep
the detection time as short as possible, but at least below the set goal in Deliverable 2.1 [7]
of 10 ms.

Another prerequisite is that the current signal should serve as sole data source for arc
classification in the testbench. This is also the most used feature in studies on DC series arc
fault detection [12] [18]. There are several reasons for this decision First, the installation of
current sensor is often mandatory for safety and energy efficiency reasons. Compared to
voltage monitoring, the mounting of current transducers does not require extra circuit
intervention. In addition, current signal sampling is less susceptible to environmental
disturbances compared to other sensors such as temperature, optical or acoustic sensors.
Other than this, the current change on one point can reflect the status of the whole circuit.

3.2.2 Hazard analysis
This step aims to determine the evaluation metric for machine learning model. Through
analysis of the application requirements and the expected system behavior, risks are listed
in Table 3 and mapped to three categories shown in Figure 22. The detection procedure is
decomposed to small parts and risks. In every step the harzard is evaluated based on the
likelihood of the hazards and their severity in results. Green indicates acceptable risks,
medium risks are marked with yellow, and red refers to high risks.

Figure 22: Matrix for risk evaluation [19]

Table 3: Hazard analysis of arc fault detection use case

Task Subtask Hazard Current
severity

Current
likelihood

Current
risk level

Recommended
controls

Future
severity

Future
likelihood

Future
risk

level

DC arc fault
detection
algorithm
based on

current signal
(Algorithm)

Data preprocessing
Abnormal results from preprocessing

due to unexpected current data as
input

4 D Low Improvement on
normalisation

Detect current with high
frequency in the circuit

false positive -- Noise from load such as
inverter recognized as arc 3 C Medium

Import different
kinds of data with
all situations
covered

Combine different
methods – FFT +
DL, ensemble DL

Consecutive
inference to
increase trustability

3 D Low

false negative -- Noise from arc not
recognized because of noise from

inverters
2 C High 2 D Medium

Detect sudden current
drop in the circuit

False positive – due to load drop
caused by load disconnection 3 D Low 4 D Low

False negative – arc not recognized due
to not enough current drop 2 D Medium 3 D Low

Distinguish pattern from
noise

False positive 3 D Low 4 D Low

False negative 2 D Medium 3 D Low

Model inference within
time

Model inference (including data
transmission) over 10ms, data

overlapping due to delay on inference
4 B Medium

Hardware and
software
optimisation

4 D Low

Verify correct processing
(ML inference)

Cannot detect incorrect inference
output

3 E Low

Data Collection
on ADC

Collect precise current
value

Data incorrect due to single-bit error,
out of sync or radiation effects 3 (4) E Low

Data
communication

Send data to accelerator
through ethernet cable

Prediction in certain time window
skipped due to data overlapping or

missing data
5 C Low

Actuator

Actuators switch off in
time

Actuators operate too late – over 2
seconds 3 D Low

Actuator not operating – does not
switch off

2 E Low

Control signal
Signal arrives too late 3 E Low

Signal fails to control 2 E Low

The analysis shown in Table 3 aims at the algorithm because it is the focus of the project.
Therefore, only recommendations for the detection algorithm is listed out. They are
effective measures that help improve the detection system.

3.2.3 Causality Model
Several workshops with the University of Gothenburg for the analysis of the causality is of
the DC series arc fault were conducted .

Figure 23: Causal model for arc fault detection

The result of the analysis is shown in Figure 23. From the result of the causality analysis can
be seen that some key parameters have a major influence on the classification result: 𝐼𝐼 is the
current in the circuit, 𝐼𝐼𝑠𝑠 is the measured current from the sensor, 𝑈𝑈𝐼𝐼 means the characteristic
noise; Load represents the system dynamic, F is the frequency component that can partially
reflect system dynamic, and |𝑆𝑆(𝑓𝑓)| is the frequency domain information that can be
conducted from the measurement data of the current 𝐼𝐼𝑠𝑠. The requirements and
specifications derived from the graph are:

- The current measurement should be augmented with characteristic sensor noise.
- The testbench setup should be able to include different components for various

circuit dynamics.
- The testbench circuit should contain active switching components to generate high

frequency pattern on the current.
- The frequency information should be used as additional input feature in ML model.

3.3 Implementation
This section provides technical details in implementation of the detection system, including
the testbench setup, all software components, the results from system improvement and
software optimisation steps.

D7.5 Version 2.1

32

3.3.1 Testbench

Figure 24: Final testbench setup for arc fault detection

The whole system depicted in Figure 24 consists of two parts, the arc generation circuit part
and the detection system part. The arc generation circuit has a DC power supply, an
electronic load, a passive load, and a pair of electrodes that are connected during normal
operation. One of the electrodes is controlled by a linear stage and can create an air gap
between the copper electrodes for arc generation. This is a good simulation for a DC serial
arc, because those are often caused by a crack in a copper wire. In the detection system, the
output of current transducer, which reduces the current proportionally is sampled by the
ADC. The data is then transmitted to an edge device for signal processing with machine
learning algorithms.

 Component description:

• Power supply provides a stable DC voltage up to 100 V.
• Programmable electronic load can simulate different load behavior by changing its

impedance. The load can operate in different operational modes.
• Programmable linear stage allows the adjustment of the air gap between the

electrodes, where the arc is generated.
• Passive loads e.g. resistor and/or conductor.
• Current transducer transforms the current signal by a fixed ratio. The representing

voltage signal can be measured with a shunt resistor.
• Anti-aliasing low pass filter with a cut-off frequency of 160 kHz.
• Analogue-Digital-Converter (ADC) converts data at a sampling rate of 16 kS/s (the

sigma delta ADC ADS131A02 in use has a maximum sampling rate of 128 kS/s and
maximum resolution of 24bit).

• AI accelerator is utilised for data processing and execution of machine learning
algorithms.

D7.5 Version 2.1

33

The testbench has been updated since Deliverable 7.3. We rebuilt the entire setup by placing
all components in a 19-inch rack and splitting it up into different, self-contained modules.
The safety of the testbench was improved by grounding every component, securing critical
components such as the blank electrodes from unintentional touching and moving sensitive
components such as the ADC-Board into a hard case. Another benefit of the new setup is
the improved mobility and thus capability to demonstrate the experiment to an audience
outside the lab.

3.3.2 Arc generation and data collection

Figure 25: Electrodes for arc generation

For arc generation, the circuit topology has been updated. More recently we removed the
parallel 1 Ohm resistors to achieve a higher influence of the variable load on the measured
data and additionally collected data with the remaining three variable load modes: “CV –
Constant Voltage”, “CC – Constant Current” and “CP – Constant Power”. The variable load is
introduced in Deliverable 7.3. A load pattern extracted from a lab application is recorded
and repeated in the arc generation. Along the development, more experiments and
different modes of electronic load are implemented. In D7.3 we added an electronic variable
load to the setup, which we have been using since. We added it in parallel to two 1 Ohm
Resistors and ran it in CR mode, with a repeating 100-Value sequence ranging from 0.05 to
30 Ohm, simulating the Load Pattern of one of our lab-power-supplies.

For further development, the load pattern is simulated under CC mode, where current in the
circuit is regulated to be on a stable level as shown in Figure 26.

Electrodes

Linear stage

Resistor

D7.5 Version 2.1

34

Figure 26: Arc occurrence from 0.23s on with load pattern simulated under CC mode of electronic load

3.3.3 Analogue Digital Converter (ADC) for data collection
The sensor for data collection in the detection is crucial as it determines the data quality, for
this use case, an embedded system for sensing is developed in aspect of hardware and
software. The initial version of ADC board is shown in Deliverable 7.2, where the ADC
component behaves as an add-on function on the micro-controller. The board is then further
improved and the ADC component is integrated with the microcontroller on one board as
depicted. The hardware design overview is shown in Figure 27.

The integration accelerates the data transmission between the micro-controller and the
ADC, thus allows a more precise data sampling and a higher sampling rate.

D7.5 Version 2.1

35

Figure 27: Circuit design with ADC board integrated with the micro-controller

3.3.4 Data labelling
With the testbench for arc generation and the sensor system for data collection, the next
step is the data labelling. The amount of data is large and manual labelling consumes too
much time and could lead with a certain probability to mislabeled data. For conveniences, a
semi-auto labelling application is designed for an fast and accurate labelling of the collected
data. This application is written in Matlab and its workflow is shown in Figure 28.

D7.5 Version 2.1

36

Figure 28: Semi-Auto labelling application workflow

1. The user imports data to the application.
2. The data is filtered with certain conditions.
3. The datasets are plotted in an interactive window as shown in Figure 29.
4. The users can select key turning points on the plot those four marked coordinates

in Figure 29.
5. The corresponding data sequences are labelled, and the result is shown in Figure

30.

The labels have a high level of quality and reliability, as the user can always verify and, if
necessary, modify the labelling of the dataset.

D7.5 Version 2.1

37

Figure 29: Selected datapoints in labelling software

Figure 30: Datapoints after removing trailing zeros and labeling dataset. Yellow marks “arc”, red marks “transient”
and the rest are “no arc”

3.3.5 Model Training
The Model updated when new data were available. The initial model at the beginning of the
project was trained with data that had already been available due to prior research activities.
This models reached an accuracy of 95% on the test data (refer to Deliverable 7.2). The
sampling rate of this dataset is 250kHz and the test data has similar data distribution as the
training data. The first model a five-layers fully connected neural network (FCNN) was not
tested in a real time implementation. During the further development, the model was
updated with the dataset collected from the testbench. This model in D7.3 inherited the
structure of previous model, thus had initially a large size and leads to longer runtime. Based
on the research and the problem analysis, frequency feature extracted from Fast Fourier
Transform (FFT) is introduced in as an extra input for the model. In this way, the model is
reduced to a 3-layer network while keeping the model accuracy. In the latest iteration, a CNN

Experiment start point

Arc start point

Arc end point

Experiment end point

D7.5 Version 2.1

38

is also trained to a high accuracy. The advantage of CNNs compared to FCNNs is the weight
sharing, which requires less memory and saves inference time. Figure 31 and Figure 32 shows
the training history of FCNN (or FNN) and 1D-CNN respectively.

Figure 31: Fully connected neural network after tuning – training history

Figure 32: 1-D Convolutional neural network - training history

Table 4 summarises the evolution process of the deep learning model for arc fault detection.
The model has been improved in size and runtime along the optimization process. Even
though the accuracy of the current model is not largely improved compared to the initial
model, they have better robustness compared to previous model as more data with extra
circuit dynamics are included.

Besides, the latest model utilizes a lower sampling rate, thus the algorithm is more friendly
for data transmission in real application compared to the former models. It is also notable
that after the large size model is reduced to smaller structure due to FFT, there is still room
for pruning. This proves that the pruning tool from Embedl can efficiently reduce the size
even for a relatively small model. Detailed pruning evaluation is presented in section 3.3.7.

D7.5 Version 2.1

39

Table 4: Evolution of deep learning model for arc fault detection

 Structure Dataset Dataset size1 Inference time Accuracy

D7.2 FNN 5 layer Historical data
5500 (AC)
3200 (DC)

/
97% (AC)
95% (DC)

D7.3
FNN 5 layer
without FFT

Simple data
without circuit

variation
32200 (DC) 11 ms2 96%

D7.5

FNN 3 layer
– with FFT

Mixed3 60000+(DC) 724 us 98%

FNN 3 layer
(tuned and

pruned)
Mixed 60000+(DC) 200 us 98%

CNN2D Mixed 60000+(DC) 209 us 97-98%

CNN2D-
pruned

Mixed 60000+(DC) 198 us 97-98%

3.3.6 Hardware acceleration
The hardware implementation on the Nvidia Jetson Xavier NX [17] was already introduced
in Deliverable 7.3. The library used for model inference on the Nvidia board is TensorRT [20].
The simplified flow chart of the software implementation is depicted in Figure 33. Two
options are provided, real time detection and evaluation of the model. The real time
detection get data from the sensor through an ethernet connection, and reading from csv
file provides a good tool for runtime and accuracy evaluation. The following process is the
same as training with data pre-processing, including data normalisation, frequency
information extraction with FFT.

Besides, the arc detection algorithm is also implemented on an FPGA board Ultra96-V2 with
library STANN, in cooperation with the project partnet University of Osnabrück. The runtime
and power consumption are evaluated on board. Details for the hardware deployment and
evaluation results can be found in the Deliverable 3.4.

Figure 33: Simplified software flow chart on hardware

1 One data entry represents a time series data with 160 data points, which represents current signal
sampled within 10ms.
2 This result is evaluated after the submission of D7.3.
3 Mixed means dataset contains data from simple circuit setup without any circuit configuration and
data of arc occurrence with load pattern simulation.

D7.5 Version 2.1

40

3.3.7 Model optimization
After the optimization of the model structure, we implemented the software package from
Embedl for further model compression. This section presents our approach for the model
optimisation and provides the evaluation of the software package. Table 5 and Table 6 show
the optimisation results for two kinds of models, FNN and CNN2D respectively. And Figure
34 and Figure 35 show the accuracy to target curve for the pruning of both models. The
target indicates the proportion of saved model parameters during pruning. The smaller the
target, the smaller the pruned mode is. Uniform pruning is used here as it shows consistent
results compared to other pruning methods. Uniform pruning refers to the removal of
specific branches or nodes from the tree based on their importance ranking.

Table 5: Improvement of FNN model after pruning

FNN Nr. Neurons Nr. Parameters FLOPs4 Size Accuracy Runtime(us)5

Original 500 79881 5080320 1 98.37% 231.6

Pruned 227
(-54.6%)

34115
(-57.3%)

2163904
(-57.4%)

0.43
(57%)

98.38%
(-0.01%)

200.83
(-13.3%)

Figure 34: Accuracy to target curve on FNN model

In the context of uniform pruning for both types of modles (FNN and CNN2D), the results
show a clear trend. The graphs indicates a positive correlation between the targeted
retention ratio, which represents the proportion of weights and the retained biases
compared to the original model's parameters, and the accuracy of the pruned model. As
the retention ratio increases, the accuracy of the pruned model improves. However, once
the retention ratio reaches around 0.2 for FNN and 0.5 for CNN, the accuracy stabilizes and
approaches its maximum value.

Additionally, it is interesting to note that the relationship between the targeted retention
ratio and accuracy seems to follow a logarithmic function. The accuracy curve gradually

4 Floating Point Operations of the neural network, indicates the computational cost of the model.
5 Model inference time, excluding pre-processing and memeory access

D7.5 Version 2.1

41

increases, reaches a plateau, and then shows minimal fluctuations around the maximum
accuracy achieved by the non-pruned model. This logarithmic trend highlights the
diminishing returns of preserving additional parameters beyond a certain threshold. This
emphasizing the importance of carefully selecting the retention ratio to strike the right
balance between model size and performance.

Table 6: Improvement of CNN2D model after pruning

CNN2D Nr. Neurons Nr. Parameters FLOPs6 Size Accuracy Runtime(us)7

Original 128 25418 101140 1 97.35% 209.0

Pruned 60
(-53.12%)

11920
(-53.10%)

47420
(-53.72%)

0.47
(53%)

97.39%
(+0.04%)

197.8
(-5.36)

Figure 35: Accuracy to target curve on CNN2D model

3.3.8 Real-time Detection
The result for the real-time arc fault detection system is shown in Figure 36. The blue plot at
the top refers to the current signal during an arc occurrence simulation. The black one in the
middle is the probability output of the algorithm. And the red plot in the bottom is the final
label with after-processing. To increase the reliability of the algorithm, after-processing is
implemented. The idea is to raise warning only when arc is detected after three consecutive
inference. In this case, the accuracy can reach almost 100%. However, the detection time is
delayed to three times sampling interval, which is 30ms in our case.

6 Floating Point Operations of the neural network, indicates the computational cost of the model.
7 Model inference time, excluding pre-processing and memeory access

D7.5 Version 2.1

42

Figure 36: Result visulisation of the real-time DC serues arc fault detection system on the Nvidia board

3.4 Conclusion
The arc fault detection use case focuses on the application of DC power grids due to the
growing relevance of DC power grids and lack of an cost effective DC arc detection device.
For AC AFDDs, products can be found in the market, and DC AFDD is still a research field and
has many open questions. The following metrics as described in Deliverable 7.2 are the
benchmarking:

- Accuracy: the accuracy can reach 98% in real time evaluation amd for dataset with
higher variety. With post-processing, the accuracy can reach 100%. This result
achieves the set goal compared to other studies of DC series arc fault detection. The
result is not compared to DC AFDDs since there is no such product in the market
specializes on DC series arc fault detection.

- Execution time: around 200 us inference time on Nvidia Jetson Xavier NX after
algorithm and model optimisation (refer to Table 4). Over 80% reduction on
algorithm execution time (including data transmission in real time) compared to 13
ms in the initial implementation. This result meets the set requirement of 11 ms
execution.

- Model size: optimized to minimal size, see section 3.3.7. Goal is reached while keep
the accuracy.

- Costs: over 700 € for Nvidia Jetson Xavier NX, which is overqualified, for
development purpose. This exceeds the 500 € buget set in D7.2. However, with
optimised algorithm and compressed model, cheaper hardwares can be considered
for this application.

3.4.1 Achievements
The demonstration of the DC series arc fault detection as a show case for the
implementation of deep learning on a far edge AI accelerator for IoT systems. Throughout
the development process, following achievements have been accomplished:

D7.5 Version 2.1

43

- Real-time DC series arc fault detection on an embedded GPU based AI accelerator.
- Collaboration with the University of Osnabrück to design and evaluate the first FPGA-

based hardware accelerator for the use case.
- Evaluation of the system performance and the runtime using a Nvidia Jetson Xavier

NX as the AI accelerator.
- Developing a systematic causality graph based problem analysis in cooperation with

the University of Gothenburg.
- Improvement of the test bench in terms of integrity and safety.
- Expansion of the testbench to include a wider variety of circuit topologies and

components.
- Improvement of the ADC board by integrating the MCU and enhancing the quality of

the data (such as more accurate sampling rate and faster data transmission speed).
- Expansion of the dataset to incorporate a greater variety and higher quality of the

data.
- Iterative improvement of the detection algorithm, including the optimization of the

algorithm by introducing FFT in pre-processing, the optimisation of the deep learning
model structure with hyperparameter tuning, and the compression of the model
through pruning (in collaboration with Embedl).

- Reduction of the deep learning model (FNN) size by 96.39% in terms of number of
parameters compared to the initial implementation of FNN from D7.2.

- 80% reduction of the total detection algorithm runtime including data transmission,
and 98% reduction of the inference time on the hardware in total.

3.4.2 Limitations
It is also noteworthy that limitations need to be addressed for the further development:

Regarding the use case itself, various circuit dynamics, including different load profiles,
voltage levels, and unexpected disturbances, should be taken into consideration to ensure
a trustworthy AI-powered detection system. This poses a challenge for setting up and
expanding the testbench for the experimental evaluation.

In the context of the development of the software algorithm , robustness needs to be
further enhanced by implementing ensemble machine learning for post-processing.
However, using the ensemble machine learning algorithm to execute DL models
simultaneously on the same time series data can increase runtime. To reduce the real
detection time delay caused by the post-processing implemented, reseach should also be
conducted to shorten the time window for model input.

Regarding the hardware acceleration, although the model compression and algorithm
optimisation have significantly reduced the runtime of the model while maintaining a high
accuracy, there is still room for improvement in future development. This includes
integrating more features with computationally intensive functions such as Discrete
Wavelet Transformation, as well as using the ensemble of machine learning technique
mentioned above.

D7.5 Version 2.1

44

4 Automotive AI Use Case
Light vehicles can contain a large number of Electronic Control Units, ECUs, which are
performing the data processing associated with a particular function, such as a front-looking
camera detecting a pedestrian. The recent trend in the premium segment is toward central
processing units with significantly higher processing power that handle multiple functions
in the vehicle, as opposed to satellite ECUs that solely handle the function related to the
connected sensor. The centralized compute bears a high cost to the vehicle which in turn
makes the associated safety benefits inaccessible to the lower-end segments.

The aim of the automotive AI use case has been to explore how computational load can be
distributed between local, e.g., hardware physically located within the vehicle, and remote
computational resources, which resides in external infrastructures such as base stations. The
use case relates to an existing feature for vehicle safety, Pedestrian Automatic Emergency
braking (Pedestrian AEB). It is described by, among others, the Euro NCAP organisation in
[21]. However, in this implementation, the intent has not been to design a function that can
be used in a safety-critical setting, but to explore the computational properties.

This section describes the developments and tests that were performed at the Magna test
site in Vårgårda within the project’s lifetime and includes results for the KPIs latency and
power consumption when using the ML model used with computational power onboard a
vehicle and at a base station. The results are analyzed, discussed and conclusions are
presented.

Figure 37. Development process of automotive use case presented in deliverables

4.1 Development of automotive AI model
This use case has been defined to explore how a machine learning inference can be
distributed over multiple processing nodes.

4.1.1 Machine learning training data
Scenario data for the use-case was collected at the Magna test site the airfield in Vårgårda,
see Figure 38. The use case assumes an open road with a pedestrian or possibly another
object on the scene.

D7.2 First Report
•Use Case Definition
•Machine Learning Data
Collection

•Communication
Modelling

D7.3 Second Report
•Distributed Processing
Simulations

•Hardware Architecture
Refinement

D7.5 Final Report
•Hardware Integration
•Distributed Processing
Experiments

•Evaluation

D7.5 Version 2.1

45

Figure 38: Bird’s eye view of the data collection environment at the Magna test site in Vårgårda.

The following scenario and data variations were identified and collected:

• Target type

o Pedestrian

o Other object (trash bin)

o No Target

• Target longitudinal distance

o Every 1 m over 1 to 100 m (handled by continuous sampling of pictures during
each drive)

• Target lateral distance

o 1, 1.5, 2, 2.5, 3 m

• Target attitude

o Moving towards

o Moving away

o Crossing

• Background type

o Tarmac

o Grass

• Illumination

o Sunlight

o Cloudy

o Rain

D7.5 Version 2.1

46

The data has been collected and labelled for all the combinations as described above. Data
for ten runs per combination were collected, resulting in a total of 290 data sets with
continuous images. These images make up the training, test and validation data. The
labelling strategy used to create labels for the data sets was to classify one of two
conditions:

1. Pedestrian on the road

0. No pedestrian on the road

The data collection was performed with the dedicated data collection system depicted in
Figure 39. It includes a camera for capturing images of the scene ahead of the vehicle, an
RTK GPS to capture a very accurate position of the vehicle at the time of the image capture,
and a PC used for managing the incoming data and saving to an external hard drive. This
system was designed to collect and store the images used to learn the ML. It is different
from the system to be used for validation. The validation system is described in Chapter 4.2.

Figure 39: Overview of data collection system

Figures demonstrating each scenario can be found in the following pages, where Figure 40
demonstrates the scenario of a pedestrian moving in the same direction as the vehicle on
the side of the road. The DL model will classify this scenario as “No pedestrian on road”.

Figure 41 demonstrates the scenario of a pedestrian moving towards the vehicle. The DL will
classify this as “No pedestrian on road”.

Figure 42 demonstrates a pedestrian crossing the road. The DL will classify the object as “No
pedestrian on road” while the pedestrian is outside of the lane markings and “Pedestrian on
road” while the pedestrian is inside the lane markings.

Figure 43 demonstrates the scenario of no objects present in the scene. This will always be
classified as “No pedestrian on road”.

Figure 44 demonstrates another type of object, in this case a trash bin placed at 3 different
positions, present on and off the road. This will be classified as “No pedestrian on road”.

Figure 45 demonstrates the pedestrian moving away from the vehicle. This scenario is much
like the one demonstrated in Figure 40 with the change in the environment around the
pedestrian as she is walking on grass instead of concrete. The labelling strategy for both
scenarios was the same.

D7.5 Version 2.1

47

The same repetition and change in the environment were made with the scenario
demonstrated in Figure 41 and Figure 42.

Figure 40: Pedestrian moving away from ego vehicle

Figure 41: Pedestrian moving towards the ego vehicle

D7.5 Version 2.1

48

Figure 42: Pedestrian crossing the path of the ego vehicle

Figure 43: Empty scene

D7.5 Version 2.1

49

Figure 44: Other objects on and off the path of the ego vehicle

Figure 45: Pedestrian moving away from the ego vehicle on the grass

4.1.2 Machine learning model
The Convolutional Neural Network (CNN) architecture EfficientNet was used to design and
train a model that can determine if there is a pedestrian on the road. Due to the serialized
design of EfficientNet, it is possible to pass the execution on to a different set of nodes at a
split point as the execution of an operation, or block of operations, feeds into the next block
of operations. The data size varies at each split point, due to the neural network’s inherent
compression and decompression of the data during inference. This leads to three

D7.5 Version 2.1

50

dimensions that can vary: the data size, the latency when transferring data between
different nodes and the computational power of the nodes. It is thus possible to perform an
optimization of the entire process of detecting a pedestrian, given boundary conditions in
the form of constraints in the available vehicles and infrastructure. An in-depth
documentation of the development process is described in D6.5 [21].

4.1.3 Communication modelling
When distributing computations, the latency and stability of the communications become
an important factor. A model, containing factors such as limited bandwidth and distance
between the units, was developed and included in the ML model optimization.

Figure 46: Model of communication in a 5G system with distributed systems

The purpose of the model is to provide reasonable effects, e.g., latency and packet loss, to
the distributed DL system. The model induces bandwidth occupancy limitations due to an
overload of user’s connection to the base station. Other effects as for instance those
induced on the signal due to distance to the base station can be managed in the model.

4.1.4 Distributed Processing Simulations
There are multiple scenarios where distributed inference is beneficial. What those benefits
are, depends on one hand on the limitations of the distributed compute nodes, but also on
external constraints such as data transfer speed or the number of users of a compute node.
In general, the idea is to exploit differences in computational power between compute
nodes by leveraging the cost of transmitting data against the performance boost of a
powerful remote compute node. The objective is often to reduce the overall latency of
inference, but other motivations can be driving the need for distribution, such as memory or
energy restrictions of a compute node. We have started to investigate the potential of
reducing the overall latency of inference.

The execution of CNNs, such as EfficientNet, is highly serialized. The execution of an
operation, or block of operations, feeds into the next block of operations. The serialized
execution means that the network can be "split" or divided at some point along the network.
It is thus possible to perform part of the computation on one compute node and then
distribute the rest of the computation to another node, which sends back the prediction. If
all compute nodes have equal computational power, it would never be beneficial to
distribute, as the extra latency of transmitting the output data of the first network would
only increase the total inference latency. In this use case, however, the compute node at the
car's sensor, the central compute node, and the compute node in the remote base station,
all have different computational power. Additionally, the data size varies at each split point,
as a neural network naturally compresses and decompresses the data during inference. If
the data size at any potential split point in the network is smaller than the input image, it is

D7.5 Version 2.1

51

possible to reduce the overall latency. The potential latency reduction, however, depends
on the speed at which data can be transferred between the nodes.

As a first set of experiments, we have investigated distributed inference in a setup
mimicking a weak compute unit at the car's sensor, and a powerful compute unit at a remote
base station. Specifically, we have considered a Raspberry Pi 4, and an NVIDIA Xavier.
Ultimately, a similar analysis will be performed using the Congatec i.MX8+ device, described
above, instead of the Raspberry Pi.

In Figure 47, we have calculated the total latency of EfficientNet for a number of different
split points. The first part of the computation is performed on the weak Raspberry Pi, the
output of that computation is fed as input to the second part of the split network. The extra
latency due to data transfer and resource allocation is estimated using the MATLAB model
described in section 4.4. For realistic parameters, we conclude that distributed inference has
the potential to be highly beneficial. When comparing the overall latency between
performing the full computation locally and choosing the optimal split, the latency is
reduced from 120 ms to 77 and 66 ms in Figure 47 (a) and (b), respectively. The two
parameter regimes we consider are: (a) a car 500 m from the base station, with 1 Gbit/s
basestation bandwidth, no other users (cars), and (b) a car 500 m from the base station, with
5 Gbit/s base station bandwidth and 3 other users (cars).

Figure 47: Simulation of total latency when splitting the neural network

4.1.5 Distributed Model Demonstrator
A distributed machine learning demonstrator was developed Embedl. The purpose of the
demonstrator was to introduce the core concept of distributed processing to visitors to
various faires where VEDLIoT were present. Through offline processing of selected data
sets, described in Chapter 4.1.1, the resulting latency of the system was shown. The
demonstrator can first be initialized with the mode of processing. The options of processing
mode include local, remote or distributed. Parameters related to the data transfer are also
available in the cases of remote or distributed, specifically bandwidth, occupancy and

D7.5 Version 2.1

52

distance. The visualization of the demonstrator is shown in Figure 48. The upper left box
contains an area to display the recorded image form the camera sensor. The lower left box
shows the computation latency over time, as a result of the parameters inputed in the lower
right box. The upper right box illustarates the hardware involved in the computation as per
the given input.

Figure 48: Distributed Processing fair demonstrator

4.2 Test Setup
In the following section, the details of the hardware in the vehicle, of the base station and
the design of the experiment will be discussed. As shown in Figure 49, the vehicle contains
a camera and processing hardware. It communicates with the far edge device using either a
WiFi or 5G mmWave connection. No cloud instance is used in this setup, but is included in
the description for completeness as a cloud instance could be a useful resource in a real-life
implementation of the use case.

Figure 49: High level overview of a distributed AI system. The Automotive Use-Case utilizes the Local device in the
vehicle and the Remote device located in the basestation. No cloud instance was used in this project.

D7.5 Version 2.1

53

4.2.1 Equipment, vehicle and edge
The hardware design for the automotive use case assumes four possible processing nodes.
These are depicted in Figure 49 and below:

• The mono-vision camera processing device
• The vehicle central processing unit (ECU)
• The 5G base station edge processor
• The cloud server

Figure 50: Hardware design used for the experiment. The blue box, the local domain, describes the hardware in the
vehicle. The two yellow boxes, the remote domain, describes the same hardware placed in connection with either

the 5G or WiFi infrastructure.

In the VEDLIoT project the RECS hardware platform was selected [22] to provide the
hardware base for the vehicle tests: a u.RECS solution placed in the vehicle and a t.RECS
placed in the base station. The u.RECS was modified to suit the needs of the automotive use
case and is a product of WP4. Figure 50 illustrates the hardware components in either the
local domain, e.g. in the vehicle, or in the remote domain, e.g. in the base station. The u.RECS
contains both a Congatec NXP i.MX8 module, compatible with the existing camera
processing device, and an Nvidia Jetson NX module which equals the central computer (ECU)
available in vehicles today. The base station used a t.RECS server installed as processing unit.
It contains an Nvidia Xavier AGX as the processing device.

The test vehicle was equipped with a u.RECS unit, as described above, a Wireless Modem to
manage the transferring of the data from the vehicle to the remote domain, as well as an
OXTS GNSS unit [23] used for logging the absolute position of the vehicle during the
measurements. Figure 51 shows the installation of the hardware in the trunk of the test
vehicle.

Figure 51: In-vehicle installation of u.recs, OXTS and Wireless Modem

D7.5 Version 2.1

54

4.2.2 EfficientNet distribution
The experiments conducted in this report describe the inference executed on the different
domains, see Figure 52, e.g. the local domain or the remote domain. The third alternative is
the distributed domain, where part of the inference is processed within the local domain and
part of the inference is processed within the remote domain. The local and the remote
versions constitutes the normal way of feeding an image to the model and thus resulting in
a prediction. The distributed version instead processes a few layers of the inference within
the local domain, then transfers the intermediate buffer from the local domain to the
remote domain, where it’s finally producing a prediction of the presence of a pedestrian on
the road. The total EfficientNet model contains 20 layers, and based on previous analysis, it
was decided to perform the split between local and remote processing at the 13th layer for
the best performance. At the 13th layer, the intermediate representation of the input data
is highly compressed, thus reducing the transmission latency at this point and minimizing
the overall inference latency in most parameter regimes of interest in this study.

Figure 52: Local, Distributed and Remote processing. 1: The entire inference is processed in the vehicle. 2: The
model resides partly in the vehicle and partly in the base station. 3: The entire inference is processed in the base

station.

4.2.3 Wireless communication
To be able to test and evaluate the distributed and remote variants of the automotive use
case, a dedicated wireless high throughput communication method was needed. The test
facility had two technologies available; a WiFi technology at 802.11ac and 5G mmWave that
was being set up during the testing period. We chose to conduct the test cases on the
802.11ac network, and as the 5G equipment became available during the test period, 5G
communication was added to relevant scenes.

The WiFi technology used was standard equipment for outdoor use. The selected WiFi
Access Point had a theoretical maximum range of ~300 meters. The vehicle PC network was
connected to an industrial network router with a 1 Gbit/s upper limit of transfer speed was
used. The uplink was configured in WiFi client mode to allow connection to the secured WiFi
network established by the Access Point.

D7.5 Version 2.1

55

Figure 53: WiFi Access Point at pole near test location

For the use of the 5G network [24], a 5G mmWave modem was connected to the vehicle
equipment in a similar fashion to the WiFi transfer configuration. 5G network was isolated
and dedicated for the execution of our test cases.

While no cloud instance was used in this data collection, the 5G network on a mmWave band,
supplied by Telia using Ericsson technology, allowed us to set up the far edge close to the
Radio Access Network, by using a Local Breakout, allowing for a very short route for traffic
between the radio transmission and thereby provide a way to access a far edge. Both
technologies for data transmission between the near and the far edge provide throughput
well over that which would be used for communication between the far edgeand the cloud
instance, avoiding a potential bottleneck situation.

4.2.4 Design of the Experiment
The site chosen for the tests was the airfield at Vårgårda, see Figure 54. It is a private,
fenced-in location where tests can be carried out in a controlled environment.

D7.5 Version 2.1

56

Figure 54: Overview of the positions of relevance during the experiment. Yellow boxes describes positions for the
wireless medium and blue boxes describes the positions for the vehicle. A=WiFi Near, B=5G Near, C=Dynamic Start,

D=WiFi Medium, E=Dynamic Stop, F=WiFi Far, W=WiFi Antenna, 5=5G Antenna

There are several possible dimensions to explore when evaluating the performance of the
system. Five parameters were chosen:

1. Distance between the vehicle and the communication device
2. Where the processing was made: Locally, Remotely or Distributed between the two
3. The connection mode: WiFi or mmWave
4. Observed scene: Pedestrian, Empty, or Other object (i.e. Trash Can)
5. Vehicle velocity for 5GDynamic: 30 or 50 kph

The distances between the vehicle, communications equipment and dummy/object,
depending on communication mode and vehicle dynamics: For the WiFi tests, the distances
between vehicle and WiFi access point was 5, 12 and 200 m for WiFi Near, WiFi Medium and
WiFi Far, respectively. For the 5G tests 5G near is at 80 m and 5G Dynamic 80 m–180 m from
the base station, drivig toward the dummy. In all stationary tests, the distance to the dummy
is 10 m.

Note that the antenna for the base station and the WiFi access point are not co-located and
that the distances for the respective communication means are different as the WiFi
network does not have the same power output or data transfer ability as the 5G network.
The WiFi was positioned on the test track at position W as seen in Figure 54 in as opposed
to the mounting of the 5G antennas on the roof of the control room, position 5.

A full factorial investigation of these parameters would amount to 27 scenes in total. In this
report, data from 14 WiFi-related and 12 5G scenes is presented.

D7.5 Version 2.1

57

Table 7: Automotive AI integration scene overview

These scenes represent a sample of parameters that can be chosen. However, the
experiment also contains environmental conditions that cannot be chosen, at least not to
any extent as the tests are booked well in advance.

4.2.5 Test conditions
The tests were performed at the Vårgårda airfield between October 30th and November 3rd
2023 with fair lighting conditions under daytime. In Figure 55, an overview of the test site
taken at the end of a test day, is shown. The weather was overcast but not raining and the
road surface was dry.

Scenario Vehicle
Position

Inference
Distribution

Object in
scene

Ego
Vehicle
Speed
[kph]

Cellular
Connection
Type

S-1 WiFi Near Local Pedestrian 0 WiFi
S-2 WiFi Near Remote Pedestrian 0 WiFi
S-3 WiFi Near Distributed Pedestrian 0 WiFi
S-4 WiFi Far Local Pedestrian 0 WiFi
S-5 WiFi Far Remote Pedestrian 0 WiFi
S-6 WiFi Far Distributed Pedestrian 0 WiFi
S-7 WiFi Near Local Empty 0 WiFi
S-8 WiFi Near Remote Empty 0 WiFi
S-9 WiFi Near Distributed Empty 0 WiFi
S-10 WiFi Near Local Other Object 0 WiFi
S-11 WiFi Near Remote Other Object 0 WiFi
S-12 WiFi Near Distributed Other Object 0 WiFi
S-13 5G Near Remote Pedestrian 0 5G
S-14 5G Near Distributed Pedestrian 0 5G
S-15 5G Near Remote Empty 0 5G
S-16 5G Near Distributed Empty 0 5G
S-17 5G Near Remote Other Object 0 5G
S-18 5G Near Distributed Other Object 0 5G
S-19 WiFi

Medium
Remote Pedestrian 0 WiFi

S-20 WiFi
Medium

Remote Pedestrian 0 WiFi

S-21 5G Dynamic Local Pedestrian 30 5G
S-22 5G Dynamic Remote Pedestrian 30 5G
S-23 5G Dynamic Distributed Pedestrian 30 5G
S-24 5G Dynamic Local Pedestrian 50 5G
S-25 5G Dynamic Remote Pedestrian 50 5G
S-26 5G Dynamic Distributed Pedestrian 50 5G

D7.5 Version 2.1

58

Figure 55: Overview of the Vårgårda test site during the field measurements. The conditions were cloudy with a dry
to slightly wet surface during the measurements.

Although the time of the year was roughly the same during the testing and the collection of
the data set used to train the machine learning model, there are some differences in the
environment. The grass was greener and the color of the trees more diverse colors of yellow
and red, as is typical of the Swedish autumn, during the data collection of the training data.

The positions of the test scenarios are also slightly different between the two data sets as
adjustments had to be made to allow for parallel projects doing data collections during the
same period of time.

Data was collected during 60 s for each static scene. For the dynamic scenes, the data
collection lasted around 20 s for the 30 kph scene and 16 s when finishing at 50 kph. This is
due to the fact that the vehicle started from standstill, then accelerated to the designated
velocity and finally braked in time to avoid collision with the pedestrian dummy, all within a
fixed distance.

D7.5 Version 2.1

59

4.3 Evaluation Parameters
During the data collection, four parameters were logged to be analysed afterward. These
were:

• The latency was monitored and logged on a round-trip basis as the final
measurement to be evaluated. The measurement included the time from when an
image was captured until a classification of the image was made.

• The power consumption was measured for each used accelerator, two in the u.RECS
inside the vehicle and one in the t.RECS in the base station.

• The accuracy (or detection rate) is the ratio of how often the ML model accurately
classifies the scene with “Pedestrian on road” or “No pedestrian on road”.

• The robustness is a measure of the number of packets that are lost in the
communication to and back from the base station.

The KPIs for this use case are

• pedestrian detection accuracy > 95%
• detection latency (per image) < 20 ms

As the use case is designed to test whether it is possible to distribute the calculations
between different nodes, no pass/fail limits with respect to power consumption or
robustness are given.

4.4 Results
In this section, an overview of the results will be shown, and then more detailed results
relating to different clusters of measurement cases will be presented where appropriate.
The latency and energy consumption are shown for each scene, then follows the accuracy of
the model and finally the robustness in terms of the ratio of packets delivered and lost in
each scene.

D7.5 Version 2.1

60

4.4.1 Energy Consumption
Data for the power consumption and latency is shown using box-and-whiskers plots, where
the box covers the 25th to 75th percentiles, the orange line represents the median value, the
whiskers end at the farthest data point lying within 1.5 times the inter-quartile range, i.e.,
the height of the box, from the box. The circles represent outliers that have values which fall
outside of the whisker ends.

In Figure 56, the total power consumption is shown. The locally performed computations in
the (blue) require the least amount of power, the remote (red) a higher amount and the
distributed (orange) some linear combination of the two. However, the values presented
concerns the entire computational capacity of the far edge, and the power actually
consumed due to the inference is likely significantly smaller.

Figure 56: Total power consumption for all experiments. Orange: distributed calculations, red: remote, blue: local.
The purple line shows where mmWave communication was used, WiFi for all other scenes. The grey rectangle

represents scenes where the power log could not be used.

The contents of the scenes have no visible impact on the power consumption. This holds
true for all scenes, regardless of communication technology and whether the vehicle is static
or dynamic.

D7.5 Version 2.1

61

4.4.2 Latency
Considering the total time for all experiments, see Figure 57, the most obvious outliers are
encircled in red and are due to the measurement being made far away from the
communications device with either entirely remote or distributed processing. Due to a slow
data transfer, the total time increased drastically.

It is also clear that the scenes using mmWave communication, underlined in Figure 57, have
higher maximum latencies than those that use WiFi-connection. Inspecting the boxes, a
latency around 100 ms is found to be common when using both WiFi and mmWave, which is
five times higher than the KPI.

Figure 57: Total latency for all experiments with outliers due to intermittent communications encircled in red and
5G mmWave-communication marked with purple lines, S-13 through S-18 and S-21 through S-26.

Studying the bitrate over a 20-second interval, as has been done in Figure 58, reveals that
the 5G network has a bitrate that is initially slow, then overshoots before stabilizing and
being quite steady. The WiFi connection on the other hand fluctuates more over time, but
still has an overall high throughput.

D7.5 Version 2.1

62

Figure 58: Comparison between 5G and WiFi bitrates as a function of time.

Note that “Near” means 12 m for the WiFi and 80 m for the 5G network.

D7.5 Version 2.1

63

4.4.3 Detection Rate/Accuarcy
The goal of the ML inference was to determine whether or not there was a pedestrian
(dummy) in the scene. In Figure 59, the accuracy of the model is shown. The orange bars and
adjoining boxes represent scenes where a pedestrian dummy was present. The blue bars
represent the other object and finally, the green bars denote an empty scene.

Figure 59: Accuracy of the ML inference: orange = pedestrian dummy, green = empty scene, blue = other object.
Blue boxes around the scene numbers on the x-axis indicate all remote processing. The horizontal black line

represents the 95% accuracy KPI of the use case.

These detection rates are the aggregated detection rate for the entire data collection
sequence of 60 seconds for the first 20 scenes. The dynamics scenes with the moving vehicle
S-21 to S-23 have a 20 s collection time and S-24 to S-26 only 16 s.

Starting with the scenes containing the pedestrian, it is clear that only two of the ten static
scenes have a high accuracy. Remarkably, the inference performed entirely on the far edge
never results in a correct classification. This also holds true for the dynamic scenes with
pedestrian, indicating that there is something wrong with that mode of computation. The
distribution of the calculations, as described in Section 4.2.1, is made by first performing
local calculations on the near edge, then transferring data to the remote far edge for
finalization. This type of inference generates both possible results in a logical manner. The
entirely remote calculation is made by transferring the unprocessed image to the far edge
where the process continues and the result “no dummy” is always delivered in this setup. It
does not, however, indicate the inference process is defective, just that no correct answer is
delivered.

Therefore, the empty scenes and those containing another object where all remote
processing was used need to be removed from considerations of accuracy which leaves the
identification of the empty scene which is correct in all three cases, while the accuracy of the
identification of the other object as a non-dummy is higher than 95% in two of three scenes.

In Figure 60, instantaneous inference results as a function of driven distance is shown with
the maximum velocity at 30 kph. The pedestrian is placed at 100 m, and the car breaks in
time to avoid a collision with the dummy. Here it can be seen that at large distances from
the dummy, it is not properly identified. At a threshold range value, the distributed

D7.5 Version 2.1

64

calculation gives the correct result and the all local follows very closely thereafter. For some
unknown reason, no identification is made with the all remote calculation.

Figure 60: Detection as function of distance, 30 kph, S-21 blue, local, S-23 orange distributed, pedestrian at 100 m.

The results with a maximum velocity of 50 kph are shown in Figure 61. Here, the several
single and separate detections occur for the local processing, S-24, until the steady
detection state is entered. It can be noted that, see Figure 59, S-24 has a higher overall
success rate, but most of that is accounted for by the unsteady detection state. The
distributed and the local calculations enters a state of steady detection very close to each
other in distance. The remote calculation does not deliver any detection at this velocity
either.

Figure 61: Detection as function of distance, 50 kph, S-24 blue, local, S-26 orange distributed, pedestrian at 100 m.

D7.5 Version 2.1

65

Inspecting what the images from the onboard camera actually looks like can to some degree
explain the results from the detection process. The first image captured in a dynamic
scenario is found in Figure 62.

Figure 62: First image, dynamic test S-21.

Here, the pedestrian can barely be seen in its position in the middle of the lane 100 m from
the vehicle. As the car closes in on the dummy, it gets increasingly visible in the image, see
Figure 63.

Figure 63: Final image, dynamic test S-21.

At the end position, the dummy is clearly visible. As can be seen in Figure 60, the state of
detection changes from “no dummy” to “dummy” rather close to the car and the
corresponding image is found in Figure 64.

D7.5 Version 2.1

66

Figure 64: The image when detection occurs in the the dynamic scene, S-21.

4.4.4 Robustness
The robustness is said to be the ability to transfer data at a useful rate without having to
resend a large amount of packages. There is no particular KPI for this property, but it relates
to the latency as a low data rate and a large fraction of resent packages means a higher
latency and consequently a lower frame rate.

The robustness of the wireless connection is presented in terms of bitrate and how many
transmission retries occurred prior to the testing. A network test using iperf3 [25] was
performed during a 20 second window. The same procedure was repeated at the same
geographic positions as the experiments. The result is presented below in Figure 65 and
Figure 67.

The bitrates for the four static positions are shown in Figure 65, and as can be expected, an
increased distance from the WiFi access point means a lower data throughput. Note the
significant drop in bitrate between the WiFi Near, 2 m and WiFi Medium, 12 m. The 5G
network has a high bitrate, but also a larger variation, see the circles that represent the
outliers.

D7.5 Version 2.1

67

Figure 65: Bitrates for the four static positions.

The network tests were done at the same position, and close in time, as the experiments,
however they were collected prior to the experiments. The results are therefore an
indication of the properties of the wireless data link. We can see that the bitrate changes
over time, but it will most likely not change in the same way over time during the
experiment. Figure 66 illustrates the bitrates over 20 seconds for the static position WiFi
Near.

Figure 66: Bitrate as a function of time at the static position WiFi Near.

D7.5 Version 2.1

68

In Figure 67, the retries for each static position, that is the number of times the
communications protocol deemed it necessary to resend a package, are shown. For the
5G Near, WiFi Near and WiFi Medium, the retries are rare, but does occur. The 5G exhibits
more significant outliers. Not surprisingly, the WiFi Far option, which has demonstrated a
low capacity to transfer data also requires the largest number of retries.

Figure 67: Retries for the four static positions.

4.5 Discussion and Conclusion
The results presented regarding the automotive use case represent an effort to determine
whether it is possible to divide the computational effort of a ML inference between
different physically separated nodes. It may seem illogical to try and distribute a safety-
critical function, but the intent is only to experiment with the distribution of computations
in a situation that is relevant. That being said, considering vehicles that lack substantial
computational power, being able to supplement the existing capacity could be a major
advantage from a safety perspective.

As this data set is the first of its kind and the test time was limited, there are a number of
phenomena that remain unexplained at this time and consequently need to be further
investigated: The results from the inference that was performed entirely using the remote
compute resource were not properly delivered. Furthermore, the connection using the 5G
network has inherent properties that affect the latency in ways that remain to be
understood. As the project is ending, this will take place in another context. Most
parameters, with the logical exception of the accuracy, are not directly influenced by the
contents of the scene.

There are two KPIs for the use-case and they relate to the latency and the accuracy.
Considering the latency, it can be seen in Figure 57 that the boxes in the plot, representing
the majority of the data, indicate latencies around 100 ms which is five time higher than the
stipulated KPI which is less than 20 ms. The results regarding accuracy show that either the

D7.5 Version 2.1

69

inference is successful to at least 99.8% or significantly below 95%, the KPI limit, c.f. Figure
59.

The power consumption is interesting both from the perspective of a vehicle with limited
energy storage, e.g., an electric car and the environment considering how much energy that
is used to execute a function. The results show that the local computation requires the least
amount of power, the distributed the highest and the remote less than distributed but more
than local. This probably does not give a complete picture of the situation, as the remote far
edge consumes a basic amount of power just being active, and the added need from the
computation is very small compared to that. In these measurements there is only one user
while the far edge is capable of processing data from a significantly larger number of users.

Considering the latency, which is a significant factor from an automotive safety perspective,
the results are presented as a compound value including both the inference and the data
transfer. Because the actual data transfer rate achieved was 0.3 GB/s as opposed to the
initially estimated 10 GB/s has surely influenced the result. There is room for improvement
to shorten the latencies introduced by the communication and reach the KPI level. The
results are still interesting. When there is a large distance between the near and far edge,
the data transfer rate is reduced, causing latencies as large as around one second. The
scenes where WiFi is used for the data transfer have lower maximum latencies than with the
5G, which requires some investigation.

Regarding the detection rate or accuracy of the model, it is evident that the ability to detect
a human dummy is not sufficient to use in a safety function. As the choice of use case was
not made with that intention in mind, but to be able to show the distribution of the
processing in a realistic setting, that is, this could be useful in the future.

The cases with the empty scene were satisfactorily classified and those containing the trash
can were to a large extent accurate, even when disregarding all scenes with remote
processing as those results are erroneous. That is, the system does not mistake a trash can
for a human. However, the ability to correctly determine that a human dummy was present
needs further improvements.

Considering the scenes with the moving vehicle, the low accuracy is partially due to the fact
that the resolution of the images limits the ability to detect the dummy. When inspecting
the classification result as a function of distance to the dummy, it could be seen that for all
cases except those with remote processing, proper classification does occur, albeit at a
distance around 5 m from the dummy.

The robustness of the data connection is of extreme importance for a distributed calculation
as it directly influences the latency of the system. The WiFi connection exhibited a stable
performance and behaved as expected, the longer the distance of the communication, the
lower the bitrate. The 5G mmWave option had, at the time of the data collection, not been
thoroughly investigated, but is expected to have a large data transfer capacity with low
latency.

In conclusion, it has been demonstrated that the computational processing power used to
execute a machine learning model designed to detect the presence or absence of a human
dummy can be divided between two computational nodes, physically separated and
connected by wireless data transmission network, WiFi or 5G mmWave. The demonstration
has been done in a realistic setting for tests of a distributed function.

D7.5 Version 2.1

70

4.6 Challenges and Future Work
When distributing an ML inference in a traffic scenario, a major challenge is ensuring that
correct and adequate remote resources are available along with the necessary
communication capacity. Security and privacy aspects of the communication must be
considered.

It was expected and indicated by results from theoretical analysis early in the project that it
would be possible to get a more efficient, with respect to power consumption and latency,
inference by remote or distributed inference. To understand why this was not the case in
practice, further data collection and analysis is needed.

The future work involves an investigation of the communication alternatives as the data
transfer capacity directly influences the latency of distributed or remote computations.
Furthermore, implementing separate logging of the components of the latency to be able
to understand the operational aspects of the system.

An analysis of the power consumption and computational load in the different system
configurations is necessary to understand how to deploy the inference function in the most
efficient way in a full-size use case with a large number of vehicles.

D7.5 Version 2.1

71

5 Smart Home Use Case
The most commonly used features of applications in a smart living environment include
using deep neural networks to detect and recognize objects, gestures, and faces. In many
scenarios, the application is personalized for each individual user, so detection of identity
and an easy way of controlling it is highly beneficial. These algorithms can be used for a smart
kitchen, which supports the user's cooking, or a fitness coach, which trains the user.

A smart mirror is an appealing example of the combination of object, gesture, and face
recognition. Figure 68 is showing an example of such a smart mirror. It consists of a display
with a semi-transparent film attached to it. With this, the user can use it as an ordinary mirror
in their entrance hall. However, the environment can also provide additional information,
like the public transportation schedule or the weather forecast. Recognising the user can be
used to personalize the information and gestures for changing the widgets and so on. A self-
sustained life for elderly people can also be supported if a reminder for necessary items like
an umbrella if it rains or the home keys are provided, or appointments are shown.

Figure 68: Smart mirror prototype utilizing a t.RECS edge server in an acrylic case

The focus of the smart home use case in this project was primarily on the most
computationally intensive image processing techniques for these three features. In addition,
speech and natural language processing are important topics for creating voice assistants,
which have already found their way into everyday life. Due to being in the home
environment, an essential aspect of such a trustworthy application is local calculation. This

D7.5 Version 2.1

72

is done by focusing on utilizing hardware developed within this project, and no image or
information leaves the system. Of course, this must not be done at the expense of the
electricity bill, which is why efficient AI hardware accelerators and adapted machine learning
methods are used and implemented.

5.1 Developments & Optimisation
The main work in this use case is centred around a smart mirror demonstrator used as a user
interaction interface with the intelligent living environment, see Figure 68. The data path
structure of the demonstrator in this project is shown in Figure 69. It is derived from the use
case of the former project LEGaTO [26].

Figure 69: Data flow of the smart mirror demonstrator

As the primary input, an Intel RealSense camera records the user's image, and the
background is removed. The image is shared with many nodes for different purposes, e.g.,
object detection. All detections are tracked using a tracking method called
simple online real-time tracker (sort) [27]. A Kalman filter is used to predict the next
position of the object, and the Hungarian algorithm combines the new detection and these
predictions. This aims to assign a unique ID so that the object can be traced over several
frames. Additional information is also added to the detection, like depth for gestures and
objects or identity and emotions for faces.

All collected data is streamed into the MagicMirror² [28] instance for visualization, and all
decisions are made there. All person-related detections are combined within the person
recognition to attribute all gestures and faces to the right person. This combination also
enables one to keep track of a person even if the face is not visible for a moment.

The following subsections describe changes made to the general software stack of this
smart mirror within this project to enhance performance.

D7.5 Version 2.1

73

5.1.1 ROS2 Implementation
In the original system deriving from the LEGaTO project, communication was realized via the
framework OmpSs [29], GStreamer, and standard io. The various blocks formed sub-
programs between which the data had to be exchanged (sometimes even across system
boundaries). However, this became a bottleneck, limiting the framerate to 16 FPS.

In this project the various parts of the prototype were transferred into ROS2 nodes in C++
with different backends to simplify interchangeability and communication between the
different algorithms, e.g. the object detection can be executed on the Nvidia Jetson
modules, the Hailo-8 or the Xilinx FPGA. Initial difficulties of ROS2 with older Ubuntu
versions of various modules and packet dependencies were solved, and the performance
increased to 30 FPS, which is the limitation of the attached Intel RealSense camera. A
NodeJS ROS2 bridge finally provides parts of the data stream to the MagicMirror² UI.

5.1.2 Restructuring the Face Recognition
Originally, face recognition was split into two parts. Faces were detected and tracked, and
these tacked faces were periodically identified. For the first part, a derivative of a Retina
Face model was evaluated, and a support vector machine was used to identify the seen user.
The SVM step was forming a bottleneck for more trained persons, and other solutions were
needed.

The comparison using the cosine similarity can be used to compare the tracked faces' feature
vectors and saved values for recognized users and return the similarity [30]. This also implies
that no image needs to be saved; only the feature vectors are needed. The feature vectors
are 1024 floats in width calculated by a feature extractor, which enables high performance.
Figure 70 depicts the interaction between face detection, user recognition, and emotion
recognition. Images are fed into face detection, which calculates the bounding boxes around
the faces. These faces are cropped out and sent to emotion detection and user identification
using a feature extractor and the cosine similarity.

Figure 70: Structure of the face detection and recognition. Cropped images of faces are handed to emotion
detection and the feature extractor. The additional information is added to the tracked faces.

The face-detecting model was removed in the last step, and the face class was integrated
into the gesture dataset. This reduces the necessary amount of DNN and helps to run on less
power-hungry hardware. This feature is optional to enable the usage apart from this use
case.

5.1.3 Additional Feature Integrations
Similar to face identification, emotion detection and mask placement assessment were
integrated but kept optional to stay comparable to the baseline setup. For both modules,
open-source datasets and models were used.

Due to the direct interaction with the user, the user's emotions can be beneficial for
decision-making. If a user is sad or depressed, nice words or other emotional support could

D7.5 Version 2.1

74

be provided. A neural network was introduced to recognize the six basic emotions (neutral,
happy, angry, disgust, sad) with an accuracy of 83%.

In the frame of the COVID-19 pandemic, a neuronal network that verifies the correct fit of
the mask was introduced. It determines whether the mask is worn correctly, incorrectly, or
is missing altogether. The Accuracy of this model was around 90%.

Additionally, an LED strip was attached to the camera and screen to provide better lighting
conditions for the user in front of the camera and screen. This improves user recognition as
it had trouble recognizing faces in low light conditions.

5.1.4 Depth Information for Gesture Control
Due to the usage of the RealSense camera, depth information is already available. The
distance of the gestures and object to the mirror is calculated and added to the bounding
boxes in a third step of the processing pipeline and used for interaction with the user.

Figure 71: Examples for the menus used in the smart mirror prototype. The main menu on the left, a wheel for
numbers in the middle, and the onscreen keyboard on the right. All are controlled by the distance of the flat right
hand.

For the gesture control different menu structures are implemented, seen in Figure 71. A
main menu using tiles is the main way for interaction. A wheel is used for inputting numbers
and an onscreen keyboard is used for strings. The location and distance of the flat right hand
is used as input. With the location the tile or element is selected and with reducing the
distance this element then activated.

5.2 Hand Gesture Dataset and Automated Capturing
The creation of the gesture dataset was reworked entirely and automated. The idea of an
image crawler using openly accessible sources was evaluated. Hand gestures, people, and
faces in YouTube videos are to be used to generate a data set. A multi-stage process was
implemented for this purpose. Firstly, YOLOv7 is used to recognize people reliably. These
people were cut out of the image, and the landmarks for faces and hands were found with
the help of Google MediaPipe [31]. This is necessary because the MediaPipe is limited to one
person. Several people in one image are making the result unusable. Each person's

D7.5 Version 2.1

75

detections can then be fed back into the original image to determine the appropriate
bounding boxes.

Figure 72: Example for the detection of landmarks within an image using YoloV7 and the google MediaPipe. YoloV7
is used to find persons in the image as the MediaPipe is limited to one person. This is afterwards used to extract the
needed landmarks.

The described process of landmark extraction is shown in Figure 72. In the next step, a simple
SVM or a machine learning algorithm is used to classify the image if a gesture is seen.
Therefore, a small benchmark dataset is required to train this classification step. This small
benchmark dataset was captured using the same algorithm, but a given gesture to be seen.
The dataset consists of 38 gestures of 14 people with 100 images each. With the two steps
of detecting landmarks and persons in images and a simple classification if a gesture is
included, many YouTube videos can be analyzed autonomously without manual labeling.

A large and evenly distributed data set across the various gestures was collected and labeled
using the entire tool flow. Around 3000 of these images for each of the 38 gesture classes
were used to train YOLOv7 and YOLOv7-tiny, and the mean Average Precision (mAP) for
each class is shown in Figure 73. In all classes, the mAP was above 0.73. This is an overall
useful result for both versions. For performance reasons, the tiny version was primarily used
for the smart mirror prototype until optimizations with the EmbeDL tools were conducted.

Figure 73: mAP at IoU threshold of .5 for YOLOv7 and YOLOv7-tiny for the captured gesture dataset

5.3 Optimization of YOLOv7
Two of the most used neural networks in this use case are based on the YOLOv7
architecture. To improve energy efficiency, reducing the required operations would be
beneficial. Evaluations were conducted using the EmbeDL Toolchain [32] for pruning the
object detection DNN, which is using the COCO dataset, and the gesture detection DNN,

D7.5 Version 2.1

76

which is using a self-created dataset. YOLOv7, with an input resolution of 640x640 pixels, is
used for pruning in both cases. With the initial DNN, processing one image requires 104,5
Giga Floating Point Operations (GFLOPs). The focus here is on increasing energy efficiency
by reducing the required GFLOPs. However, it should be noted that reducing the number of
neurons is expected to decrease the accuracy, which is measured by the mean Average
Precision (mAP) with an Intersection over Union (IoU) threshold of 0.5 or the average from
0.5 to 0.95. Therefore, a balance between GFLOPs and the mAP must be achieved.

For the pruning process, the EmbeDL tool calculates the score for each neuron, indicating
its importance. The least essential neurons are removed, and the process is repeated until a
predefined size is reached. Only the input size and output size remain unchanged, as these
are based on the input image and the number of classes. Furthermore, no layers are
removed. The resulting smaller DNN has lost accuracy and must be retrained. Each model
considered here was retrained for 15-50 epochs after pruning. The number of epochs
required depends on the model's size and the dataset's difficulty. The COCO data set, for
example, requires a higher number of epochs than the gesture data set. An effort was made
to avoid overfitting. The two following sections are showing the results for the two different
datasets.

5.3.1 Optimization of Object Detection
Figure 74 shows the measured results for pruning YOLO trained with the COCO dataset [33]
to different sizes, ranging from the original size to only 10% of it. The blue bars represent
the GFLOPs required, while the two lines represent the combined map achieved.
Additionally, the value for the tiny model version is included for comparison purposes. If only
a small number of neurons are removed, the overall accuracy remains reasonably high; a
higher drop is noticed after the size is reduced to smaller than 40%. Additionally, the
YOLOv7 model adds extra detections at this pruning size, as shown in Figure 75. The 10%
size version is also less accurate than the tiny variant with a comparable size. The layer
structure and the number of layers can explain this. YOLOv7 has 306 layers, and YOLOv7-
tiny has only 200 layers for inference. After observing hallucinations and problems in some
classes, each object's accuracy was evaluated.

Figure 74: Comparison between different pruning sizes regarding the needed GFLOPs and the achieved accuracy for
the object dataset.

D7.5 Version 2.1

77

Figure 75: Example for additional detections from smaller network sizes. Here 50% pruned YOLOv7 adds a cow

When comparing the individual object classes across the different pruning sizes of YOLOv7,
it becomes apparent that some classes are 'forgotten' earlier than others, and some appear
to be favored. Figure 76 depicts the accuracy for all 80 classes of the COCO dataset. It is
ascending sorted for the top line, representing the initial pre-trained YOLOv7 model. The
mAP accuracy of some objects is very low from the start. This is due to the dataset's lack of
images for these classes, such as the hair dryer. Generally, a uniform decrease in mAP for
higher-pruned models is expected. However, some classes are exceptions, such as
toothbrush, scissors, remote, fork, and especially the toaster, which are forgotten faster. On
the other hand, many classes are remembered longer, such as parking meter, sports ball and
many classes with a higher mAP in the initial model. Further investigations into the
relationship between all single neurons and the individual classes extend beyond this use
case in this project.

D7.5 Version 2.1

78

Figure 76: Accuracy comparison for all model pruning sizes and each class of the coco dataset individually

In the case of the smart mirror prototype, object detection is the biggest DNN and is
primarily outsourced to accelerators like the Hailo-8. Reducing the needed GFLOPs is
beneficial for reducing the amount of context switches on this accelerator. The initial
YOLOv7 model is too big for a single context and split into five contexts on the Hailo-8.
Therefore, for each image the context is switched five times, and this overhead is also
consuming energy. The pruned to 60% sized model only uses four contexts instead. Figure
77 depicts the evaluation of the different pruning sizes and the resulting values in max FPS,
latency and power consumption. As expected, the maximum FPS rate increases sharply as
the size decreases. As the number of layers is kept the same, the latency only decreases
slightly. Because the maximum FPS and the shortest latency are always determined, the
energy consumption is only slightly reduced.

Figure 77: Benchmarked performance evaluation for varying model sizes of YOLOv7 on the Hailo8 accelerator.
Measured are the maximal FPS and Latency on the left axis and the corresponding power consumption on the right

5.3.2 Optimization of the Gesture Detection
Similar to the previous chapter Figure 78 shows the comparison of the GFLOPs and the mAP
for different pruned YOLOv7 models for the gesture dataset. A stronger focus was placed

D7.5 Version 2.1

79

on the smaller variants as these still have a very high level of accuracy with the gesture data
set. Even when pruned to a comparable size, the pruned model shows a higher map than the
tiny version. As the dataset is very simple, the mAP@.5 of all variants are above 90%. As only
the average mAP of all classes was evaluated before, the tiny version was running in the
smart mirror prototype so far.

Figure 78: Comparison between different pruning sizes regarding the needed GFLOPs and the achieved accuracy for
the gesture dataset

After calculating the mAP@.5 for all individual gesture classes a strong drawback was
discovered, depicted in Figure 79. The thumbs-up class is not as easy for smaller models as
the other gestures. As the thumbs up gesture is used as a direct command, hick-ups can be
explained by this lower value and the pruned YOLOv7 model can help circumvent this
behavior. The 15% size model shows slightly better accuracy by around the same calculation
amount needed. In further prototypes, this model will be used instead of the previously used
tiny version.

Figure 79: Accuracy comparison for all model pruning sizes and each class of the gesture dataset individually

D7.5 Version 2.1

80

5.4 FPGA usage for Object and Gesture Detection
In addition to the GPU implementations, the object and gesture detection network nodes
were implemented on Xilinx FPGAs, utilizing the accelerators and the hardware-software
infrastructure, developed in WP3 and WP4. First, a YoloV4 network trained with the COCO
dataset was implemented, which is also part of the general model zoo of this project. As
detailed in Deliverable D3.4 [34], the model was implemented on an UltraScale+ FPGA and a
Versal XCVC1902 ACAP (Adaptive Compute Acceleration Platform), integrated into a
VCK190 Evaluation Kit [35]. While the FPGA implementation was not able to provide the
required performance, the implementation on the Versal achieved a performance of up to
195 FPS, which is comparable to the Jetson Orin AGX. For this benchmark, the power
consumption of the Versal was 43.7 Watt, while the Orin required 60.2 Watt (192 FPS).

For easy integration into the smart mirror and evaluation of the complete environment, the
FPGA-implementation was also encapsulated as a ROS2 node. Experiments combining the
Nvidia AGX Orin and the Xilinx VCK190 were conducted, and the full smart mirror setup was
running showing 30 FPS with a power consumption of around 83 Watt. For this
implementation, only a small fraction of the Versal resources were utilized, implementing a
small DPUCVDX8G Xilinx DPU with batch size one. This design can be run also on the new
Versal edge devices, which will be integrated into the u.RECS. Running the compute-
intensive DL-models on the FPGA significantly reduces the compute load of the Nvidia Orin.
Hence, a small Orin NX can be utilized instead of the currently used larger Orin AGX, further
reducing power. Therefore, the u.RECS combining an Orin NX and the Versal edge module,
developed in WP4, will be an ideal platform for energy efficient implementation of the
complete smart mirror environment.

5.5 Creation of a Virtual Mirror Image from 3D Point Clouds
In order to remove the necessity of the reflective foil of the first prototypes, the potential
application of point clouds for reconstructing a virtual mirror image was explored. This film
was applied to the screen and showed both the user image and the interesting information.
Unfortunately, it had its drawbacks, as either the screen or the surroundings were too dark
to see both. Nodes were implemented for this, and an attempt was made to implement this
in the prototype.

Figure 80: ROS2 node architecture for the virtual mirror image creation and an example of the result

D7.5 Version 2.1

81

For the registration of point clouds, a voxelized version of the generalized iterative closest
point algorithm (VGICP) [36] was implemented, which provides an affine transformation,
estimating the translation and rotation between the two cameras. The recalculation can be
executed at a low frequency as the camera does not shift that often. Subsequently, a virtual
camera with the merged point cloud can determine a frontal image. For this purpose, a
processing pipeline containing ROS2 modules was implemented, and the processing was
split between the two NVIDIA Xavier modules, as shown on the left in Figure 80. This first
implementation achieved a performance of 27 FPS with a latency of 100ms, which is
sufficient for real-time operation. The resulting image was not used as a mirror due to image
artefacts. These artefacts are due to the point clouds of the used Intel RealSense cameras
and are shown on the right in Figure 80. The evaluation of implementing solutions to this
problem showed that the targeted hardware configurations were not sufficient to run
everything in parallel, which is why energy efficiency was investigated further. As a result,
the focus was on optimizing the DNN and using less energy-consuming hardware, and the
work was not carried out further in the direction of the virtual mirror image.

5.6 Hardware Evaluation
This use case was built mainly around the smart mirror prototype and increasing the energy
efficiency of running object, gesture, and face detection and recognition in parallel on
embedded hardware. The structure of the dataflow was described in chapter 5.1. At the
beginning of this project, the smart mirror prototype consisted of two Nvidia AGX Xavier
interconnected on the t.RECS [34]. This setup consumed around 150 Watt and showed
around 16 FPS for the three detections. The hardware was also changed after the first
software updates, and different setups were evaluated. Figure 81 shows the measurements
for different setups and combinations. After implementing the smart mirror modules into
ROS2 nodes the performance was already increased to 30FPS while consuming around 100
Watt on the two AGX Xavier. The combination of a Nvidia AGX Orin with 8 cores and a Hailo-
8 is marked in red, as it is the efficient setup evaluated in this project and was shown at the
latest fairs. It achieved 30 FPS while consuming around 38 Watt. In this setup, most of the
smart mirror prototype runs on the AGX Orin, and the YOLOv7 model for object detection
is outsourced to the Hailo-8.

The different hardware modules are also interchangeable and, e.g., the combination of an
Nvidia AGX Xavier and an AGX Orin would be possible, but not purposeful. The selection was
kept simple by only evaluating combinations which have shown an increased performance
chronological.

The blue dot represents the expected performance of the Nvidia Orin NX with a Hailo-8 for
object detection. Due to unresolved issues surrounding the current limitation of the Nvidia
Orin NX on the u.RECS, evaluations in this combination are still to to be conducted in its
entirety. Apart from the UI of the smart mirror, everything is functional and running.
However, an overcurrent protection error and slight hiccups can be noticed. This will be fixed
in the new revision of the u.RECS.

Figure 81: Power consumption and frames per second of the smart mirror on different hardware setups

D7.5 Version 2.1

82

If the combination of these values is considered, the baseline system using two Nvidia Xavier
AGX has a performance value of 9.375 Watt / FPS. The latest smart mirror prototype based
on the Nvidia AGX Orin and Hailo-8 is showing a performance of 1.266 Watt / FPS, while
expected value for the Nvidia Orin NX and the Hailo-8 is 0.933 Watt / FPS. This shows an
improvement of around factor 10x.

5.7 Local Voice Assistant
The previous smart mirror demonstrator centred significantly on image-processing
algorithms. In addition to gesture recognition, a voice assistant is a powerful interaction
capability. So far, however, only a rudimentary hotword detection has been used. In this,
keywords like "show" and "weather" were detected, for example, to start the weather skill.
To enhance this, a voice assistant based only on local processing was evaluated in this
project. For a long time, the most suitable frameworks for speech-to-text (STT) were Coqui
STT [37] or Vosk [38], but they were replaced by OpenAI’s whisper [39]. For Text-to-speech
(TTS) the models from Coqui [40] or PyTTSx3 [41] were evaluated and implemented into
ROS2 nodes. The Coqui TTS shows a more humanlike voice than PyTTSx3.

For data protection reasons, the STT node was the important focus of this project. Audio
recorded in the home environment must be encrypted and must never be easily readable.
Therefore, how a neural network can be executed within a secure area was investigated. For
this purpose, the whisper model was to be executed within the OP-TEE area of a Nvidia AGX
Xavier. For this purpose, TensorFlow lite should be used as the backend and executed with
the help of WASM. Difficulties were caused by missing operations of a too-old TensorFlow
version and very limited memory. The deliverable [42] in WP5 deals with this in more detail.

The natural language processing solutions with SpaCy [43] and RASA [44] are evaluated and
show comparable results. The data flow is shown in Figure 82. A simple skill system was
implemented based on user intent, and the local voice assistant could present cafeteria and
weather information or tell a joke. A version is implemented on a Raspberry Pi 4 using 11
Watt and showing a latency of 40 seconds using the Coqui frameworks or 3 seconds using
the other two. This high latency is due to the limited performance of the Raspberry and could
be improved using more powerful hardware.

Figure 82: System design of the local voice assistant

5.8 Secure Smart Microphone with Hotword Recognition
As an extension of the integration within a smart home environment, we conceived a
wireless smart microphone device as an accessory to the smart mirror demonstrator. The
device is based on an Arduino Nano RP2040 Connect [45] microcontroller with a built-in
microphone. Spoken keywords are recognized by a small machine-learning model running
on the microcontroller. Upon detection of the hotword, a transcript of the word and the

Speech Recognition Speech Interpretation Reply Creation

Skills / APIs

Text to Speech

Voice
Command

D7.5 Version 2.1

83

sound wave is sent to a secure service over Wi-Fi. The communication is TLS encrypted and
the secure service runs inside a trusted execution environment (TEE) based on Intel
Software Guard Extensions (SGX), to ensure the spoken words cannot be spied on. Figure 83
shows an overview of the secure smart microphone architecture.

Currently, the neural network of the smart microphone is using the TensorFlow Lite Micro
machine-learning framework and is trained on a Google spoken word dataset containing 35
words [46]. It can recognize a subset of eight different words: “yes”, “no”, “up”, “down”,
“left”, “right”, “on”, “off”, and “Marvin” with an accuracy of around 79 percent. In a pre-
processing step, slices of the recorded audio waveforms are converted from the time
domain into the frequency domain using the short-time fourier transform (STFT). This
conversion results in spectrograms showing frequency changes over time and are
represented as 2D images. This conversion allows the use of established image recognition
machine-learning models to classify audio data. A simple model, consisting of just two layers,
with a size of 48 kB fits into the memory of the microcontroller, having the drawback of a
lower accuracy compared to more advanced voice recognition architectures, but retaining a
better latency due to no communication overhead.

Once the hotwords have been identified, the microcontroller establishes a secure
connection to an edge computing node using TLS encryption. Initially it was planned to
dispatch the recognized commands to a program running in a secure enclave, bootstrapped
by Intel SGX. An enclave is an isolated area of memory which cannot be subverted by high-
privileged software, such as the operating system and the hypervisor. The software running
in the enclave should have received the voice commands and stored them in an in-memory
database. But we encountered unforeseen problems during the implementation: The
software development for TEEs is constrained by the absence of the POSIX API and thereby
system functions, e.g. “fopen”. But these are required by machine learning frameworks like
TensorFlow which were planned for the task of running our neural network models. We
removed these functions from the depending libraries and were able to compile TensorFlow
into a WebAssembly program. But executing it in a trusted runtime [47], the missing
functions led to errors we were not able to resolve.

Nonetheless, in order to implement the speech recognition feature, a decision was made to
implement the audio receiver node outside of the trusted zone and without WebAssembly
as a requirement. The audio data received by the wireless microphone is now processed
using the state-of-the-art speech recognition model Whisper by OpenAI [39], which can
generate a transcript of spoken sentences. Although not employing a trusted environment,
the data is sent through an encrypted connection, and a possible attacker has to break into
the system and gain root privileges to access any audio data in memory. At this point, the
system as a whole is already compromised.

Hotword

Wi-Fi

TLS

Key-Value
Store Service

Arduino RP2040 SGX Enclave

Figure 83: Secure smart microphone architecture overview

D7.5 Version 2.1

84

5.9 Evaluation of the Key Performance Indicators
The achieved improvements regarding the KPIs are listed below. Some are not trivial to
measure and therefore estimated. The baseline system is the smart mirror setup at the
beginning of the project, consisting of two AGX Xavier on a t.RECS running the software with
16 FPS by consuming 150 Watt.

The main objective in this project was to increase the energy efficiency by 10x while
maintaining 30 FPS and a low latency.

Performance Metrics:
• Latency: Calculating the detection of objects, gestures, and faces are all done in 22

ms. The big YOLOv7 represents the biggest bottleneck and was accelerated using
EmbeDL.

• Achieved performance: The imaged-based detection nodes for face, gesture and
objects are running with a performance of 30 FPS. This is the maximum perfor-
mance of the camera. Depending on the accuracy and hardware accelerator a pro-
cessing performance from 42 up to 124 FPS can be achieved.

Resource Metrics:
• Resources: A number of different hardware realizations has been evaluated

o t.RECS with 2x Nvidia AGX Xavier (8-Core ARM Carmel, 512-Core Volta, 32 GB
RAM)

o t.RECS with Nvidia AGX Orin (8-core Arm Cortex-A78AE, 1792-core Ampere
, 32GB RAM / 12-core Arm Cortex-A78AE, 2048-core Ampere, 64 GB RAM)
and a Hailo-8 (26 TOPS, 32 MB SRAM) or versal core Ai (Versal XCVC1902
ACAP).

o u.RECS with Orin NX (8-core Arm Cortex-A78AE, 1024-core Ampere, 16 GB
Ram) and a Hailo-8 (26 TOPS, 32 MB SRAM) or versal edge Ai (Versal
XCVE2302 ACAP).

• Cost: Listed below, please find the cost of the different setups. In case VEDLIoT
hardware the VEDLIoT hardware is utilized, prices reflect the cost per unit for a
medium-sized production quantity. For third-party components, prices are based on
medium quantities where volume discounts are available.

o t.RECS with 2x Nvidia AGX Xavier: 2116 €
o t.RECS with Nvidia AGX Orin: 2803 €
o t.RECS with Versal XCVC1902/VCK190: 13146 €
o u.RECS with Orin NX and Hailo-8: 934 €
o u.RECS with Orin NX and Versal Edge.AI: 1440 €

• Power / Energy: The power consumption was decreased from 150 Watt to around
38 Watt and is expected to be decreased to around 28 Watt.

Quality Metrics:
• Accuracy: The accuracy of the optimized models are depending on the pruning de-

gree and the training data set. Good results for the YOLOv7 trained with the coco
dataset are between the initial 69.2% and 64.4%. For the gesture dataset the accu-
racy could be increased from 90,7% for the initial YOLOv7-tiny to 93.8% for YOLOv7
version in a comparable size.

Combined Metrics:
• (Energy) Efficiency: The latest smart mirror prototype based on the Nvidia AGX

Orin and Hailo-8 achieved 1.266 Watt / FPS. The expected value for the Nvidia Orin
NX and the Hailo-8 is 0.933 Watt / FPS. The baseline system showed 9.375 Watt /
FPS.

D7.5 Version 2.1

85

6 Conclusion

This document is the third of three deliverables about the development of the four project
use cases and the transition from traditional algorithms to a machine learning approach and
its optimisation. It presents the final results including comparisons of the optimised metrics
and KPIs vs. the baselines and defined goals.

All four use cases have been successfully developed and optimised. Both Industrial IoT use
cases have been developed from scratch, although the base idea was already available in
similar formats. The AI part of the automotive use case was also developed from scratch
while having the research focus of distributed AI in mind. Finally, the Smart Home use case
was based on previous projects, but massively improved in terms of performance and
features. Also, for all use cases, the defined metrics and KPIs have been measured and
evaluated, therefore the Milestone 8 “Final evaluation and benchmarking” is fulfilled.

For both industrial use cases, a systematic workflow has been progressively developed and
implemented for the creation of AI-based solutions for cyber-physical systems. This process
encompasses problem analysis, data collection and analysis, model training and
optimization, and hardware acceleration.

In the motor monitoring use case, we not only integrated deep learning capabilities into the
smart end-field device for data processing, but also optimized the hardware toward better
energy efficiency. Additionally, a comprehensive IoT system was established for the purpose
of demonstration. For the arc fault detection use case, we constructed a real-time DC series
arc fault detection system from the ground up and further refined it for optimal
performance. By creating a testbench for arc fault simulation and optimizing the data
collection procedure, we expanded the variety of datasets, enhancing the model's
robustness.

Despite achieving the goal of optimized runtime and energy efficiency, challenges persist in
integrating AI into the industrial use cases, particularly for anomaly detection. The accuracy
of deep learning models requires improvement, a metric significantly influenced by dataset
size and quality. Addressing this issue will be a primary focus for future development in both
use cases. This will be achieved by conducting a more in-depth problem analysis and
enhancing DL-based algorithms further. This is possible as software optimization and
hardware acceleration are poised to facilitate the optimal performance of deep learning
algorithms.

The smart home use case significantly improved performance and especially energy
efficiency. With this step, realizing a real product is more feasible in the context of living
environments. With the new gesture interaction functionality and a local voice assistant,
critical points for a pleasant user experience are set. The evaluated safety and security
methods are promising to handle any privacy concerns. Further energy efficiency
improvements are expected with an Orin NX and an accelerator on the u.RECS platform. This
improvement will be made in conjunction with the integration of the edge versal AI module
developed within this project. Gamification and more user interaction will be implemented
on the software side to get an even better experience, especially with regard to fairs.

The work on the automotive use case within Vedliot has shown that it is possible to divide
calculations of a NN between two geographically separated locations with computational
nodes. There is a need to do further work regarding the communciation between these
locations in order to reduce the latency of the distributed computations. The accuracy of the
inference is promising but also needs further work. However, it is important to emphasize

D7.5 Version 2.1

86

that the goal was to show that distributed calculations are viable, not to completely handle
a saftety-critical function. That part of the project was successful, and the implementation
of the detection part of the automatic emergency brake function shows promise.

D7.5 Version 2.1

87

7 References

[1] VEDLIoT EU project, D2.3 - Pilots/use case specification, 2021.

[2] VEDLIoT project, "D7.2 - First report on use case development and optimisation,"
2022.

[3] VEDLIoT Project, "D7.3 - Second report on use case development and optimisation,"
2022.

[4] Siemens, "Konnektivität für SIMOTICS Niederspannungsmotoren," [Online].
Available:
https://www.siemens.com/de/de/produkte/antriebstechnik/digitalisierung-
antriebstechnik/konnektivitaet.html. [Accessed 4 1 2024].

[5] VEDLIoT EU project, "Delivereable 7.2 - First report on use case development and
optimisation," 2022.

[6] VEDLIoT EU Project, "Deliverable 7.3 - Second report on use case development and
optimisation," 2022.

[7] VEDLIoT EU Project, "Deliverable 2.1 - Intermediate report on the methods for
requirement, specification, performance metrics and verification of context limited
AI processing systems," 2021.

[8] VEDLIoT EU Project, "Delivearble 4.7 - SIEMENS Report on cognitive IoT hardware
optimizations," 2024.

[9] MaximIntegratedAI, "ai8x-training," [Online]. Available:
https://github.com/MaximIntegratedAI/ai8x-training. [Accessed 04 01 2024].

[10] Siemens AG, "Coaty," Siemens AG, [Online]. Available: https://coaty.io/. [Accessed 04
01 2024].

[11] MongoDB, "MongoDB," MongoDB, [Online]. Available:
https://www.mongodb.com/de-de. [Accessed 04 01 2024].

[12] S. Lu, B. Phung and D. Zhang, "A comprehensive review on DC arc faults and their
diagnosis methods in photovoltaic systems," Renewable and Sustainable Energy
Reviews, vol. 89, pp. 88-98. 10.1016/j.rser.2018.03.010, 6 2018.

[13] R. Weiss, L. Ott and U. Boecke, "Energy efficient low-voltage DC-grids for commercial
buildings," IEEE First International Conference on DC Microgrids (ICDCM), pp. 154-158,
2015.

[14] UL Standard 1699B, "UL 1699B: Standard for Safety of Arc-Fault Circuit-
Interrupters," Underwriters Laboratories, Northbrook, IL, USA, 2018.

[15] EmbedL, "Embedl," Embedl, [Online]. Available: https://www.embedl.com/.
[Accessed 04 01 2024].

[16] N. HOTZ, "What is CRISP DM?," [Online]. Available: https://www.datascience-
pm.com/crisp-dm-2/. [Accessed 15 12 2023].

D7.5 Version 2.1

88

[17] NVIDIA, "Jetson Xavier NX-Serie," [Online]. Available: https://www.nvidia.com/de-
de/autonomous-machines/embedded-systems/jetson-xavier-nx/. [Accessed 04 01
2024].

[18] S. Lu, A. Sahoo, R. Ma and B. Phung, "DC Series Arc Fault Detection Using Machine
Learning in Photovoltaic Systems: Recent Developments and Challenges," in 8th
International Conference on Condition Monitoring and Diagnosis (CMD), 2020.

[19] E. Denney, G. Pai, R. Berthold, M. Fladeland, B. Storms and M. Sumich, "Assuring
ground-based detect and avoid for UAS operations," in 2014 IEEE/AIAA 33rd Digital
Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 2014.

[20] NVIDIA, "NVIDIA TensorRT," [Online]. Available:
https://developer.nvidia.com/tensorrt. [Accessed 04 01 2024].

[21] D. Ö. Andreas Ask, "D6.5 Report on merging, distributing and sharing of resources,"
2024.

[22] R. Griessl, "D4.1 First report on cognitive IoT hardware platform and microserver
development," 2022.

[23] Oxford Technical Solutions, "RT User Manual," 20 02 2020. [Online]. Available: RT
User Manual. [Accessed 22 12 2023].

[24] Magna Electronics, "Magna Enhances ADAS Capabilities by Joining 5G Innovation
Program," 03 12 2023. [Online]. Available: https://www.magna.com/stories/news-
press-release/2023/magna-enhances-adas-capabilities-by-joining-5g-innovation-
program. [Accessed 22 12 2023].

[25] iPerf3, "iPerf - The ultimate speed test tool for TCP, UDP and SCTP," [Online].
Available: https://iperf.fr/. [Accessed 22 12 2023].

[26] LEGaTO project, "LEGaTO project," [Online]. Available: https://legato-project.eu/.
[Accessed 29 04 2022].

[27] A. B. e. al., "Simple Online and Realtime Tracking," CoRR, vol. abs/1602.00763, 2016.

[28] M. Teeuw, "MagicMirror² project," 2016. [Online]. Available:
https://magicmirror.builders/.

[29] Babarcelona Supercomputing Center, "The OmpSs Programming Model," [Online].
Available: https://pm.bsc.es/ompss.

[30] H. V. N. a. L. Bai, "Cosine Similarity Metric Learning," in Asian conference on computer
vision, Springer, 2010, pp. 709--720.

[31] Google, "Google MediaPipe for Developer," [Online]. Available:
https://developers.google.com/mediapipe.

[32] VEDLIoT project, "D6.4 Final report on requirements and resource aware
optimization," 2023.

[33] M. M. S. B. L. B. R. G. J. H. P. P. D. R. C. L. Z. P. D. Tsung-Yi Lin, "Microsoft {COCO:}
Common Objects in Context," CoRR, vol. abs/1405.0312, 2014.

D7.5 Version 2.1

89

[34] VEDLIoT project, "D3.4 Final report on the DL accelerator design," 2024.

[35] Xilinx, "VCK190 Evaluation Board User Guide (UG1366 v1.0)," 2021.

[36] "github - fast GICP Algorithmen," [Online]. Available: https://github.com/SMRT-
AIST/fast_gicp.

[37] coqui, "coqui," coqui, [Online]. Available: https://coqui.ai/.

[38] alphacephei, "vosk - speech recognition toolkit," [Online]. Available:
https://alphacephei.com/vosk/.

[39] OpenAI, "Introducing Whisper," [Online]. Available:
https://openai.com/research/whisper.

[40] coqui, "coqui Text to Speech," [Online]. Available: https://github.com/coqui-ai/TTS.

[41] "pyttsx3," [Online]. Available: https://github.com/nateshmbhat/pyttsx3.

[42] VEDLIoT project, "D5.4 Integrated and extended Security, Safety and Robustness
mechanisms and tools," 2024.

[43] E. AI, "Spacy website," [Online]. Available: https://spacy.io/.

[44] "Rasa," [Online]. Available: https://rasa.com/.

[45] A. Foundation, "Documentation - Nano RP2040 Connect," [Online]. Available:
https://docs.arduino.cc/hardware/nano-rp2040-connect.

[46] P. Warden, Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition,
arXiv e-prints, arXiv: 1804.03209, 2018, pp. arXiv e-prints, arXiv: 1804.03209,.

[47] J. Ménétrey, M. Pasin, P. Felber and V. Schiavoni, "Twine: An Embedded Trusted
Runtime for WebAssembly," in ICDE'21: Proceedings of the 37th IEEE International
Conference on Data Engineering, Chania, Greece, 2021.

[48] A. Jani, "Maxim Showcases Efficient Custom AI," Microprocessor Report, 2021.

[49] L. Gwennap, "XMOS Xcore.ai Adds Vector Unit," Microprocessor Report, 2020.

[50] B. Wheeler, "RISC-V Enables IoT Edge Processor," Microprocessor Report, 2018.

[51] B. Wheeler, "Bitmain SoC Brings AI to the Edge," Microprocessor Report, 2019.

[52] M. Demler, "Syntiant NDP120 Sharpens Its Hearing," Microprocessor Report, 2021.

[53] L. Gwennap, "Intel Gains Myriad Customers," Microprocessor Report, 2018.

[54] M. Demler, "Coherent Logix Configures Edge AI," Microprocessor Report, 2020.

[55] M. Demler, "Hailo Illuminates Low-Power AI Chip," Microprocessor Report, 2019.

[56] M. Demler, "Blaize Ignites Edge-AI Performance," Microprocessor Report, 2020.

[57] M. Demler, "Flex Logix Moves Into Chips," Microprocessor Report, 2019.

D7.5 Version 2.1

90

[58] N. Developers, "Nvdla primer," 2021. [Online]. Available:
http://nvdla.org/primer.html.

[59] T. Moreau, "A hardware-software blueprint for flexible deep learning
specialization," arXiv:1807.04188, 2019.

[60] X. Zhang, "an Automated Tool for Building High-Performance DNN Hardware
Accelerators for FPGAs," 2018.

[61] [Online]. Available: https://github.com/IBM/AccDNN.

[62] M. Demler, "Vsora Drives to Deliver Petaflops," Microprocessor Report, 2020.

[63] M. Demler, "Andes plots RISC-V vector heading," Microprocessor Report, 2020.

[64] M. Demler, "Ceva NeuPro accelerates neural nets," Microprocessor Report, 2018.

[65] M. Demler, "Imagination Series4 tiles tensors," Microprocessor Report, 2020.

[66] M. Demler, "Ceva SensPro2 Doubles AI Throughput," Microprocessor Report, 2021.

[67] "DPUCZDX8G for Zynq UltraScale+ MPSoCs," [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/dpu/.

[68] M. Demler, "Think Silicon Spins AI Accelerator," Microprocessor Report, 2020.
[Online].

[69] A. Jani, "SiFive VIU7-256 Takes Vector Lead," Microprocessor Report.

[70] A. Jani, "SiFive Brings Vectors to S-Series," Microprocessor Report, 2021.

[71] M. Demler, "Cortex-M55 Supports Tiny-AI Ethos," Microprocessor Report, 2020.

[72] L. Gwennap, "Cortex-A55 Improves Memory," Microprocessor Report, 2017.

[73] L. Gwennap, "Cortex-A75 Has DynamIQ Debut," Microprocessor Report , 2018.

[74] L. Gwennap, "Arm Dot Products Accelerate CNNs," Microprocessor Report , 2018.

[75] J. Roesch. [Online]. Available: URL: http://dx.doi.org/10.1145/3211346.3211348.

[76] "Apache Software Foundation," [Online]. Available: https://tvm.apache.org/docs/.

[77] G. Developers, "FlatBuffers Documentation," [Online]. Available:
https://google.github.io/flatbuffers/index.html.

[78] G. Developers, "TensorFlow Lite Documentation," [Online]. Available:
https://www.tensorflow.org/lite/guide?hl=en.

[79] A. Demidovskij, "learning workbench: comprehensive analysis and tuning of neural
networks inference.," 2019.

[80] W.-F. Lin, " Onnc: a compilation framework connecting onnx to roprietary deep
learning accelerators.," in International Conference on Artificial Intelligence Circuits
and Systems , 2019.

D7.5 Version 2.1

91

[81] W.-F. Lin, "Onnc-based software development platform for configurable nvdla
designs," in International Symposium on VLSI Design, Automation and Test (VLSI-DAT),
2019.

[82] N. Rotem, "Graph Lowering Compiler Techniques for Neural Networks," 2019.

[83] L. Gwennap, "Kneron Delivers Efficient AI," Microprocessor Report, 2020.

[84] L. Gwennap, "Kneron KL720 Boosts Efficiency," Microprocessor Report, 2020.

[85] L. Gwennap, "GreenWaves GAP9 Goes Faster," Microprocessor Report, 2020.

[86] L. Gwennap, "Kendryte Embeds AI for Surveillance," Microprocessor Report, 2019.

[87] M. Demler, "Syntiant NDP120 Sharpens Its Hearing," Microprocessor Report, 2021.

[88] L. Gwennap, "LeapMind jumps on binary networks," Microprocessor Report, 2020.

[89] Nvidia, "Datasheet of Nvidia Jetson Xavier NX," [Online]. Available:
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Xavier%2
0NX/DG-09693-001_v1.5.pdf. [Accessed 19 01 2022].

[90] SGeT - Standardization Group for Embedded Technologies e.V., "SMARC Standard,"
[Online]. Available: https://sget.org/standards/smarc/. [Accessed 19 01 2022].

[91] Espressif, "Espressif IoT Development Framework," [Online]. Available:
https://github.com/espressif/esp-idf. [Accessed 19 01 2022].

[92] PlatformIO labs, "Platform IO Website," [Online]. Available: https://platformio.org/.
[Accessed 19 01 2022].

[93] B. Wunder, R. Weiss, L. Ott, M. Szpek and U. Boeke, "Energy efficient DC-grids for
commercial buildings," IEEE 36th International Telecommunications Energy
Conference (INTELEC), pp. 1-8, 2014 .

[94] EUROPEAN NEW CAR ASSESSMENT PROGRAMME, "Test protocol - AEB/LSS VRU
systems," 2021.

[95] Ioffe, S., & Szegedy, C., "Batch normalization: Accelerating deep network training by
reducing internal covariate shift," International conference on machine learning, pp.
448-456, June 2015.

[96] ROS project, "ROS - Robot Operating System," [Online]. Available:
https://www.ros.org/. [Accessed 29 04 2022].

[97] M. Demler, "Ethos-N78 Boosts AI Efficiency," Microprocessor Report, 2020.

[98] S. Lu, B. Phung and D. Zhang, "A comprehensive review on DC arc faults and their
diagnosis methods in photovoltaic systems," Renewable and Sustainable Energy
Reviews, pp. 88-98, Volume 89 2018.

[99] O. S. R. Foundation, "ROS - Robot Operating System," [Online]. Available:
https://ros.org/.

D7.5 Version 2.1

92

[100] coqui, "coqui Speech to Text," [Online]. Available: https://github.com/coqui-ai/STT.

[101] NVIDIA, "Nvidia TensorRT Overview," [Online]. Available:
https://developer.nvidia.com/tensorrt.

[102] VEDLIoT EU Project, "Deliverable 3.3 - Evaluation of the DL accelerator designs,"
2022.

[103] Xilinx, “DPUCVDX8G for Versal ACAPs Product Guide (PG389 v1.1),” 2022.

D7.5 Version 2.1

93

8 List of Figures

Figure 1: Global picture of the VEDLIoT project, the use cases are outlined in red 6
Figure 2: Smart Field Device for Industrial IoT [source: Siemens] ... 7
Figure 3: Development process presented in deliverables .. 8
Figure 4: Motor monitoring system overview ... 9
Figure 5: Data flow in the motor monitoring system .. 10
Figure 6: SFD with dedicated AI-Accelerator as a “mount-on” solution 11
Figure 7: Data example from small motor testbench, cooling system unblocked 12
Figure 8: Temperature change when cooling system is blocked and unblocked 12
Figure 9: Quantized input data after normalization .. 13
Figure 10: Code for CNN model structure ... 14
Figure 11: Triple inference voting system ... 16
Figure 12: (a) One-time inference system, (b) Triple voting system, (c) 5-times voting system,
and (d) 7-time voting system ... 16
Figure 13: Example of temperature data for the middle size motor, from D7.2 18
Figure 14: Histogram of model inference result on the test dataset 18
Figure 15: Causal model for motor monitoring .. 20
Figure 16: Central monitoring interface for the Secure IoT Gateway 21
Figure 17: Raspberry Pi as backend server with multi functions integrated 22
Figure 18: iOS AR interface under development .. 23
Figure 19: Development Milestones for arc fault detection .. 26
Figure 20: Development and system overview for AI-based DC series arc fault detection .. 27
Figure 21: CRISP-DM model for data science process (Based on [16]) 28
Figure 22: Matrix for risk evaluation [19] ... 29
Figure 23: Causal model for arc fault detection ... 31
Figure 24: Final testbench setup for arc fault detection .. 32
Figure 25: Electrodes for arc generation ... 33
Figure 26: Arc occurrence from 0.23s on with load pattern simulated under CC mode of
electronic load .. 34
Figure 27: Circuit design with ADC board integrated with the micro-controller 35
Figure 28: Semi-Auto labelling application workflow .. 36
Figure 29: Selected datapoints in labelling software .. 37
Figure 30: Datapoints after removing trailing zeros and labeling dataset. Yellow marks “arc”,
red marks “transient” and the rest are “no arc”.. 37
Figure 31: Fully connected neural network after tuning – training history 38
Figure 32: 1-D Convolutional neural network - training history .. 38
Figure 33: Simplified software flow chart on hardware .. 39
Figure 34: Accuracy to target curve on FNN model ... 40
Figure 35: Accuracy to target curve on CNN2D model .. 41
Figure 36: Result visulisation of the real-time DC serues arc fault detection system on the
Nvidia board .. 42
Figure 37. Development process of automotive use case presented in deliverables 44
Figure 38: Bird’s eye view of the data collection environment at the Magna test site in
Vårgårda. ... 45
Figure 39: Overview of data collection system ... 46
Figure 40: Pedestrian moving away from ego vehicle ... 47
Figure 41: Pedestrian moving towards the ego vehicle .. 47
Figure 42: Pedestrian crossing the path of the ego vehicle ... 48
Figure 43: Empty scene ... 48
Figure 44: Other objects on and off the path of the ego vehicle .. 49

D7.5 Version 2.1

94

Figure 45: Pedestrian moving away from the ego vehicle on the grass 49
Figure 46: Model of communication in a 5G system with distributed systems 50
Figure 47: Simulation of total latency when splitting the neural network 51
Figure 48: Distributed Processing fair demonstrator .. 52
Figure 49: High level overview of a distributed AI system. The Automotive Use-Case utilizes
the Local device in the vehicle and the Remote device located in the basestation. No cloud
instance was used in this project. .. 52
Figure 50: Hardware design used for the experiment. The blue box, the local domain,
describes the hardware in the vehicle. The two yellow boxes, the remote domain, describes
the same hardware placed in connection with either the 5G or WiFi infrastructure. 53
Figure 51: In-vehicle installation of u.recs, OXTS and Wireless Modem 53
Figure 52: Local, Distributed and Remote processing. 1: The entire inference is processed in
the vehicle. 2: The model resides partly in the vehicle and partly in the base station. 3: The
entire inference is processed in the base station. .. 54
Figure 53: WiFi Access Point at pole near test location .. 55
Figure 54: Overview of the positions of relevance during the experiment. Yellow boxes
describes positions for the wireless medium and blue boxes describes the positions for the
vehicle. A=WiFi Near, B=5G Near, C=Dynamic Start, D=WiFi Medium, E=Dynamic Stop, F=WiFi
Far, W=WiFi Antenna, 5=5G Antenna ... 56
Figure 55: Overview of the Vårgårda test site during the field measurements. The conditions
were cloudy with a dry to slightly wet surface during the measurements. 58
Figure 56: Total power consumption for all experiments. Orange: distributed calculations,
red: remote, blue: local. The purple line shows where mmWave communication was used,
WiFi for all other scenes. The grey rectangle represents scenes where the power log could
not be used. ... 60
Figure 57: Total latency for all experiments with outliers due to intermittent
communications encircled in red and 5G mmWave-communication marked with purple lines,
S-13 through S-18 and S-21 through S-26. ... 61
Figure 58: Comparison between 5G and WiFi bitrates as a function of time. 62
Figure 59: Accuracy of the ML inference: orange = pedestrian dummy, green = empty scene,
blue = other object. Blue boxes around the scene numbers on the x-axis indicate all remote
processing. The horizontal black line represents the 95% accuracy KPI of the use case. 63
Figure 60: Detection as function of distance, 30 kph, S-21 blue, local, S-23 orange distributed,
pedestrian at 100 m. .. 64
Figure 61: Detection as function of distance, 50 kph, S-24 blue, local, S-26 orange distributed,
pedestrian at 100 m. .. 64
Figure 62: First image, dynamic test S-21. ... 65
Figure 63: Final image, dynamic test S-21. ... 65
Figure 64: The image when detection occurs in the the dynamic scene, S-21. 66
Figure 65: Bitrates for the four static positions. .. 67
Figure 66: Bitrate as a function of time at the static position WiFi Near. 67
Figure 67: Retries for the four static positions. .. 68
Figure 68: Smart mirror prototype utilizing a t.RECS edge server in an acrylic case 71
Figure 69: Data flow of the smart mirror demonstrator ... 72
Figure 70: Structure of the face detection and recognition. Cropped images of faces are
handed to emotion detection and the feature extractor. The additional information is added
to the tracked faces. .. 73
Figure 71: Examples for the menus used in the smart mirror prototype. The main menu on
the left, a wheel for numbers in the middle, and the onscreen keyboard on the right. All are
controlled by the distance of the flat right hand. .. 74

D7.5 Version 2.1

95

Figure 72: Example for the detection of landmarks within an image using YoloV7 and the
google MediaPipe. YoloV7 is used to find persons in the image as the MediaPipe is limited
to one person. This is afterwards used to extract the needed landmarks. 75
Figure 73: mAP at IoU threshold of .5 for YOLOv7 and YOLOv7-tiny for the captured gesture
dataset ... 75
Figure 74: Comparison between different pruning sizes regarding the needed GFLOPs and
the achieved accuracy for the object dataset. .. 76
Figure 75: Example for additional detections from smaller network sizes. Here 50% pruned
YOLOv7 adds a cow ... 77
Figure 76: Accuracy comparison for all model pruning sizes and each class of the coco dataset
individually .. 78
Figure 77: Benchmarked performance evaluation for varying model sizes of YOLOv7 on the
Hailo8 accelerator. Measured are the maximal FPS and Latency on the left axis and the
corresponding power consumption on the right ... 78
Figure 78: Comparison between different pruning sizes regarding the needed GFLOPs and
the achieved accuracy for the gesture dataset .. 79
Figure 79: Accuracy comparison for all model pruning sizes and each class of the gesture
dataset individually .. 79
Figure 80: ROS2 node architecture for the virtual mirror image creation and an example of
the result ... 80
Figure 81: Power consumption and frames per second of the smart mirror on different
hardware setups ... 81
Figure 82: System design of the local voice assistant.. 82
Figure 83: Secure smart microphone architecture overview ... 83

	Executive Summary
	1 Introduction
	2 Smart Industrial IoT: Motor Condition Classification Use Case
	2.1 Introduction
	2.2 Overview of Developments and Optimisations
	2.3 System Design
	2.4 Deep learning on smart field device
	2.4.1 AI-powered Smart Field Device on the test bench
	2.4.2 Data collection
	2.4.3 Algorithm
	2.4.3.1 Pre-processing
	2.4.3.2 Model training
	2.4.3.3 Post-processing

	2.4.4 Limitation
	2.4.4.1 Limitations of testbench setup and data collection
	2.4.4.2 Limitation on model
	2.4.4.3 Limitation on hardware
	2.4.4.4 Limitation on power consumption

	2.4.5 Problem Analysis

	2.5 Implementation on IoT system
	2.5.1 Secure IoT Network
	2.5.2 Raspberry Pi Backend Server
	2.5.3 Human interface

	2.6 Conclusion

	3 Smart Industrial IoT: Arc Detection Use Case
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Development milestones
	3.1.3 System design

	3.2 Development Procedure
	3.2.1 Problem analysis
	3.2.2 Hazard analysis
	The analysis shown in Table 3 aims at the algorithm because it is the focus of the project. Therefore, only recommendations for the detection algorithm is listed out. They are effective measures that help improve the detection system.
	3.2.3 Causality Model

	3.3 Implementation
	3.3.1 Testbench
	3.3.2 Arc generation and data collection
	3.3.3 Analogue Digital Converter (ADC) for data collection
	3.3.4 Data labelling
	3.3.5 Model Training
	3.3.6 Hardware acceleration
	3.3.7 Model optimization
	3.3.8 Real-time Detection

	3.4 Conclusion
	3.4.1 Achievements
	3.4.2 Limitations

	4 Automotive AI Use Case
	4.1 Development of automotive AI model
	4.1.1 Machine learning training data
	4.1.2 Machine learning model
	4.1.3 Communication modelling
	4.1.4 Distributed Processing Simulations
	4.1.5 Distributed Model Demonstrator

	4.2 Test Setup
	4.2.1 Equipment, vehicle and edge
	4.2.2 EfficientNet distribution
	4.2.3 Wireless communication
	4.2.4 Design of the Experiment
	4.2.5 Test conditions

	4.3 Evaluation Parameters
	4.4 Results
	4.4.1 Energy Consumption
	4.4.2 Latency
	4.4.3 Detection Rate/Accuarcy
	4.4.4 Robustness

	4.5 Discussion and Conclusion
	4.6 Challenges and Future Work

	5 Smart Home Use Case
	5.1 Developments & Optimisation
	5.1.1 ROS2 Implementation
	5.1.2 Restructuring the Face Recognition
	5.1.3 Additional Feature Integrations
	5.1.4 Depth Information for Gesture Control

	5.2 Hand Gesture Dataset and Automated Capturing
	5.3 Optimization of YOLOv7
	5.3.1 Optimization of Object Detection
	5.3.2 Optimization of the Gesture Detection

	5.4 FPGA usage for Object and Gesture Detection
	5.5 Creation of a Virtual Mirror Image from 3D Point Clouds
	5.6 Hardware Evaluation
	5.7 Local Voice Assistant
	5.8 Secure Smart Microphone with Hotword Recognition
	5.9 Evaluation of the Key Performance Indicators

	6 Conclusion
	7 References
	8 List of Figures

