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Executive Summary 
This deliverable describes the use case developments and optimisations and the transition 
from traditional algorithms towards machine learning. It covers the work from M7 to M39 of 
the project and is based on the previous deliverables D2.3 [1], D7.2 [2] and D7.3 [3]. 

In the beginning of the project, for all four use cases, unified and formalised specifications 
were defined, covered in D2.3. Based on this, the four use cases started to develop a basic 
working prototype (in case of the home assistant use case, it was already available from a 
previous project) which acted as a platform to define the baselines for the selected metrics 
and KPIs, which is mainly covered in D7.2 and D7.3. Also, these prototypes provided a 
platform to gather lots of different measurements for ML learing training data. After this 
phase was finished roughly at the mid of the project, the neural networks were defined, 
trained and optimised in iterative loops. With these trained neural networks, the 
benchmarking and evaluation phase at the end of the project started. Various environments 
and situations were measured and compared to the baseline benchmarks from the 
beginning of the project. Also, for all use cases, visually attractive demonstrators were 
developed for fairs, conferences and the reviews. 

The major outcome for the IIoT use case of Motor Condition Classification is the setup of a 
testbench, the capturing and labelling of training data and the design and development of 
a neural network and the development, manufacturing and integration of a use case 
optimised cognitive hardware platform where the neural network runs on. Also, an AR 
visualisation based on a tablet was developed and Christmann’s Secure IoT Gateway 
integrated for high network security. Furthermore, a draft for the integration of the SIRE 
protocol and external MQTT for system security was developed. Overall, the targeted KPIs 
of e.g. a maximum power consumption of 6.6 mW was met, the system only needs 5.8 mW 
under certain conditions. Also, the total energy consumption of 30 Wh per year is reached 
and the NN model accuracy can reach 88.6% after training and 82.3% after quantization on 
the test dataset. 

The IIoT use case for Arc Detection re-activated, improved several times during the project 
and secured an existing testbench for arc generation and measurements to generate 
training data for the NN development. With this training data, a NN was designed, trained, 
optimized and ported to run on different hardware architectures: CPU, embedded GPU AI 
accelerators and FPGAs. The NN optimization with the VEDLIoT toolchain resulted in over 
80% reduction on inference time compared to 10 ms for one inference during the initial 
implementation. The real running arc testbench was also re-designed to make it portable for 
demonstrations on fairs, conferences etc. The achieved NN accuracy of up to 100% is a great 
success and an excellent base for future product developments.  

The Automotive AI use case implemented the Pedestrian Automatic Emergency Breaking 
(AEB) as goal to be realized with the help of a NN. Therefore, vast amounts lots of training 
data was captured, labelled and a NN was designed and trained. It took several iterations 
and optimizations until the NN reached the desired quality for local processing, and it was 
optimized for embedded GPU compute units and ported to the also developed u.RECS. 
Further research fields of distributing the NN processing via different wireless networks 
(WiFi or 5G mmWave) in various ways to near edge and far edge computing units resulted in 
the knowledge that for a time-critical use case like the AEB, distribution is not well-suited 
due to the latency, but technically possible.  The latency during the experiments overshot 
the KPI by four to five times. As most of this latency can be referred to the data transfer and 
not the NN operations, there is room for improvement. Regarding the accuracy of the results 
from the NN it was shown that it was able to detect the dummy representing a predestrian 
that was used and didn't mistake another test object, a trash can, for a dummy.  
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The Smart Home use case improved the pre-existing smart mirror demonstrator in the 
course of the VEDLIoT project massively, building several attractive prototypes for lots of 
fairs and conferences where it was shown with great success. Lots of developments have 
been accomplished like the change of the internal framework to ROS2, restructuring of the 
Face Recognition NNs were merged and optimised, porting and optimising towards 
heterogeneous hardware like different Nvidia embedded ARM/GPUs, dedicated AI 
accelerators like the Hailo.8 and FPGAs, the creation of a virtual mirror image from 3D point 
clouds and the development and integration of on offline voice assistant were added. Many 
of these developments led to improved user experience and functionality, but also 
enhanced the energy efficiency. The latest measurements, taken on an Nvidia AGX Orin and 
Hailo8 AI acceleratod resulted in 1.266 Watt / FPS, having 9.375 Watt / FPS as baseline which 
is a 7.4x improvement and further improvements towards 0.933 Watt / FPS are expected if 
the hardware was further optimised.  
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1 Introduction 
This deliverable describes the developments and optimisations as well as the optimisation, 
benchmarking and evaluation of the four project use cases. They are classified in three 
sections: 

UC1A Smart Industrial IoT:  Motor Condition Classification use case 
UC1B Smart Industrial IoT:  Arc Detection use case 
UC2 Automotive AI use case  
UC3 Smart Home use case 

All four use cases have been formally described and defined in the confidential Deliverable 
2.3 [1]. For reasons of readability, however, all use cases are presented briefly so that this 
deliverable is self-contained.  All use cases have been developed and optimised, from using 
traditional algorithmic methods to machine learning and energy-efficient hardware, using 
the VEDLIoT tool flow and methods as shown in Figure 1. These developments and 
optimisations are described in this deliverable. They are partially based on previous work, 
but some use cases have been developed from scratch.  

It is important to mention that this deliverable is the third of three consecutive deliverables, 
so it is partially based on D7.2 [2] and D7.3 [3], but describes the final state of developments 
and optimisations and gives an overview of the impoved metrics and KPIs. 

 

 

Figure 1: Global picture of the VEDLIoT project, the use cases are outlined in red 
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2 Smart Industrial IoT: Motor Condition Classification Use 
Case 

This chapter describes the development and result of the industrial use case motor 
condition monitoring. This use case aims to demonstrate the utilisation of deep learning in 
industrial scenario by using ultra-low power cognitive Internet of Things (IoT) devices. The 
application area is the condition monitoring of middle size motors, especially the monitoring 
of the status of cooling systems. The chapter introduces the background of the use case, the 
development procedure, and the evaluation of the system. 

2.1 Introduction 
Condition monitoring is an important topic in an industrial environment. The Equipment is 
required to run 24 /7 and the condition monitoring system should be constantly available. 
The demand for system performance enhances the request for condition monitoring and 
predictive maintenance during runtime. The Current solution is based on IoT systems where 
end devices, which are typicaly based on microcontrollers, are mounted on equipment to 
monitor different features of those devices. Figure 2 shows an example of a battery 
powered smart field device (SFD) in real industrial application. The SFD is expected to last 
at least two years on battery power and should be easy to mount, maintain and replace. 
However, network congestion and limited bandwidth in large-scale IoT systems pose a 
significant hurdle. To address this, on-site data processing within SFDs using deep learning 
is explored to reduce the volume of data transmitted via radio, necessitating the integration 
of DL algorithms into resource constrained SFDs while maintaining hardware power 
efficiency.  

  

Figure 2: Smart Field Device for Industrial IoT [source: Siemens] 

The distributed computing- and DL-power provides improved adaptability and thus also 
improved flexibility for the whole system. The useful usage of SFDs for motor condition 
classification depends highly on the power class of equipped motors. For large drives, the 
implementation of special monitoring systems is more efficient than SFD. For small drives, 
even the costs of an SFD are too high compared to the costs of the motor. So, the expected 
range of target drives is within an axis height of 150 to 400 mm or a power range of 5kW to 
500 kW. This is also the state-of-the-art solution in industrial operational environment [4]. 

However, the cost-effective adoption of ML-based monitoring systems utilizing Surface-
mounted SFDs faces several key challenges, primarily in the realms of data generation, 
validation, and labeling, as well as energy efficiency. The diversity of states for training poses 
a substantial challenge. Recording training data for cooling condition classification demands 
comprehensive coverage of error types, such as loose or broken fan blades and obstructed 
air inlets. Similarly, for mechanical condition classification, accounting for error types like 
loose machine basements, broken bolts, misalignment, housing damage, and bearing issues 
is crucial, among others. Energy efficiency emerges as a critical concern, especially for 
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battery powered SFDs with a lifespan of around two years. Integrating additional DL 
capabilities amplifies the energy efficiency challenge. Extending battery life necessitates 
implementing a low-power operational state (sleep-mode) as the primary mode, 
supplemented by brief, infrequent algorithmic slots managed by a sophisticated power 
manager. This combination is essential to achieve prolonged battery life while ensuring 
optimal functionality. 

2.2 Overview of Developments and Optimisations 
This section provides a brief review of the use case background and the development 
progress compared to the previous deliverables the D7.2 first report on use cases [5]  and 
the D7.3 second report on use cases [6]. 

 

Figure 3: Development process presented in deliverables 

The first stage of the development is described in D7.2 where a test-bench as field 
simulation was developed. This test-bench was built based on a small size motor of 750W, 
powered by a single-phase inverter, and the setup of the medium size motor of over 55 kW, 
which is the target system in real use scenario, is delayed due to delivery of missing 
components. At this stage, an initial concept for utilizing DL and IoT on the use case was also 
depicted in D7.2. 

The result in between from the second stage is presented in D7.3. At this point, the hardware 
was selected based on the benchmarking on various AI accelerators. MAX78000 was chosen 
for the cognitive IoT device and experiment was conducted for the operation of MAX78000. 
At the meantime, data collection procedure started on the test-bench. The setup of the 
middle size motor is still delayed. 

This deliverable presents results from this use case and the major development and 
improvement since D7.3. During the final stage, a model is trained based on the given data 
and the IoT hardware is designed, manufactured and assembled. Both components are 
implemented on the test-bench. Besides, an IoT system around the testbench has evolved 
with the help of other project partners for the improvement in aspects of security and 
integrity. Along the development process, results in between are evaluated and further 
challenges are addressed. In order to address these challenges, problem analysis techniques 
are deployed with the help from project partner University Gothenburg for better design of 
AI-based solutions. 

 

  

D7.2 First Report
•Testbench setup
•Conceptual system design

D7.3 Second Report
•Prepartion on MAX78000 
evluation board

•Data collection

D7.5 Final Report
•Hardware design
•Model deployment
•IoT backend
•IoT network
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2.3 System Design 
The basic requirement for this use case is to monitor three independent conditions with DL 
models, as already introduced in D2.3 [7]:  

• Operational state (ON / OFF) 
• Cooling system state 
• Mechanical state 

Due to the complexity of the problem, the development of the demo focuses on the 
classification of the state of the motor cooling system. The solution for this can be simple if 
a large and expensive sensor system with multiple temperature sensors or air flow sensors 
is deployed. But such a large and expensive complex system is not feasible fro mid-sized 
motors due to economic reasons. An attachable one-piece sensor device without external 
temperature, airflow or pressure sensors is a more realistic option.  

 

Figure 4: Motor monitoring system overview 

The demonstration system is depicted in Figure 4. The on-site side of the figure is the 
testbench we built for the simulation of the operational environment. This part consists of 
an SFD for sensing and data processing, a power management device to control the motor 
operational status, and a raspberry pi as a local server that exchanges information between 
the on-site devices and the remote users through the secure IoT gateway. The remote user 
side is designed as applications on tablets to control the motor, to fetch data from the 
system, and to visualize the data in real time. 
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Figure 5: Data flow in the motor monitoring system 

The communication between these two parts in the system is shown in Figure 5. Bilateral 
communication is demonstrated there. The sensor data is sent from the SFD to the tablet. 
The control signal are sent from the tablet and are forwarded to the power management 
system to control the operation of the motor. The SFD records sensor data from the 
environment and processes it with embedded deep learning model. All the data are 
forwarded to the raspberry pi 3B+ via a UART interface. The raspberry pi further publishes 
the data to a MQTT server. On the other side, users that subscribe to the motor data can 
access the information by using the MQTT protocol. In this way, the data is forwarded to the 
user side and further visualised. On the other hand, the raspberry pi also runs an HTTP 
server, which port listens to the control signal sent from the connected user. Users can 
control the speed of the motor by designed interface. 

2.4 Deep learning on smart field device 
This section presents the development of the essential components of the use case 
demonstrator -- the deep learning model and the hardware design. The description of the 
test bench setup and the data collection as preparation is presented separately in D7.2 [5] 
and D7.3 [6]. In this deliverable, the efforts for the design of the algorithm around the deep 
learning model and the related results are presented. In the end, the hardware design and 
the model implementation is summarized. Details about hardware design and its workflow 
were described in detail in D4.7 [8]. 
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2.4.1 AI-powered Smart Field Device on the test bench 

Figure 6:  SFD with dedicated AI-Accelerator as a “mount-on” solution 

The testbench setup is depicted in D7.2 where the motor with a shutter for the simulation 
of environmental effects on the cooling system is included. An SFD without AI power was 
first attached to the motor and has been utilized for data collection. Along the development 
of the use case, the AI powered SFD is designed, manufactured, tested, and further 
evaluated on the test-bench. The new SFD installation is depicted in Figure 6.  

2.4.2 Data collection 
Data collection strategy is described in D7.3, where sensor data under different situations 
are collected. The feature dimensions of the data are rotation per minute (rpm) and shutter 
position. They represent the motor speed and the condition of the cooling system condition 
representatively. A data sample from the small motor testbench with unblocked cooling 
system is depicted in  Figure 7. To demonstrate the operational environment where motors 
are switched on and off alternately, the motor on the testbench is turned on and off 
periodically (every ten minutes, 120 data points for one time interval). The figure denotes 
the motor status with vertical dashed line. At the first phase in the figure, the motor is 
turned on and the temperature decreases because the cooling system is working. When the 
motor is off on the second phase, the temperature increases because the cooling system 
stops to work when the motor is switched off. The residual heat generated by the motor 
during operation can gradually disperse into its surroundings. Compared to the data from 
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operational environment depicted in Figure 13, similar temperature change tendency can 
be observed. 

On the other hand, the rate of temperature change exhibits a direct correlation with the 
motor's rpm as shown in  Figure 7. Elevated motor speeds result in a proportionately 
increased rate of temperature change within the surrounding environment. 

 

 Figure 7: Data example from small motor testbench, cooling system unblocked 

For better understanding of the data and the problem, Figure 8 depicts the collected 
temperature data under different cooling system conditions – blocked air intake and free air 
intake. It is obvious that when the cooling system is blocked, the temperature is likely to stay 
stable and do not change even when the fan is working along the motor operation. 

 

Figure 8: Temperature change when cooling system is blocked and unblocked 

The data collection is conducted based on the matrix shown in Deliverable 7.3. The two 
dimensions mentioned above are covered: rpm and shutter position (air intake). The number 
of data used for model training is approximately 24000 datapoints, which sums up to around 
33 operation hours of operation. 
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2.4.3 Algorithm 
The model used for the cooling system condition classification is trained according to the 
workflow as described in Deliverable 4.7, where the hardware, which is based on the 
microcontroller MAX78000 with integrated DL-acclerator, and thecorresponding workflow 
is described. For the model training and algorithm implementation, the already mentioned 
standard procedure is used: data pre-processing, model training and post-processing. 

2.4.3.1 Pre-processing  
For the model training, only data from temperature sensor are used, because the data from 
the magnetic flux sensor and the vibration sensor are stable. The reason for that is the lack 
of variability of the rotation speed during the operation of the motor. For the data pre-
processing stage, a suitable input size from the time series data points should be selected. 
After hyperparameter tuning, the window size is settled to 128 data points that represent 
the temperature change within 5 minutes. After that, input data frame is quantized and 
normalized as preparation for a quantization-aware training procedure. Figure 9 depicts an 
example of for a normalized and quantized data input. 

To improve the model performance, data augmentation is also implemented to enlarge the 
limited dataset and increase the variety of the datasets. Three techniques for data 
augmentation are implemented: jittering, time wrapping and slicing, as well as averaging 
and interpolation. Jittering adds random noise to existing data points, time wrapping and 
slicing stretch existing time series data by different factors; averaging and interpolation 
combines two time series data with same window size and create average series data. The 
combination of three augmentation techniques shows slight improvement of the 
performance of the model. The accuracy of model has improved slightly – around 1% 
increment with an extra augmented dataset.  

2.4.3.2 Model training 

 

Figure 9: Quantized input data after normalization 

The model training is similar to a conventional ML model training with pytorch library, but it 
needs to be designed with consideration for the way in which processors and instance 
memory device are operating to ensure the optimal memory and processor usage. Details 
for the training workflow are described in Deliverable 4.7. 
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The model implemented for the cooling system condition classification is a 1D convolutional 
neural network (CNN) with three convolutional layers and one dense layer. Two layers are 
fused with max pool layer and all three convolutional layers come with ReLU as activation 
functions. Details of the model structure are shown in the code snippet in Figure 10. The 
model class is comprised of both model architecture and model parameters. The filter size 
specified here with “128” and “64” in each layer is compatible with the CNN engine processor 
unit for optimal DL acceleration on MAX78000. The number of filters for one-dimensional 
time series in the model reflects the number of channels connected to specific processors, 
which should also be divisible by 4 to facilitate easier activation for 4 processors at a time, 
as each of the 4 processor is connected to a specific instance memory. In case the number of 
the inputs channels or filters exceeds the limit of the 64 activated processors, a multi-pass 
technique is employed. For technical details regarding processor allocation and multi-pass 
refer to [9]. The architecture is then followed by flatten layers that connect the 
convolutional part to softmax for classification. To optimize processor usage. The number 
of flatten layer’s nodes is also designed to be divisible by 4, depending on the channel 
number of the last convolutional layer and the length of of the time series, which may vary 
after each layer depending on the number of paddings strides. Additional layers, such as 
dropout, can be incorporated for regularization. 

class AI85motorNet2_on_off_off_on(nn.Module): 
    def __init__( 
            self, 
            num_classes=3, 
            num_channels=1, 
            dimensions=(128, 1),  # pylint: disable=unused-argument 
            bias=False, 
            **kwargs 
    ): 
        super().__init__() 
        self.drop = nn.Dropout(p=0.2) 
        # Time: 128 Feature : 13 
        self.current_conv1 = ai8x.FusedConv1dReLU(num_channels, 64, 3, stride=1, padding=0, bias=bias, **kwargs) 
        # T: 126 F: 64 
        self.motor_conv1 = ai8x.FusedMaxPoolConv1dReLU(64, 32, 2, stride=1, padding=1, bias=bias, **kwargs) 
        # pool-stride is 2 and pool-padding is 0 
        # T : 64  F: 16 
        self.current_conv2 = ai8x.FusedConv1dReLU(32, 16, 3, stride=1, padding=0, 
                                                bias=bias, **kwargs) 
        # T: 62 F: 16 
        self.motor_conv2 = ai8x.FusedMaxPoolConv1dReLU(16, 16, 2, stride=1, padding=1, 
                                                     bias=bias, **kwargs) 
        # pool-stride is 2 and pool-padding is 0 
        # T : 32  F: 16 
        self.fc = ai8x.Linear(512, num_classes, bias=bias, wide=True, **kwargs) 
 
    def forward(self, x):  # pylint: disable=arguments-differ 
        """Forward prop""" 
        # Run CNN 
        x = self.current_conv1(x) 
        x = self.drop(x) 
        x = self.motor_conv1(x) 
        x = self.current_conv2(x) 
        x = self.drop(x) 
        x = self.motor_conv2(x) 
        x = x.view(x.size(0), -1) 
        x = self.fc(x) 
        return x 

Figure 10: Code for CNN model structure 
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The CNN accelerator of the MAX78000 employs signed integers for weights storage and 
calculation. However, in the training phase, floating-point values are commonly applied to 
both data and weights, constrained within a specific range. Quantization is then required to 
save the memory and to reduce the energy consumption of the  calculation. This reduction 
in memory size is accompanied by a compromise in model accuracy. To evaluate the impact 
of weight quantization on model precision, an assessment of  the quantized model and the 
original model in terms of   accuracy and performance metrics was made. 

The evaluation was carried out using identical hyperparameters and augmentation values 
that were used during training the normal weights. These values were then applied to train 
the quantized weights. Finally, the evaluation was performed on the same test set to assess 
the performance of the model with the new quantized weights. When it comes to 
quantization, all metric values experience a decline. This occurs because the values are no 
longer free to take any arbitrary value. Instead, they need to be quantized within a specific 
range determined by the weights. While this drop in performance cannot be avoided, it 
serves the purpose of reducing memory requirements. By quantizing the weights, the 
memory usage can be reduced by a factor of four. However, this reduction in memory comes 
at the cost of a decrease in accuracy, typically around 6%. 

Table 1: Evaluation on quantization 

Data Type of 
Model 

Weights 

Model 
Precision 

Model 
Recall 

Model  
F1-score 

Model 
Accuracy 

Negative 
Accuracy 

Float32 0.9138 0.9268 0.9203 88.64% 75.86% 

Int8 0.8835 0.8718 0.8766 82.78% 72.19% 

 
2.4.3.3 Post-processing 
Post-processing constitutes a pivotal phase of the algorithm, contributing significantly to 
system enhancement and reliability. The strategy voting system implemented in this use 
case involves executing model inferences repeatedly and collating the outcomes. Increasing 
the number of inferences provides the model with more opportunities to detect mistakes, 
ultimately improving the accuracy of the classification. In the case of the motor monitoring 
system, which is not a time-constrained problem, a time delay caused by multiple inferences 
is not considered critical. 

During the experiment, four system designs are evaluated: one inference time system, a 
triple voting system, a 5-time voting system, and a 7-time voting system. The final result is 
based on the classification results of all inferences through an additional voting process. For 
instance, if majority inferences indicate a blocked state and one inference indicates an 
unblocked state, the final decision will be a blocked state. Figure 11 depicts the inference 
trend for three inference times system designs. In the case of a triple voting system, the 
system maintains the storage of 75 data points. With each new data point, the oldest point 
is replaced by the newest one. This process continues until there is a switch in the 
operational state from on to off. At that point, the system collects the remaining 53 data 
points, concatenate them with the 75 data points, and performs the CNN model inference. 
Following this, it acquires 11 new data points, replaces the oldest 11 points, and conducts 
the second inference where the operational state change is in the middle point at data point 
64. This process is repeated for the third inference where the change of the operational 
state  occurs at data point 53. 
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For the 5-time voting system, the same procedure is followed, but the model starts by saving 
85 data points instead of 75. The inference in five votes, with the change of the operational 
state positioned in the middle of the data points or shifted by 11 and 22 data points to the 
left and right. Similarly, For the 7-time voting system, the same procedure is followed, but 
the model starts by saving 96 data points instead of 75. The inference in five votes, with the 
change of the operational state positioned in the middle of the data points or shifted by 11, 
22, and 33 data points to the left and right. 

 

 

Figure 11: Triple inference voting system 

 

 

Figure 12: (a) One-time inference system, (b) Triple voting system, (c) 5-times voting system, and (d) 7-time voting 
system 
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The evaluation of these different sequences is conducted by the assessment of accuracy 
across the various cases described above. The results shown in Figure 12 indicate that the 
inference accuracy on one same test dataset improves as the voting system incorporates 
more votes. The accuracy of the algorithm with the voting systems for 7-time, 5-time, 3-time, 
and single inference are 93.75%, 91.04%, 87.91%, and 79.85% respectively. This trend is 
expected, as the higher the number of votes, the more room there is for mistakes to occur. 
Worth to mention is that the accuracy presented in Table 1 is based on shuffled dataset, 
however the voting system requires unshuffled dataset for the evaluation, thus leads to 
different model accuracy. 

It is notable in Figure 12 that the improvement is skewed towards the unblocked class, as its 
accuracy is 84% is higher than that of the blocked class (accuracy 75%). This discrepancy in 
accuracy originates from the  higher probability of the better class being selected when two 
or three votes are considered in the system. Therefore, the improvement for the blocked 
class is more pronounced compared to the unblocked class. 

With an inference time of 202 𝜇𝜇s, the CNN model in our case demonstrates suitability for 
time-constrained prediction problems. This indicates that the accelerator can deliver 
efficient and timely predictions within the required time constraints for other applications. 

2.4.4 Limitation 
The hardware implementation has confirmed the practicality of integrating AI methods into 
SFDs. It also demonstrates the viability of the workflow in creating AI-driven solutions within 
Cyber-Physical-System (CPS). Nonetheless, in pursuing further advancements and potential 
product development, it's crucial to address existing limitations of the above described 
result. 

2.4.4.1 Limitations of testbench setup and data collection 
With resoect to the testbench setup, which was used for data collection and demonstration 
can hardly simulate or even represent the real scenario. First of all, the motor type due to 
its small size  cannot simulate the temperature characteristic of target medium size motors, 
whose temperature change characteristic is depicted in Figure 13. Besides, the rotation 
speed of the motor in the testbench setup has low variation. This leads to highly constrained 
datasets with limited hidden features and information. 

The inverter of the testbench for the medium size motors was damaged during tests for 
another project in the first phase of the VEDLIoT Project. The replacement components had 
a long lead time and were delivered late in Q3 2023. At this time the data needed for the DL 
based evaluation within the project was already recorded and prepared.  

Furthermore, a strategic reorganization within the SIEMENS AG impeded access to other 
similar sized testbeds and to their datasets.  
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Figure 13: Example of temperature data for the middle size motor, from D7.2 

Furthermore, time for data collection is a bottleneck for the development of industrial AI 
based  use cases, because compared to e.g. image processing there are no large pre-
processed data sets for typical industrial applications available.  

As described before, the model is trained with a data set that represents  33 hours of 
experimental recording time. This does not include time between every experiment, and this 
is necessary to have motor cool down to room temperature. For each factor combination 
e.g. rpm of 1400 when air intake is blocked, data collection of 1440 data points (2 hours) is 
minimal for one scenario. This also requires turning motor on and off every 10 minutes. 

2.4.4.2 Limitation on model 
The size and quality of the dataset affects the performance of the trained model. For this 
binary classification used for the cooling condition monitoring, a thorough evaluation on the 
model is conducted, and its performance on different data classes are compared. 

 

Figure 14: Histogram of model inference result on the test dataset 

The histogram shown in Figure 14 provides insights into the condition results. The score 
represents the probability for unblocked condition. In the case of the unblocked condition, 
there are three dominant scores: 0.9930, 0.6633, and 0.8133. The highest score of 0.9930 
and 0.8133 is associated with the 1400-rpm and 900-rpm conditions respectively, while the 



D7.5  Version 3.0 
 

19 
 

score of 0.6633 is more commonly observed for the 500-rpm condition and rarely for the 
other two conditions. 

For blocked conditions, the same three dominant scores are present: 0.007, 0.3367, and 
0.1867. The most dominant score is 0.3367, which corresponds to a score of 0.6633 for the 
blocked case. This suggests that the model struggles to differentiate between the blocked 
case and the unblocked case at 500 rpm. Misclassification between the 500-rpm low speed 
and blocked cases occurs due to the relatively small temperature changes observed for both 
conditions.  

This pattern strongly correlates with the constraints of the testbench, particularly in 
scenarios where temperature variations remain indiscernible at low rotation speeds, 
especially in smaller motors. This circumstance can be improved by applying a load to the 
motor, albeit this adjustment may amplify power consumption, consequently resulting in 
more pronounced temperature alterations. 

2.4.4.3 Limitation on hardware 
The MAX78000 hardware imposes constraints on the network configurations, affecting 
parameters and capacity [9]: 

- One-dimensional convolutional layers are limited to kernel lengths of 1 to 9, with 
specific padding options and stride values. Dilation is constrained based on kernel 
length and limited to 1 for longer kernels. 

- Input and output channel capacities are capped at 1024, with bias support restricted 
to 512 output channels. 

- Layer count is limited to 32, excluding pooling and element-wise operations 
preceding a convolution, while data dimensions are restricted to 1023 rows or 
columns. 

- Weight memory capacity varies based on kernel size and bit usage, diminishing with 
increased channel counts. 

- Data normalization involves mapping values to 256 specific levels rather than scaling 
between 0 and 1. This method is critical for optimal hardware CNN engine operation. 

- Deviations beyond a 1/256 value range post-augmentation and normalization might 
not significantly alter data, potentially leading to overfitting risks. Careful 
adjustment of hyperparameters is crucial to avoid this and to achieve the desired 
effects. 

2.4.4.4 Limitation on power consumption 
Another challenge for the deployment of the DL model in real application scenario is the 
power consumption. The model is trained with data collected every 5 seconds. However, in 
an operation environment, the SFDs is designed to collect data for certain time interval 
every five to ten minutes. The SFD in an industrial environment usually in sleep mode most 
of the time to save energy.  Otherwise the battery will be empty after several weeks and not 
after several years. In this case, it is difficult to implement a model that requires data for a 
duration of 5 minutes or more. 

2.4.5 Problem Analysis 
For this use case only the result from the second stage is presented, because the validation 
of the causality graph on it is intractable.. Besides, conditions simulation based on the 
causality graph also requires more discussion on feasibility and safety issues due to the 
complexity of the problem. Furthermore, massive data collection is also time-consuming due 
to the nature of the problem.  
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Based on the given requirements for the motor condition monitoring use case and the 
limitations of the testbench of the use case, workshops for a thorough problem analysis 
were conducted with a novel approach for an optimized  design of an AI-based software 
solution. 

 

Figure 15: Causal model for motor monitoring 

This approach is proposed and largely supported by the University Gothenburg. Engineers 
with experience in related field are involved for the discussion and derivation of the causal 
graph shown in Figure 15. The graph starts with the classification object “cooling” and the 
classification result “Classification”. Factors that are involved in the causality derivation 
between them are deduced. The white circles indicate observable parameters and grey 
circles indicate unobservable factors. Table 2 lists all the variables in the causal graph. Based 
on the analysis, requirements for further developments can be derived in aspect of data 
collection and model training: 

- Sensed temperature should be conditioned on environmental temperature. 
- The final classification of the status of cooling system should take temperature 

criteria and vibration criteria into consideration. 
- All input measurements in dataset should be augmented by characteristic sensor 

noises. 

The input layer must take data from the measurement of the temperature, the magnetic 
flux, and the vibration. 

Table 2: Variables for motor condition monitoring causal graph 

Variable Definition 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Fan system status 

𝑄𝑄 Airflow 

Mech. Fault Mechanical fault of motor 

𝑃𝑃𝑀𝑀 Mechanical power 

𝑅𝑅1 Electrical (inner) losses 

𝑇𝑇𝐸𝐸  Environmental temperature 

𝑈𝑈𝐻𝐻 𝑈𝑈𝑇𝑇 𝑈𝑈𝑉𝑉  Unmeasured noises 
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𝑇𝑇 (𝑇𝑇𝑠𝑠) Surface temperature (measured) 

𝐻𝐻 (𝐻𝐻𝑠𝑠) Magnetic Flux (measured) 

𝑉𝑉 (𝑉𝑉𝑠𝑠) Vibration (measured) 

 

This causality modeling completes the development procedure and improves problem 
understanding for all stackholders. This approach is especially beneficial for the design of 
AI-based solution for Cyber Physical Systems (CPSs). It does not only provide a systematical 
framework for system analysis and derivation of data and model specification, but also a 
proper standard for the documentation of the generation of datasets.  

2.5 Implementation on IoT system 
Other than the integration of deep learning in the IoT end device, the development of IoT 
infrastructure is also an important part in the development of this use case. The 
infrastructure consists of a secure IoT network provided by Christmann, raspberry Pi 
backend service setup and an AR applications for an improved human machine interface 
(HMI). 

2.5.1 Secure IoT Network 
The infrastructure for the secure data transmission is provided by the project partner 
Christmann. The system consists of two access points in different locations, one for user and 
the other one for the on-site system as depicted in Figure 4. A central monitoring interface 
is provided as shown in Figure 16. The interface can be used to monitor the status of the 
access points and connected devices, and to configure the communication protocols. 

 

Figure 16: Central monitoring interface for the Secure IoT Gateway 
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2.5.2 Raspberry Pi Backend Server 

 

Figure 17: Raspberry Pi as backend server with multi functions integrated 

The raspberry pi serves as the central backend server and is the core of the IoT 
infrastructure. The services installed on the raspberry pi are shown in Figure 17. The sensor 
sends data to the raspberry pi through a UART interface. A customized data receiver script 
collects the data and forwards the data to a MQTT broker. Currently, the MQTT broker is 
deployed on the raspberry pi. In the backend, a device mapping server is also present and 
subscribes to all messages from the sensor. This function is for the AR interface, which 
requires a coaty [10] protocol for the data transmission. The Device Mapping creates a 
virtual sensor node in the server and converts all the sensor data to the coaty standard. The 
message is then published to the MQTT server and subscribed by the AR application on the 
tablet, a copy of the data is also stored in the database, here the mongodb [11] is deployed. 

Besides, the user can control the motor remotely with a HTTP requests. A web server is 
running on the raspberry pi server and the requests are converted to a signal to the power 
management unite of the demonstrator. Thus e.g. the speed of the motor can be changed. 

Also, the integration of the SIRE protocol for device authentication in cooperation with 
University Lisboa is also in progress. The SIRE attestes of the connected end devices and 
make the authenticity of them available for the user. And the MQTT broker is also about to 
be replaced by an external MQTT server from the University Neuchatel to enhance  the data 
security of the motor condition monitoring system. 

2.5.3 Human interface 
AR applications for Android and iOS systems are developed as an easy to use HMI. As the 
operation systems are different, applications are developed with different libraries and 
approaches. Since the development of such applications require large time investment and 
aesthetic design is not the focus, the applications demonstrate the data flow to the user end 
and work as prototype for data visualization.  
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The iOS application is designed with the coaty library. The application could subscribe to the 
MQTT topic channel. The data is transmitted and received in JSON Format. An example of 
interface is shown in Figure 18. In this figure, temperature is displayed as a bar chart and 
motor startus is shown as an emoji. 

  

Figure 18: iOS AR interface under development 

2.6 Conclusion 
The motor condition monitoring use case demonstrates the possibility of integrating a deep 
learning model in on-site SFDs. The following achievements have been made during the 
development process: 

- The cognitive hardware was designed, soldered, tested, and iterated to a second 
version. 

- The first model was trained with a dataset and further quantized. 
- The first monitoring algorithm was developed and deployed on the hardware. 
- The cognitive IoT hardware was tested on the test bench. 
- Problem analysis was undertaken as the first step for the second development 

iteration in cooperation with the University of Gothenburg. 
- The first IoT system with a backend (Raspberry Pi 3B+) and a frontend (AR on a tablet) 

was designed and prototyped. 
- The Secure IoT Gateway was integrated in cooperation with Christmann. 
- An initial system evaluation was conducted. 
- The first draft for the integration of the SIRE protocol and an external MQTT server 

for system security was developed in cooperation with the University of Neuchâtel 
and the University of Lisbon. 

For benmarking, since signal processing was not implemented on SFDs, the goal set in 
Delivearble 7.2 is used to evaluate the final result. The achieved improvements regarding 
the KPIs are listed below: 

- Memory: 128kB SRAM and 512kB flash integrated in the controller meets the set 
requirement. Besides, 1Mb external SRAM and 128 Mb external flash memory are 
also integrated in the PCB, which exceeds the set goal and provides flexibility in 
furture application.  
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- Cost: The MAX78000 as the micro-controller costs 15€ per piece. The price can reach 
13€ when order with big amount. The cost of the system is around 60€ for all the 
main components. Therefore, the set price requirement 14 € [controller] / 70 € 
[System] is met. 

- Power: the KPI was set to 6.6mW. With the system settled on MAX78000, the power 
consumption of the controller is 5.8mW under certain conditions. 

- Energy: the system can reach set goal on power consumption of 30 Wh per year given 
duty cycle of two inference per hour and 7 minutes of data measurement per 
inference. (Refer to the energy estimation in Deliverable 7.3)   

- Accuracy: The model accuracy can reach 88.6% after training and 82.3% after 
quantization on the test dataset as mentioned in Table 1. The accuracy depends 
highly on the quality of data. Various limitations are listed in section 2.4.4.  

The power consumption of the controller can vary based on multiple factors. It can be 
optimized by changing the operation mode of the controller and the peripheral devices, it 
can also change based on the clock frequency set for the processor and the scheduling for 
the model inference. Thus, the power consumption given here is a realistic calculation result 
based on the system design. A detailed discussion on the factors for energy calculation can 
be found in Deliverable 4.7.  
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3 Smart Industrial IoT:  Arc Detection Use Case 
This chapter is a detailed report on the solution for integrating deep learning into the 
industrial IoT use case – direct current (DC) series arc fault detection. This solution is 
developed along the course of the VEDLIoT project and has received support from many 
project partners. The research on this use case focuses not only on the technical 
implementation, but also on improvements in the development procedure for the general  
implementation of deep learning methods on far edge devices in industrial IoT systems. 

3.1 Introduction 
This section emphasizes the motivation behind the use case, reviews the work on this use 
case along the build-up of our deliverables. It also provides a detailed description on our 
contributions and cooperation during the development process of the use case. 

3.1.1 Motivation  
In recent years, DC distribution systems have gained prominence over AC (alternating 
current) distribution systems due to the improved efficiency and the cost-effective 
integration of energy storage devices [12]. This transition holds significance in renewable 
energy production, the ICT-Industry (Information and Communication Technology), and the 
electro-mobility market, marking a shift toward DC grids for energy production, 
consumption, and distribution [13]. 

Arc fault detection in DC distribution systems poses significant challenges compared to AC 
systems. While abnormal behaviors in AC systems, such as the recognizable "flat shoulder" 
at zero-crossing, facilitate easier detection, the complexity arises in detecting series arc 
faults in DC systems [12]. Unlike parallel arc faults (short circuits) or ground arc faults that 
trigger circuit protection due to a high current flow, series arc faults can be easily overlooked 
as their current fluctuations might blend with system noise. 

Conventional methods for detecting these faults often prove low adaptability in real 
scenarios and requires more work for data analysis ahead. On the other hand, the 
implementation of AI-based methods in arc fault detection presents a promising 
advancement. The integration of AI algorithm posts another challenge: deep learning 
algorithms requires usually high computational power and thus needs longer runtime. 

The VEDLIoT project's methodology offers valuable tools for deploying deep learning 
algorithms in industrial scenarios, meeting high precision, time, and adaptability 
requirements. Our arc fault detection system aims to provide an AI-based (artificial 
intelligence) solution for series arc detection in low voltage direct current (LVDC) systems 
with high accuracy in real-time, addressing the unique challenges within this domain where 
mature solutions or products in the market are currently lacking: to ensure the detection 
accuracy and the critical requirements on the runtime at the same time.  

 



D7.5  Version 3.0 
 

26 
 

3.1.2 Development milestones 

 

Figure 19: Development Milestones for arc fault detection 

Figure 19 shows milestones reached within related deliverables. On the first stage 
Deliverable 7.2, the first model based on historical data was built. The models were fully 
connected neural networks and can reach 97% accuracy on the historical AC dataset and 
95% on historical DC dataset respectively. Besides, for the improvement of the project, a 
testbench is designed and built based on the standard UL1699B [14], the testbench is 
capable for arc generation and current data sampling with our own designed ADC board 
(refer to D7.2). The runtime was not evaluated at this stage because the availability and 
delivery of planed AI accelerator for the use case was delayed. 

On the second stage, whose achievements were summarised in D7.3, the testbench for arc 
generation was put into operation and the first datasets were collected. Besides, the model 
was updated on this stage with the new dataset and the performance can reach 97% on this 
dataset. However, the dataset lacked of variety and thus the testbench was expended with 
extra components to increase the variety of the dataset. At the meantime, the accelerator 
was integrated and the initial evaluation of the system regarding runtime was conducted. 

The final stage presented in this chapter further improves the testbench setup, especially in 
the respect of its safety and integrity. Besides, the goal of a real-time detection of DC arc 
fault was reached. An initial test on the runtime reports an average delay time of 13 ms for 
the detection algorithm, in which 11ms is contributed by the model inference. This is already 
close to the requirements. With further iteration on the project (procedure optimised with 
University Gothenburg) and compression of the deep learning model (in cooperation with 
Embedl [15]). 

 

D7.2 First Report
•Initial modes for AC and DC
•Initial DC testbench setup
•Initial ADC board

D7.3 Second Report
•First dataset from testbench
•Model improved based on the 

dataset
•Testbench imrovement
•Accelerator integration

D7.5 Final Report
•Data variatiy
•Model variaty and robustness
•Runtime optimisation
•Problem investigation
•Testbench safty
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3.1.3 System design 

 

Figure 20: Development and system overview for AI-based DC series arc fault detection 

The development on the use case focuses not only the improvement of hardware and 
software, but also the optimisation of the development procedure. Figure 20 shows the 
development iteration we took and technical implementation. 

- Development iteration 
o Problem analysis: Problem analysis is the step where the problem is 

inspected, and the requirements are reviewed for a more standardized and 
efficient development procedure. It is conducted from aspects of machine 
learning models, data requirements and hazard analysis of the application 
scenario.  

o Dataset buildup: Dataset buildup this is the step where we collect data, 
based on the analysis result.  

o ML model training: the models with different hyperparameters are trained 
and evaluated. 

o Runtime evaluation: The model is converted to onnx and implemented for 
evaluation of its accuracy and runtime. 

- Technical implementation 
o Arc testbench: The arc testbench is a prototype that we built for DC series 

arc generation. It also serves as the scenarios simulation for the test of real 
time detection system. 

o Matlab configuration: The generation of arc fault on the testbench is 
controlled by a Matlab application. The programmable components in the arc 
testbench can be configured to work in different modes. 

o Matlab Semi-automatic labelling: Matlab application that can import, 
visualize and label data according to user’s input. 

o ADC sampling: the ADC board is developed, improved, and implemented for 
high quality data collection. 

o Model Compression: the model is compressed for size reduction and 
furthermore runtime optimisation on the hardware. 

o Real time arc fault detection: the inference of deep learning model  
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3.2 Development Procedure 

 

Figure 21: CRISP-DM model for data science process (Based on [16]) 

A systematic development procedure is important for product development and software 
iteration. It provides a standardized method for communication, documentation, and 
system design. The development of the arc fault detection system follows the standard 
process CRISP-DM (Cross industry standard process for data mining) for data science 
process, as depicted in Figure 21. This is a development step that was underestimated at 
the beginning of the development process of our use case. 

The requirements were vagueand the goal was not discussed thoroughly with respect to 
feasibility. With the help from the University of Gothenburg, we reviewed each step from 
the procedure in our development and improved iteratively, which is similar to the 
procedure describe in the other use case in section 2.4.5. Besides, during the cooperation, 
drawbacks of convention method for software development is spotted and a method as 
extension for the development of AI-based software is proposed. 

- Business understanding: we examined again related studies and products, 
compared them with our project requirements and the development status in 
between. The development direction is aligned, and the iteration is boosted. 

- Data understanding: we conducted data analysis before feeding into model 
training. The problem itself is better understood and improvement on the detection 
algorithm is proposed for better results. 

- Data preparation: a massive data collection is conducted with various configurations 
of the arc generation circuit. 

- Modelling: the results from the step data understanding are implemented in the 
algorithm design and the model training procedure. The trained model is further 
validated on new data and optimized with pruning techniques. 

- Evaluation: the algorithm is first evaluated on a test dataset, and then tested on the 
detection system prototype on Nvidia Jetson Xavier NX [17] for real time arc fault 
detection. Furthermore, the algorithm is also implemented on the FPGA board 
Ultra96-V2 and evaluation of its performance is conducted based on the test dataset. 

- Deployment: the final deployment in real scenarios still requires further iterations 
of procedure above. 

3.2.1 Problem analysis 
This step is conducted together with the University of Gothenburg where multiple 
workshops are held under the given framework. The workshop first focuses on the use case 
definition, requirement definition and hazard analysis.  
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An agreement on the definition of use cases regarding various criteria on the product 
performance does not exist as a universal standard.  A suggested performance criteria is the 
response time for DC system of different level is suggested in UL1699B [14]. The most 
critical situation is the limit of 0.8 s response time: a DC system with 900 W power, max 
current of 14 A and an arc distance of 6.4 mm. Since the response time consists of the time 
for data transmission from the sensor to the edge device, the detection time, the actuator 
signal transmission time and the time for actuator reaction. The system is optimised to keep 
the detection time as short as possible, but at least below the set goal in Deliverable 2.1 [7]  
of 10 ms. 

Another prerequisite is that the current signal should serve as sole data source for arc 
classification in the testbench. This is also the most used feature in studies on DC series arc 
fault detection [12] [18]. There are several reasons for this decision First, the installation of 
current sensor is often mandatory for safety and energy efficiency reasons. Compared to 
voltage monitoring, the mounting of current transducers does not require extra circuit 
intervention. In addition, current signal sampling is less susceptible to environmental 
disturbances compared to other sensors such as temperature, optical or acoustic sensors. 
Other than this, the current change on one point can reflect the status of the whole circuit. 

3.2.2 Hazard analysis 
This step aims to determine the evaluation metric for machine learning model. Through 
analysis of the application requirements and the expected system behavior, risks are listed 
in Table 3 and mapped to three categories shown in Figure 22. The detection procedure is 
decomposed to small parts and risks. In every step the harzard is evaluated based on the 
likelihood of the hazards and their severity in results. Green indicates acceptable risks, 
medium risks are marked with yellow, and red refers to high risks. 

 

Figure 22: Matrix for risk evaluation [19] 

 



Table 3: Hazard analysis of arc fault detection use case 

Task Subtask Hazard Current 
severity 

Current 
likelihood 

Current 
risk level 

Recommended 
controls 

Future 
severity 

Future 
likelihood 

Future 
risk 

level 

DC arc fault 
detection 
algorithm 
based on 

current signal 
(Algorithm) 

Data preprocessing 
Abnormal results from preprocessing 

due to unexpected current data as 
input 

4 D Low Improvement on 
normalisation 

   

Detect current with high 
frequency in the circuit 

false positive -- Noise from load such as 
inverter recognized as arc 3 C Medium 

Import different 
kinds of data with 
all situations 
covered 
 
Combine different 
methods – FFT + 
DL, ensemble DL 
 
Consecutive 
inference to 
increase trustability 

3 D Low 

false negative -- Noise from arc not 
recognized because of noise from 

inverters 
2 C High 2 D Medium 

Detect sudden current 
drop in the circuit 

False positive – due to load drop 
caused by load disconnection 3 D Low 4 D Low 

False negative – arc not recognized due 
to not enough current drop 2 D Medium 3 D Low 

Distinguish pattern from 
noise 

False positive 3 D Low 4 D Low 

False negative 2 D Medium 3 D Low 

Model inference within 
time 

Model inference (including data 
transmission) over 10ms, data 

overlapping due to delay on inference 
4 B Medium 

Hardware and 
software 
optimisation 

4 D Low 

Verify correct processing 
(ML inference) 

Cannot detect incorrect inference 
output 

3 E Low     

Data Collection 
on ADC 

Collect precise current 
value 

Data incorrect due to single-bit error, 
out of sync or radiation effects 3 (4) E Low     

Data 
communication 

Send data to accelerator 
through ethernet cable 

Prediction in certain time window 
skipped due to data overlapping or 

missing data 
5 C Low     

Actuator 

Actuators switch off in 
time 

Actuators operate too late – over 2 
seconds 3 D Low     

Actuator not operating – does not 
switch off 

2 E Low     

Control signal 
Signal arrives too late 3 E Low     

Signal fails to control 2 E Low     



The analysis shown in Table 3 aims at the algorithm because it is the focus of the project. 
Therefore, only recommendations for the detection algorithm is listed out. They are 
effective measures that help improve the detection system. 

3.2.3 Causality Model 
Several workshops with the University of Gothenburg  for the analysis of the causality is of 
the DC series arc fault were conducted . 

 

 

Figure 23: Causal model for arc fault detection 

The result of the analysis is shown in Figure 23. From the result of the causality analysis can 
be seen that some key parameters have a major influence on the classification result: 𝐼𝐼 is the 
current in the circuit, 𝐼𝐼𝑠𝑠 is the measured current from the sensor, 𝑈𝑈𝐼𝐼  means the characteristic 
noise; Load represents the system dynamic, F is the frequency component that can partially 
reflect system dynamic, and |𝑆𝑆(𝑓𝑓)| is the frequency domain information that can be 
conducted from the measurement data of the current 𝐼𝐼𝑠𝑠. The requirements and 
specifications derived from the graph are: 

- The current measurement should be augmented with characteristic sensor noise. 
- The testbench setup should be able to include different components for various 

circuit dynamics. 
- The testbench circuit should contain active switching components to generate high 

frequency pattern on the current. 
- The frequency information should be used as additional input feature in ML model. 

3.3 Implementation 
This section provides technical details in implementation of the detection system, including 
the testbench setup, all software components, the results from system improvement and 
software optimisation steps. 
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3.3.1 Testbench 

 

Figure 24: Final testbench setup for arc fault detection 

The whole system depicted in Figure 24 consists of two parts, the arc generation circuit part 
and the detection system part. The arc generation circuit has a DC power supply, an 
electronic load, a passive load, and a pair of electrodes that are connected during normal 
operation. One of the electrodes is controlled by a linear stage and can create an air gap 
between the copper electrodes for arc generation. This is a good simulation for a DC serial 
arc, because those are often caused by a crack in a copper wire. In the detection system, the 
output of current transducer, which reduces the current proportionally is sampled by the 
ADC. The data is then transmitted to an edge device for signal processing with machine 
learning algorithms.  

 Component description:  

• Power supply provides a stable DC voltage up to 100 V. 
• Programmable electronic load can simulate different load behavior by changing its 

impedance. The load can operate in different operational modes.  
• Programmable linear stage allows the adjustment of the air gap between the 

electrodes, where the arc is generated. 
• Passive loads e.g.  resistor and/or conductor. 
• Current transducer transforms the current signal by a fixed ratio.  The representing 

voltage signal can be measured with a shunt resistor. 
• Anti-aliasing low pass filter with a cut-off frequency of 160 kHz. 
• Analogue-Digital-Converter (ADC) converts data at a sampling rate of 16 kS/s (the 

sigma delta ADC ADS131A02 in use has a maximum sampling rate of 128 kS/s and 
maximum resolution of 24bit). 

• AI accelerator is utilised for data processing and execution of machine learning 
algorithms.  
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The testbench has been updated since Deliverable 7.3. We rebuilt the entire setup by placing 
all components in a 19-inch rack and splitting it up into different, self-contained modules. 
The safety of the testbench was improved by grounding every component, securing critical 
components such as the blank electrodes from unintentional touching and moving sensitive 
components such as the ADC-Board into a hard case. Another benefit of the new setup is 
the improved mobility and thus capability to demonstrate the experiment to an audience 
outside the lab.  

3.3.2 Arc generation and data collection 

 

Figure 25: Electrodes for arc generation 

For arc generation, the circuit topology has been updated. More recently we removed the 
parallel 1 Ohm resistors to achieve a higher influence of the variable load on the measured 
data and additionally collected data with the remaining three variable load modes: “CV – 
Constant Voltage”, “CC – Constant Current” and “CP – Constant Power”. The variable load is 
introduced in Deliverable 7.3. A load pattern extracted from a lab application is recorded 
and repeated in the arc generation. Along the development, more experiments and 
different modes of electronic load are implemented. In D7.3 we added an electronic variable 
load to the setup, which we have been using since. We added it in parallel to two 1 Ohm 
Resistors and ran it in CR mode, with a repeating 100-Value sequence ranging from 0.05 to 
30 Ohm, simulating the Load Pattern of one of our lab-power-supplies.  

For further development, the load pattern is simulated under CC mode, where current in the 
circuit is regulated to be on a stable level as shown in Figure 26. 

Electrodes 

Linear stage 

Resistor 
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Figure 26: Arc occurrence from 0.23s on with load pattern simulated under CC mode of electronic load 

3.3.3 Analogue Digital Converter (ADC) for data collection 
The sensor for data collection in the detection is crucial as it determines the data quality, for 
this use case, an embedded system for sensing is developed in aspect of hardware and 
software. The initial version of ADC board is shown in Deliverable 7.2, where the ADC 
component behaves as an add-on function on the micro-controller. The board is then further 
improved and the ADC component is integrated with the microcontroller on one board as 
depicted. The hardware design overview is shown in Figure 27. 

The integration accelerates the data transmission between the micro-controller and the 
ADC, thus allows a more precise data sampling and a higher sampling rate. 
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Figure 27: Circuit design with ADC board integrated with the micro-controller 

3.3.4 Data labelling 
With the testbench for arc generation and the sensor system for data collection, the next 
step is the data labelling. The amount of data is large and manual labelling consumes too 
much time and could lead with a certain probability to mislabeled data. For conveniences, a 
semi-auto labelling application is designed for an fast and accurate labelling of the collected 
data. This application is written in Matlab and its workflow is shown in Figure 28. 
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Figure 28: Semi-Auto labelling application workflow 

1. The user imports data to the application. 
2. The data is filtered with certain conditions. 
3. The datasets are plotted in an interactive window as shown in Figure 29. 
4. The users can select key turning points on the plot those four marked coordinates 

in Figure 29. 
5. The corresponding data sequences are labelled, and the result is shown in Figure 

30. 

The labels have a high level of quality and reliability, as the user can always verify and, if 
necessary, modify the labelling of the dataset. 
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Figure 29: Selected datapoints in labelling software 

 

Figure 30: Datapoints after removing trailing zeros and labeling dataset. Yellow marks “arc”, red marks “transient” 
and the rest are “no arc” 

3.3.5 Model Training 
The Model updated when  new data were available. The initial model at the beginning of the 
project was trained with data that had already been available due to prior research activities. 
This models reached an accuracy of 95% on the test data (refer to Deliverable 7.2). The 
sampling rate of this  dataset is 250kHz and the test data has similar data distribution as the 
training data. The first model a five-layers fully connected neural network (FCNN) was not 
tested in a real time implementation. During the  further development, the model was 
updated with the dataset collected from the testbench. This model in D7.3 inherited the 
structure of previous model, thus had initially a large size and leads to longer runtime. Based 
on the research and the problem analysis, frequency feature extracted from Fast Fourier 
Transform (FFT) is introduced in as an extra input for the model. In this way, the model is 
reduced to a 3-layer network while keeping the model accuracy. In the latest iteration, a CNN 

Experiment start point 

Arc start point 

Arc end point 

Experiment end point  
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is also trained to a high accuracy. The advantage of CNNs compared to FCNNs is the weight 
sharing, which requires less memory and saves inference time. Figure 31 and Figure 32 shows 
the training history of FCNN (or FNN) and 1D-CNN respectively. 

 

Figure 31: Fully connected neural network after tuning – training history 

 

Figure 32: 1-D Convolutional neural network - training history 

Table 4 summarises the evolution process of the deep learning model for arc fault detection. 
The model has been improved in size and runtime along the optimization process. Even 
though the accuracy of the current model is not largely improved compared to the initial 
model, they have better robustness compared to previous model as more data with extra 
circuit dynamics are included.  

Besides, the latest model utilizes a lower sampling rate, thus the algorithm is more friendly 
for data transmission in real application compared to the former models. It is also notable 
that after the large size model is reduced to smaller structure due to FFT, there is still room 
for pruning. This proves that the pruning tool from Embedl can efficiently reduce the size 
even for a relatively small model. Detailed pruning evaluation is presented in section 3.3.7. 
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Table 4: Evolution of deep learning model for arc fault detection 

 Structure Dataset Dataset size1 Inference time Accuracy 

D7.2 FNN 5 layer Historical data 
5500 (AC) 
3200 (DC) 

/ 
97% (AC) 
95% (DC) 

D7.3 
FNN 5 layer 
without FFT 

Simple data 
without circuit 

variation 
32200 (DC) 11 ms2 96%  

D7.5 

FNN 3 layer 
– with FFT 

Mixed3 60000+(DC) 724 us 98% 

FNN 3 layer 
(tuned  and 

pruned) 
Mixed 60000+(DC) 200 us 98% 

CNN2D Mixed 60000+(DC) 209 us 97-98% 

CNN2D-
pruned 

Mixed 60000+(DC) 198 us 97-98% 

 

3.3.6 Hardware acceleration 
The hardware implementation on the Nvidia Jetson Xavier NX [17] was already introduced 
in Deliverable 7.3. The  library used for model inference on the Nvidia board is TensorRT [20]. 
The simplified flow chart of the software implementation is depicted in Figure 33. Two 
options are provided, real time detection and evaluation of the model. The real time 
detection get data from the sensor through an ethernet connection, and reading from csv 
file provides a good tool for runtime and accuracy evaluation. The following process is the 
same as training with data pre-processing, including data normalisation, frequency 
information extraction with FFT. 

Besides, the arc detection algorithm is also implemented on an FPGA board Ultra96-V2 with 
library STANN, in cooperation with the project partnet University of Osnabrück. The runtime 
and power consumption are evaluated on board. Details for the hardware deployment and 
evaluation results can be found in the Deliverable 3.4. 

 

Figure 33: Simplified software flow chart on hardware 

 
1 One data entry represents a time series data with 160 data points, which represents current signal 
sampled within 10ms. 
2 This result is evaluated after the submission of D7.3. 
3 Mixed means dataset contains data from simple circuit setup without any circuit configuration and 
data of arc occurrence with load pattern simulation. 
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3.3.7 Model optimization 
After the optimization of the model structure, we implemented the software package from 
Embedl for further model compression. This section presents our approach for the model 
optimisation and provides the evaluation of the software package. Table 5 and Table 6 show 
the optimisation results for two kinds of models, FNN and CNN2D respectively. And Figure 
34 and Figure 35 show the accuracy to target curve for the pruning of both models. The 
target indicates the proportion of saved model parameters during pruning. The smaller the 
target, the smaller the pruned mode is. Uniform pruning is used here as it shows consistent 
results compared to other pruning methods. Uniform pruning refers to the removal of 
specific branches or nodes from the tree based on their importance ranking.  

Table 5: Improvement of FNN model after pruning 

FNN Nr. Neurons  Nr. Parameters FLOPs4 Size  Accuracy Runtime(us)5 

Original 500 79881 5080320 1 98.37% 231.6 

Pruned 227 
(-54.6%) 

34115 
(-57.3%) 

2163904 
(-57.4%) 

0.43 
(57%) 

98.38% 
(-0.01%) 

200.83 
(-13.3%) 

 

 

Figure 34: Accuracy to target curve on FNN model 

In the context of uniform pruning for both types of modles (FNN and CNN2D), the results 
show a clear trend. The graphs indicates a positive correlation between the targeted 
retention ratio, which represents the proportion of weights and the retained biases 
compared to the original model's parameters, and the accuracy of the pruned model. As 
the retention ratio increases, the accuracy of the pruned model improves. However, once 
the retention ratio reaches around 0.2 for FNN and 0.5 for CNN, the accuracy stabilizes and 
approaches its maximum value. 

Additionally, it is interesting to note that the relationship between the targeted retention 
ratio and accuracy seems to follow a logarithmic function. The accuracy curve gradually 

 
4 Floating Point Operations of the neural network, indicates the computational cost of the model. 
5 Model inference time, excluding pre-processing and memeory access 
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increases, reaches a plateau, and then shows minimal fluctuations around the maximum 
accuracy achieved by the non-pruned model. This logarithmic trend highlights the 
diminishing returns of preserving additional parameters beyond a certain threshold. This 
emphasizing the importance of carefully selecting the retention ratio to strike the right 
balance between model size and performance. 

Table 6: Improvement of CNN2D model after pruning 

CNN2D Nr. Neurons Nr. Parameters FLOPs6 Size Accuracy Runtime(us)7 

Original 128 25418 101140 1 97.35% 209.0 

Pruned 60 
(-53.12%) 

11920 
(-53.10%) 

47420 
(-53.72%) 

0.47 
(53%) 

97.39% 
(+0.04%) 

197.8 
(-5.36) 

 

 

Figure 35: Accuracy to target curve on CNN2D model 

3.3.8 Real-time Detection 
The result for the real-time arc fault detection system is shown in Figure 36. The blue plot at 
the top refers to the current signal during an arc occurrence simulation. The black one in the 
middle is the probability output of the algorithm. And the red plot in the bottom is the final 
label with after-processing. To increase the reliability of the algorithm, after-processing is 
implemented. The idea is to raise warning only when arc is detected after three consecutive 
inference. In this case, the accuracy can reach almost 100%. However, the detection time is 
delayed to three times sampling interval, which is 30ms in our case. 

 
6 Floating Point Operations of the neural network, indicates the computational cost of the model. 
7 Model inference time, excluding pre-processing and memeory access 
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Figure 36: Result visulisation of the real-time DC serues arc fault detection system on the Nvidia board 

3.4 Conclusion 
The arc fault detection use case focuses on the application of DC power grids due to the 
growing relevance of DC power grids and lack of an cost effective DC arc detection device. 
For AC AFDDs, products can be found in the market, and DC AFDD is still a research field and 
has many open questions. The following metrics as described in Deliverable 7.2 are the 
benchmarking: 

- Accuracy: the accuracy can reach 98% in real time evaluation amd for dataset with 
higher variety. With post-processing, the accuracy can reach 100%. This result 
achieves the set goal compared to other studies of DC series arc fault detection. The 
result is not compared to DC AFDDs since there is no such product in the market 
specializes on DC series arc fault detection. 

- Execution time: around 200 us inference time on Nvidia Jetson Xavier NX after 
algorithm and model optimisation (refer to Table 4). Over 80% reduction on 
algorithm execution time (including data transmission in real time) compared to 13 
ms in the initial implementation. This result meets the set requirement of 11 ms 
execution. 

- Model size: optimized to minimal size, see section 3.3.7. Goal is reached while keep 
the accuracy. 

- Costs: over 700 € for Nvidia Jetson Xavier NX, which is overqualified, for 
development purpose. This exceeds the 500 € buget set in D7.2. However, with 
optimised algorithm and compressed model, cheaper hardwares can be considered 
for this application. 

3.4.1 Achievements 
The demonstration of the DC series arc fault detection as a show case for the 
implementation of deep learning on a far edge AI accelerator for IoT systems. Throughout 
the development process, following achievements have been accomplished:  
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- Real-time DC series arc fault detection on an embedded GPU based AI accelerator. 
- Collaboration with the University of Osnabrück to design and evaluate the first FPGA-

based hardware accelerator for the use case. 
- Evaluation of the system performance and the runtime using a Nvidia Jetson Xavier 

NX as the AI accelerator. 
- Developing a systematic causality graph based problem analysis in cooperation with 

the University of Gothenburg. 
- Improvement of the test bench in terms of integrity and safety. 
- Expansion of the testbench to include a wider variety of circuit topologies and 

components. 
- Improvement of the ADC board by integrating the MCU and enhancing the quality of 

the data (such as more accurate sampling rate and faster data transmission speed). 
- Expansion of the dataset to incorporate a greater variety and higher quality of the 

data. 
- Iterative improvement of the detection algorithm, including the optimization of the 

algorithm by introducing FFT in pre-processing, the optimisation of the deep learning 
model structure with hyperparameter tuning, and the compression of the model 
through pruning (in collaboration with Embedl). 

- Reduction of the deep learning model (FNN) size by 96.39% in terms of number of 
parameters compared to the initial implementation of FNN from D7.2.  

- 80% reduction of the total detection algorithm runtime including data transmission, 
and 98% reduction of the inference time on the hardware in total. 

3.4.2 Limitations 
It is also noteworthy that limitations need to be addressed for the further development: 

Regarding the use case itself, various circuit dynamics, including different load profiles, 
voltage levels, and unexpected disturbances, should be taken into consideration to ensure 
a trustworthy AI-powered detection system. This poses a challenge for setting up and 
expanding the testbench for the experimental evaluation. 

In the context of the development of the software algorithm , robustness needs to be 
further enhanced by implementing ensemble machine learning for post-processing. 
However, using the ensemble machine learning algorithm to execute DL models 
simultaneously on the same time series data can increase runtime. To reduce the real 
detection time delay caused by the post-processing implemented, reseach should also be 
conducted to shorten the time window for model input. 

Regarding the hardware acceleration, although the model compression and algorithm 
optimisation have significantly reduced the runtime of the model while maintaining a high 
accuracy, there is still room for improvement in future development. This includes 
integrating more features with computationally intensive functions such as Discrete 
Wavelet Transformation, as well as using the ensemble of machine learning technique 
mentioned above. 
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4 Automotive AI Use Case 
Light vehicles can contain a large number of Electronic Control Units, ECUs, which are 
performing the data processing associated with a particular function, such as a front-looking 
camera detecting a pedestrian. The recent trend in the premium segment is toward central 
processing units with significantly higher processing power that handle multiple functions 
in the vehicle, as opposed to satellite ECUs that solely handle the function related to the 
connected sensor. The centralized compute bears a high cost to the vehicle which in turn 
makes the associated safety benefits inaccessible to the lower-end segments. 

The aim of the automotive AI use case has been to explore how computational load can be 
distributed between local, e.g., hardware physically located within the vehicle, and remote 
computational resources, which resides in external infrastructures such as base stations. The 
use case relates to an existing feature for vehicle safety, Pedestrian Automatic Emergency 
braking (Pedestrian AEB). It is described by, among others, the Euro NCAP organisation in 
[21]. However, in this implementation, the intent has not been to design a function that can 
be used in a safety-critical setting, but to explore the computational properties. 

This section describes the developments and tests that were performed at the Magna test 
site in Vårgårda within the project’s lifetime and includes results for the KPIs latency and 
power consumption when using the ML model used with computational power onboard a 
vehicle and at a base station. The results are analyzed, discussed and conclusions are 
presented. 

 

Figure 37. Development process of automotive use case presented in deliverables 

4.1 Development of automotive AI model 
This use case has been defined to explore how a machine learning inference can be 
distributed over multiple processing nodes.  

4.1.1 Machine learning training data 
Scenario data for the use-case was collected at the Magna test site the airfield in Vårgårda, 
see Figure 38. The use case assumes an open road with a pedestrian or possibly another 
object on the scene. 
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Figure 38: Bird’s eye view of the data collection environment at the Magna test site in Vårgårda. 

The following scenario and data variations were identified and collected: 

• Target type 

o Pedestrian 

o Other object (trash bin) 

o No Target 

• Target longitudinal distance 

o Every 1 m over 1 to 100 m (handled by continuous sampling of pictures during 
each drive) 

• Target lateral distance 

o 1, 1.5, 2, 2.5, 3 m 

• Target attitude 

o Moving towards 

o Moving away 

o Crossing 

• Background type 

o Tarmac 

o Grass 

• Illumination 

o Sunlight 

o Cloudy 

o Rain 
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The data has been collected and labelled for all the combinations as described above. Data 
for ten runs per combination were collected, resulting in a total of 290 data sets with 
continuous images. These images make up the training, test and validation data. The 
labelling strategy used to create labels for the data sets was to classify one of two 
conditions: 

1. Pedestrian on the road 

0. No pedestrian on the road 

The data collection was performed with the dedicated data collection system depicted in 
Figure 39. It includes a camera for capturing images of the scene ahead of the vehicle, an 
RTK GPS to capture a very accurate position of the vehicle at the time of the image capture, 
and a PC used for managing the incoming data and saving to an external hard drive. This 
system was designed to collect and store the images used to learn the ML. It is different 
from the system to be used for validation. The validation system is described in Chapter 4.2. 

 

Figure 39: Overview of data collection system 

Figures demonstrating each scenario can be found in the following pages, where Figure 40 
demonstrates the scenario of a pedestrian moving in the same direction as the vehicle on 
the side of the road. The DL model will classify this scenario as “No pedestrian on road”.  

Figure 41 demonstrates the scenario of a pedestrian moving towards the vehicle. The DL will 
classify this as “No pedestrian on road”. 

Figure 42 demonstrates a pedestrian crossing the road. The DL will classify the object as “No 
pedestrian on road” while the pedestrian is outside of the lane markings and “Pedestrian on 
road” while the pedestrian is inside the lane markings. 

Figure 43 demonstrates the scenario of no objects present in the scene. This will always be 
classified as “No pedestrian on road”. 

Figure 44 demonstrates another type of object, in this case a trash bin placed at 3 different 
positions, present on and off the road. This will be classified as “No pedestrian on road”.  

Figure 45 demonstrates the pedestrian moving away from the vehicle. This scenario is much 
like the one demonstrated in Figure 40 with the change in the environment around the 
pedestrian as she is walking on grass instead of concrete. The labelling strategy for both 
scenarios was the same. 
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The same repetition and change in the environment were made with the scenario 
demonstrated in Figure 41 and Figure 42. 

 

Figure 40: Pedestrian moving away from ego vehicle 

 

Figure 41: Pedestrian moving towards the ego vehicle 
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Figure 42: Pedestrian crossing the path of the ego vehicle 

 

Figure 43: Empty scene 
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Figure 44: Other objects on and off the path of the ego vehicle 

 

Figure 45: Pedestrian  moving away from the ego vehicle on the grass 

4.1.2 Machine learning model 
The Convolutional Neural Network (CNN) architecture EfficientNet was used to design and 
train a model that can determine if there is a pedestrian on the road. Due to the serialized 
design of EfficientNet, it is possible to pass the execution on to a different set of nodes at a 
split point as the execution of an operation, or block of operations, feeds into the next block 
of operations. The data size varies at each split point, due to the neural network’s inherent 
compression and decompression of the data during inference. This leads to three 
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dimensions that can vary: the data size, the latency when transferring data between 
different nodes and the computational power of the nodes. It is thus possible to perform an 
optimization of the entire process of detecting a pedestrian, given boundary conditions in 
the form of constraints in the available vehicles and infrastructure. An in-depth 
documentation of the development process is described in D6.5 [21]. 

4.1.3 Communication modelling 
When distributing computations, the latency and stability of the communications become 
an important factor. A model, containing factors such as limited bandwidth and distance 
between the units, was developed and included in the ML model optimization. 

 

Figure 46: Model of communication in a 5G system with distributed systems 

The purpose of the model is to provide reasonable effects, e.g., latency and packet loss, to 
the distributed DL system. The model induces bandwidth occupancy limitations due to an 
overload of user’s connection to the base station. Other effects as for instance those 
induced on the signal due to distance to the base station can be managed in the model. 

4.1.4 Distributed Processing Simulations 
There are multiple scenarios where distributed inference is beneficial. What those benefits 
are, depends on one hand on the limitations of the distributed compute nodes, but also on 
external constraints such as data transfer speed or the number of users of a compute node. 
In general, the idea is to exploit differences in computational power between compute 
nodes by leveraging the cost of transmitting data against the performance boost of a 
powerful remote compute node. The objective is often to reduce the overall latency of 
inference, but other motivations can be driving the need for distribution, such as memory or 
energy restrictions of a compute node. We have started to investigate the potential of 
reducing the overall latency of inference. 

The execution of CNNs, such as EfficientNet, is highly serialized. The execution of an 
operation, or block of operations, feeds into the next block of operations. The serialized 
execution means that the network can be "split" or divided at some point along the network. 
It is thus possible to perform part of the computation on one compute node and then 
distribute the rest of the computation to another node, which sends back the prediction. If 
all compute nodes have equal computational power, it would never be beneficial to 
distribute, as the extra latency of transmitting the output data of the first network would 
only increase the total inference latency. In this use case, however, the compute node at the 
car's sensor, the central compute node, and the compute node in the remote base station, 
all have different computational power. Additionally, the data size varies at each split point, 
as a neural network naturally compresses and decompresses the data during inference. If 
the data size at any potential split point in the network is smaller than the input image, it is 
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possible to reduce the overall latency. The potential latency reduction, however, depends 
on the speed at which data can be transferred between the nodes. 

As a first set of experiments, we have investigated distributed inference in a setup 
mimicking a weak compute unit at the car's sensor, and a powerful compute unit at a remote 
base station. Specifically, we have considered a Raspberry Pi 4, and an NVIDIA Xavier. 
Ultimately, a similar analysis will be performed using the Congatec i.MX8+ device, described 
above, instead of the Raspberry Pi.  

In Figure 47, we have calculated the total latency of EfficientNet for a number of different 
split points. The first part of the computation is performed on the weak Raspberry Pi, the 
output of that computation is fed as input to the second part of the split network. The extra 
latency due to data transfer and resource allocation is estimated using the MATLAB model 
described in section 4.4. For realistic parameters, we conclude that distributed inference has 
the potential to be highly beneficial. When comparing the overall latency between 
performing the full computation locally and choosing the optimal split, the latency is 
reduced from 120 ms to 77 and 66 ms in Figure 47 (a) and (b), respectively. The two 
parameter regimes we consider are: (a) a car 500 m from the base station, with 1 Gbit/s 
basestation bandwidth, no other users (cars), and (b) a car 500 m from the base station, with 
5 Gbit/s base station bandwidth and 3 other users (cars). 

 

Figure 47: Simulation of total latency when splitting the neural network 

4.1.5 Distributed Model Demonstrator 
A distributed machine learning demonstrator was developed Embedl. The purpose of the 
demonstrator was to introduce the core concept of distributed processing to visitors to 
various faires where VEDLIoT were present. Through offline processing of selected data 
sets, described in Chapter 4.1.1,  the resulting latency of the system was shown. The 
demonstrator can first be initialized with the mode of processing. The options of processing 
mode include local, remote or distributed. Parameters related to the data transfer are also 
available in the cases of remote or distributed, specifically bandwidth, occupancy and 
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distance. The visualization of the demonstrator is shown in Figure 48. The upper left box 
contains an area to display the recorded image form the camera sensor. The lower left box 
shows the computation latency over time, as a result of the parameters inputed in the lower 
right box. The upper right box illustarates the hardware involved in the computation as per 
the given input. 

 

Figure 48: Distributed Processing fair demonstrator 

4.2 Test Setup 
In the following section, the details of the hardware in the vehicle, of the base station and 
the design of the experiment will be discussed. As shown in Figure 49, the vehicle contains 
a camera and processing hardware. It communicates with the far edge device using either a 
WiFi or 5G mmWave connection. No cloud instance is used in this setup, but is included in 
the description for completeness as a cloud instance could be a useful resource in a real-life 
implementation of the use case. 

 

Figure 49: High level overview of a distributed AI system. The Automotive Use-Case utilizes the Local device in the 
vehicle and the Remote device located in the basestation. No cloud instance was used in this project. 
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4.2.1 Equipment, vehicle and edge 
The hardware design for the automotive use case assumes four possible processing nodes. 
These are depicted in Figure 49 and below: 

• The mono-vision camera processing device 
• The vehicle central processing unit (ECU) 
• The 5G base station edge processor 
• The cloud server 

 
Figure 50: Hardware design used for the experiment. The blue box, the local domain, describes the hardware in the 
vehicle. The two yellow boxes, the remote domain, describes the same hardware placed in connection with either 

the 5G or WiFi infrastructure. 

In the VEDLIoT project the RECS hardware platform was selected [22] to provide the 
hardware base for the vehicle tests: a u.RECS solution placed in the vehicle and a t.RECS 
placed in the base station. The u.RECS was modified to suit the needs of the automotive use 
case and is a product of WP4. Figure 50 illustrates the hardware components in either the 
local domain, e.g. in the vehicle, or in the remote domain, e.g. in the base station. The u.RECS 
contains both a Congatec NXP i.MX8 module, compatible with the existing camera 
processing device, and an Nvidia Jetson NX module which equals the central computer (ECU) 
available in vehicles today. The base station used a t.RECS server installed as processing unit. 
It contains an Nvidia Xavier AGX as the processing device. 

The test vehicle was equipped with a u.RECS unit, as described above, a Wireless Modem to 
manage the transferring of the data from the vehicle to the remote domain, as well as an 
OXTS GNSS unit [23] used for logging the absolute position of the vehicle during the 
measurements. Figure 51 shows the installation of the hardware in the trunk of the test 
vehicle. 

 

Figure 51: In-vehicle installation of u.recs, OXTS and Wireless Modem 
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4.2.2 EfficientNet distribution 
The experiments conducted in this report describe the inference executed on the different 
domains, see Figure 52, e.g. the local domain or the remote domain. The third alternative is 
the distributed domain, where part of the inference is processed within the local domain and 
part of the inference is processed within the remote domain. The local and the remote 
versions constitutes the normal way of feeding an image to the model and thus resulting in 
a prediction. The distributed version instead processes a few layers of the inference within 
the local domain, then transfers the intermediate buffer from the local domain to the 
remote domain, where it’s finally producing a prediction of the presence of a pedestrian on 
the road. The total EfficientNet model contains 20 layers, and based on previous analysis, it 
was decided to perform the split between local and remote processing at the 13th layer for 
the best performance. At the 13th layer, the intermediate representation of the input data 
is highly compressed, thus reducing the transmission latency at this point and minimizing 
the overall inference latency in most parameter regimes of interest in this study. 

 

Figure 52: Local, Distributed and Remote processing. 1: The entire inference is processed in the vehicle. 2: The 
model resides partly in the vehicle and partly in the base station. 3: The entire inference is processed in the base 

station. 

4.2.3 Wireless communication 
To be able to test and evaluate the distributed and remote variants of the automotive use 
case, a dedicated wireless high throughput communication method was needed. The test 
facility had two technologies available; a WiFi technology at 802.11ac and 5G mmWave that 
was being set up during the testing period. We chose to conduct the test cases on the 
802.11ac network, and as the 5G equipment became available during the test period, 5G 
communication was added to relevant scenes. 

The WiFi technology used was standard equipment for outdoor use. The selected WiFi 
Access Point had a theoretical maximum range of ~300 meters. The vehicle PC network was 
connected to an industrial network router with a 1 Gbit/s upper limit of transfer speed was 
used. The uplink was configured in WiFi client mode to allow connection to the secured WiFi 
network established by the Access Point. 
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Figure 53: WiFi Access Point at pole near test location 

For the use of the 5G network [24], a 5G mmWave modem was connected to the vehicle 
equipment in a similar fashion to the WiFi transfer configuration. 5G network was isolated 
and dedicated for the execution of our test cases. 

While no cloud instance was used in this data collection, the 5G network on a mmWave band, 
supplied by Telia using Ericsson technology, allowed us to set up the far edge close to the 
Radio Access Network, by using a Local Breakout, allowing for a very short route for traffic 
between the radio transmission and thereby provide a way to access a far edge. Both 
technologies for data transmission between the near and the far edge provide throughput 
well over that which would be used for communication between the far edgeand the cloud 
instance, avoiding a potential bottleneck situation. 

4.2.4 Design of the Experiment 
The site chosen for the tests was the airfield at Vårgårda, see Figure 54. It is a private, 
fenced-in location where tests can be carried out in a controlled environment. 
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Figure 54: Overview of the positions of relevance during the experiment. Yellow boxes describes positions for the 
wireless medium and blue boxes describes the positions for the vehicle. A=WiFi Near, B=5G Near, C=Dynamic Start, 

D=WiFi Medium, E=Dynamic Stop, F=WiFi Far, W=WiFi Antenna, 5=5G Antenna 

There are several possible dimensions to explore when evaluating the performance of the 
system. Five parameters were chosen: 

1. Distance between the vehicle and the communication device  
2. Where the processing was made: Locally, Remotely or Distributed between the two 
3. The connection mode: WiFi or mmWave 
4. Observed scene: Pedestrian, Empty, or Other object (i.e. Trash Can) 
5. Vehicle velocity for 5GDynamic: 30 or 50 kph 

The distances between the vehicle, communications equipment and dummy/object, 
depending on communication mode and vehicle dynamics: For the WiFi tests, the distances 
between vehicle and WiFi access point was 5, 12 and 200 m for WiFi Near, WiFi Medium and 
WiFi Far, respectively. For the 5G tests 5G near is at 80 m and 5G Dynamic 80 m–180 m from 
the base station, drivig toward the dummy. In all stationary tests, the distance to the dummy 
is 10 m. 

Note that the antenna for the base station and the WiFi access point are not co-located and 
that the distances for the respective communication means are different as the WiFi 
network does not have the same power output or data transfer ability as the 5G network. 
The WiFi was positioned on the test track at position W as seen in Figure 54 in  as opposed 
to the mounting of the 5G antennas on the roof of the control room, position 5. 

A full factorial investigation of these parameters would amount to 27 scenes in total. In this 
report, data from 14 WiFi-related and 12 5G scenes is presented. 
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Table 7: Automotive AI integration scene overview 

 

These scenes represent a sample of parameters that can be chosen. However, the 
experiment also contains environmental conditions that cannot be chosen, at least not to 
any extent as the tests are booked well in advance. 

4.2.5 Test conditions  
The tests were performed at the Vårgårda airfield between October 30th and November 3rd  
2023 with fair lighting conditions under daytime. In Figure 55, an overview of the test site 
taken at the end of a test day, is shown. The weather was overcast but not raining and the 
road surface was dry. 

Scenario Vehicle 
Position 

Inference 
Distribution 

Object in 
scene 

Ego 
Vehicle 
Speed 
[kph] 

Cellular 
Connection 
Type 

S-1 WiFi Near Local Pedestrian 0 WiFi 
S-2 WiFi Near Remote Pedestrian 0 WiFi 
S-3 WiFi Near Distributed Pedestrian 0 WiFi 
S-4 WiFi Far Local Pedestrian 0 WiFi 
S-5 WiFi Far Remote Pedestrian 0 WiFi 
S-6 WiFi Far Distributed Pedestrian 0 WiFi 
S-7 WiFi Near Local Empty 0 WiFi 
S-8 WiFi Near Remote Empty 0 WiFi 
S-9 WiFi Near Distributed Empty 0 WiFi 
S-10 WiFi Near Local Other Object 0 WiFi 
S-11 WiFi Near Remote Other Object 0 WiFi 
S-12 WiFi Near Distributed Other Object 0 WiFi 
S-13 5G Near Remote Pedestrian 0 5G 
S-14 5G Near Distributed Pedestrian 0 5G 
S-15 5G Near Remote Empty 0 5G 
S-16 5G Near Distributed Empty 0 5G 
S-17 5G Near Remote Other Object 0 5G 
S-18 5G Near Distributed Other Object 0 5G 
S-19 WiFi 

Medium 
Remote Pedestrian 0 WiFi 

S-20 WiFi 
Medium 

Remote Pedestrian 0 WiFi 

S-21 5G Dynamic Local Pedestrian 30 5G 
S-22 5G Dynamic Remote Pedestrian 30 5G 
S-23 5G Dynamic Distributed Pedestrian 30 5G 
S-24 5G Dynamic Local Pedestrian 50 5G 
S-25 5G Dynamic Remote Pedestrian 50 5G 
S-26 5G Dynamic Distributed Pedestrian 50 5G 
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Figure 55: Overview of the Vårgårda test site during the field measurements. The conditions were cloudy with a dry 
to slightly wet surface during the measurements.  

Although the time of the year was roughly the same during the testing and the collection of 
the data set used to train the machine learning model, there are some differences in the 
environment. The grass was greener and the color of the trees more diverse colors of yellow 
and red, as is typical of the Swedish autumn, during the data collection of the training data. 

The positions of the test scenarios are also slightly different between the two data sets as 
adjustments had to be made to allow for parallel projects doing data collections during the 
same period of time. 

Data was collected during 60 s for each static scene. For the dynamic scenes, the data 
collection lasted around 20 s for the 30 kph scene and 16 s when finishing at 50 kph. This is 
due to the fact that the vehicle started from standstill, then accelerated to the designated 
velocity and finally braked in time to avoid collision with the pedestrian dummy, all within a 
fixed distance. 

  



D7.5  Version 2.1 
 

59 
 

4.3 Evaluation Parameters 
During the data collection, four parameters were logged to be analysed afterward. These 
were: 

• The latency was monitored and logged on a round-trip basis as the final 
measurement to be evaluated. The measurement included the time from when an 
image was captured until a classification of the image was made. 

• The power consumption was measured for each used accelerator, two in the u.RECS 
inside the vehicle and one in the t.RECS in the base station. 

• The accuracy (or detection rate) is the ratio of how often the ML model accurately 
classifies the scene with “Pedestrian on road” or “No pedestrian on road”. 

• The robustness is a measure of the number of packets that are lost in the 
communication to and back from the base station. 

The KPIs for this use case are 

• pedestrian detection accuracy > 95%  
• detection latency (per image) < 20 ms 

As the use case is designed to test whether it is possible to distribute the calculations 
between different nodes, no pass/fail limits with respect to power consumption or 
robustness are given. 

4.4 Results 
In this section, an overview of the results will be shown, and then more detailed results 
relating to different clusters of measurement cases will be presented where appropriate. 
The latency and energy consumption are shown for each scene, then follows the accuracy of 
the model and finally the robustness in terms of the ratio of packets delivered and lost in 
each scene.  
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4.4.1 Energy Consumption 
Data for the power consumption and latency is shown using box-and-whiskers plots, where 
the box covers the 25th to 75th percentiles, the orange line represents the median value, the 
whiskers end at the farthest data point lying within 1.5 times the inter-quartile range, i.e., 
the height of the box, from the box. The circles represent outliers that have values which fall 
outside of the whisker ends. 

In Figure 56, the total power consumption is shown. The locally performed computations in 
the (blue) require the least amount of power, the remote (red) a higher amount and the 
distributed (orange) some linear combination of the two. However, the values presented 
concerns the entire computational capacity of the far edge, and the power actually 
consumed due to the inference is likely significantly smaller. 

 

 

Figure 56: Total power consumption for all experiments. Orange: distributed calculations, red: remote, blue: local. 
The purple line shows where mmWave communication was used, WiFi for all other scenes. The grey rectangle 

represents scenes where the power log could not be used. 

The contents of the scenes have no visible impact on the power consumption. This holds 
true for all scenes, regardless of communication technology and whether the vehicle is static 
or dynamic. 
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4.4.2 Latency 
Considering the total time for all experiments, see Figure 57, the most obvious outliers are 
encircled in red and are due to the measurement being made far away from the 
communications device with either entirely remote or distributed processing. Due to a slow 
data transfer, the total time increased drastically. 

It is also clear that the scenes using mmWave communication, underlined in Figure 57, have 
higher maximum latencies than those that use WiFi-connection. Inspecting the boxes, a 
latency around 100 ms is found to be common when using both WiFi and mmWave, which is 
five times higher than the KPI. 

 

Figure 57: Total latency for all experiments with outliers due to intermittent communications encircled in red and 
5G mmWave-communication marked with purple lines, S-13 through S-18 and S-21 through S-26. 

Studying the bitrate over a 20-second interval, as has been done in Figure 58, reveals that 
the 5G network has a bitrate that is initially slow, then overshoots before stabilizing and 
being quite steady. The WiFi connection on the other hand fluctuates more over time, but 
still has an overall high throughput. 
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Figure 58: Comparison between 5G and WiFi bitrates as a function of time. 

Note that “Near” means 12 m for the WiFi and 80 m for the 5G network. 
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4.4.3 Detection Rate/Accuarcy 
The goal of the ML inference was to determine whether or not there was a pedestrian 
(dummy) in the scene. In Figure 59, the accuracy of the model is shown. The orange bars and 
adjoining boxes represent scenes where a pedestrian dummy was present. The blue bars 
represent the other object and finally, the green bars denote an empty scene. 

 

Figure 59: Accuracy of the ML inference: orange = pedestrian dummy, green = empty scene, blue = other object. 
Blue boxes around the scene numbers on the x-axis indicate all remote processing. The horizontal black line 

represents the 95% accuracy KPI of the use case. 

These detection rates are the aggregated detection rate for the entire data collection 
sequence of 60 seconds for the first 20 scenes. The dynamics scenes with the moving vehicle 
S-21 to S-23 have a 20 s collection time and S-24 to S-26 only 16 s. 

Starting with the scenes containing the pedestrian, it is clear that only two of the ten static 
scenes have a high accuracy. Remarkably, the inference performed entirely on the far edge 
never results in a correct classification. This also holds true for the dynamic scenes with 
pedestrian, indicating that there is something wrong with that mode of computation. The 
distribution of the calculations, as described in Section 4.2.1, is made by first performing 
local calculations on the near edge, then transferring data to the remote far edge for 
finalization. This type of inference generates both possible results in a logical manner. The 
entirely remote calculation is made by transferring the unprocessed image to the far edge 
where the process continues and the result “no dummy” is always delivered in this setup. It 
does not, however, indicate the inference process is defective, just that no correct answer is 
delivered.     

Therefore, the empty scenes and those containing another object where all remote 
processing was used need to be removed from considerations of accuracy which leaves the 
identification of the empty scene which is correct in all three cases, while the accuracy of the 
identification of the other object as a non-dummy is higher than 95% in two of three scenes. 

In Figure 60, instantaneous inference results as a function of driven distance is shown with 
the maximum velocity at 30 kph. The pedestrian is placed at 100 m, and the car breaks in 
time to avoid a collision with the dummy. Here it can be seen that at large distances from 
the dummy, it is not properly identified. At a threshold range value, the distributed 



D7.5  Version 2.1 
 

64 
 

calculation gives the correct result and the all local follows very closely thereafter. For some 
unknown reason, no identification is made with the all remote calculation. 

 

Figure 60: Detection as function of distance, 30 kph, S-21 blue, local, S-23 orange distributed, pedestrian at 100 m. 

The results with a maximum velocity of 50 kph are shown in Figure 61. Here, the several 
single and separate detections occur for the local processing, S-24, until the steady 
detection state is entered. It can be noted that, see Figure 59, S-24 has a higher overall 
success rate, but most of that is accounted for by the unsteady detection state. The 
distributed and the local calculations enters a state of steady detection very close to each 
other in distance. The remote calculation does not deliver any detection at this velocity 
either. 

 

Figure 61: Detection as function of distance, 50 kph, S-24 blue, local, S-26 orange distributed, pedestrian at 100 m. 
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Inspecting what the images from the onboard camera actually looks like can to some degree 
explain the results from the detection process. The first image captured in a dynamic 
scenario is found in Figure 62.  

 

Figure 62: First image, dynamic test S-21. 

Here, the pedestrian can barely be seen in its position in the middle of the lane 100 m from 
the vehicle. As the car closes in on the dummy, it gets increasingly visible in the image, see 
Figure 63. 

 

Figure 63: Final image, dynamic test S-21. 

At the end position, the dummy is clearly visible. As can be seen in Figure 60, the state of 
detection changes from “no dummy” to “dummy” rather close to the car and the 
corresponding image is found in Figure 64. 
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Figure 64: The image when detection occurs in the the dynamic scene, S-21. 

 

4.4.4 Robustness 
The robustness is said to be the ability to transfer data at a useful rate without having to 
resend a large amount of packages. There is no particular KPI for this property, but it relates 
to the latency as a low data rate and a large fraction of resent packages means a higher 
latency and consequently a lower frame rate. 

The robustness of the wireless connection is presented in terms of bitrate and how many 
transmission retries occurred prior to the testing. A network test using iperf3 [25] was 
performed during a 20 second window. The same procedure was repeated at the same 
geographic positions as the experiments. The result is presented below in Figure 65 and 
Figure 67.  

The bitrates for the four static positions are shown in Figure 65, and as can be expected, an 
increased distance from the WiFi access point means a lower data throughput. Note the 
significant drop in bitrate between the WiFi Near, 2 m and WiFi Medium, 12 m. The 5G 
network has a high bitrate, but also a larger variation, see the circles that represent the 
outliers. 
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Figure 65: Bitrates for the four static positions. 

The network tests were done at the same position, and close in time, as the experiments, 
however they were collected prior to the experiments. The results are therefore an 
indication of the properties of the wireless data link. We can see that the bitrate changes 
over time, but it will most likely not change in the same way over time during the 
experiment. Figure 66 illustrates the bitrates over 20 seconds for the static position WiFi 
Near.  

 

Figure 66: Bitrate as a function of time at the static position WiFi Near. 
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In Figure 67, the retries for each static position, that is the number of times the 
communications protocol deemed it necessary to resend a package, are shown. For the 
5G Near, WiFi Near and WiFi Medium, the retries are rare, but does occur. The 5G exhibits 
more significant outliers. Not surprisingly, the WiFi Far option, which has demonstrated a 
low capacity to transfer data also requires the largest number of retries. 

 

Figure 67: Retries for the four static positions. 

 

4.5 Discussion and Conclusion 
The results presented regarding the automotive use case represent an effort to determine 
whether it is possible to divide the computational effort of a ML inference between 
different physically separated nodes. It may seem illogical to try and distribute a safety-
critical function, but the intent is only to experiment with the distribution of computations 
in a situation that is relevant. That being said, considering vehicles that lack substantial 
computational power, being able to supplement the existing capacity could be a major 
advantage from a safety perspective. 

As this data set is the first of its kind and the test time was limited, there are a number of 
phenomena that remain unexplained at this time and consequently need to be further 
investigated: The results from the inference that was performed entirely using the remote 
compute resource were not properly delivered. Furthermore, the connection using the 5G 
network has inherent properties that affect the latency in ways that remain to be 
understood. As the project is ending, this will take place in another context. Most 
parameters, with the logical exception of the accuracy, are not directly influenced by the 
contents of the scene. 

There are two KPIs for the use-case and they relate to the latency and the accuracy. 
Considering the latency, it can be seen in Figure 57 that the boxes in the plot, representing 
the majority of the data, indicate latencies around 100 ms which is five time higher than the 
stipulated KPI which is less than 20 ms. The results regarding accuracy show that either the 
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inference is successful to at least 99.8% or significantly below 95%, the KPI limit, c.f. Figure 
59. 

The power consumption is interesting both from the perspective of a vehicle with limited 
energy storage, e.g., an electric car and the environment considering how much energy that 
is used to execute a function. The results show that the local computation requires the least 
amount of power, the distributed the highest and the remote less than distributed but more 
than local. This probably does not give a complete picture of the situation, as the remote far 
edge consumes a basic amount of power just being active, and the added need from the 
computation is very small compared to that. In these measurements there is only one user 
while the far edge is capable of processing data from a significantly larger number of users.   

Considering the latency, which is a significant factor from an automotive safety perspective, 
the results are presented as a compound value including both the inference and the data 
transfer. Because the actual data transfer rate achieved was 0.3 GB/s as opposed to the 
initially estimated 10 GB/s has surely influenced the result. There is room for improvement 
to shorten the latencies introduced by the communication and reach the KPI level.   The 
results are still interesting. When there is a large distance between the near and far edge, 
the data transfer rate is reduced, causing latencies as large as around one second. The 
scenes where WiFi is used for the data transfer have lower maximum latencies than with the 
5G, which requires some investigation.  

Regarding the detection rate or accuracy of the model, it is evident that the ability to detect 
a human dummy is not sufficient to use in a safety function. As the choice of use case was 
not made with that intention in mind, but to be able to show the distribution of the 
processing in a realistic setting, that is, this could be useful in the future. 

The cases with the empty scene were satisfactorily classified and those containing the trash 
can were to a large extent accurate, even when disregarding all scenes with remote 
processing as those results are erroneous. That is, the system does not mistake a trash can 
for a human.   However, the ability to correctly determine that a human dummy was present 
needs further improvements. 

Considering the scenes with the moving vehicle, the low accuracy is partially due to the fact 
that the resolution of the images limits the ability to detect the dummy. When inspecting 
the classification result as a function of distance to the dummy, it could be seen that for all 
cases except those with remote processing, proper classification does occur, albeit at a 
distance around 5 m from the dummy. 

The robustness of the data connection is of extreme importance for a distributed calculation 
as it directly influences the latency of the system. The WiFi connection exhibited a stable 
performance and behaved as expected, the longer the distance of the communication, the 
lower the bitrate. The 5G mmWave option had, at the time of the data collection, not been 
thoroughly investigated, but is expected to have a large data transfer capacity with low 
latency. 

In conclusion, it has been demonstrated that the computational processing power used to 
execute a machine learning model designed to detect the presence or absence of a human 
dummy can be divided between two computational nodes, physically separated and 
connected by wireless data transmission network, WiFi or 5G mmWave. The demonstration 
has been done in a realistic setting for tests of a distributed function. 
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4.6 Challenges and Future Work 
When distributing an ML inference in a traffic scenario, a major challenge is ensuring that 
correct and adequate remote resources are available along with the necessary 
communication capacity.  Security and privacy aspects of the communication must be 
considered.  

It was expected and indicated by results from theoretical analysis early in the project that it 
would be possible to get a more efficient, with respect to power consumption and latency, 
inference by remote or distributed inference. To understand why this was not the case in 
practice, further data collection and analysis is needed. 

The future work involves an investigation of the communication alternatives as the data 
transfer capacity directly influences the latency of distributed or remote computations. 
Furthermore, implementing separate logging of the components of the latency to be able 
to understand the operational aspects of the system. 

An analysis of the power consumption and computational load in the different system 
configurations is necessary to understand how to deploy the inference function in the most 
efficient way in a full-size use case with a large number of vehicles. 
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5 Smart Home Use Case 
The most commonly used features of applications in a smart living environment include 
using deep neural networks to detect and recognize objects, gestures, and faces. In many 
scenarios, the application is personalized for each individual user, so detection of identity 
and an easy way of controlling it is highly beneficial. These algorithms can be used for a smart 
kitchen, which supports the user's cooking, or a fitness coach, which trains the user. 

A smart mirror is an appealing example of the combination of object, gesture, and face 
recognition. Figure 68 is showing an example of such a smart mirror. It consists of a display 
with a semi-transparent film attached to it. With this, the user can use it as an ordinary mirror 
in their entrance hall. However, the environment can also provide additional information, 
like the public transportation schedule or the weather forecast. Recognising the user can be 
used to personalize the information and gestures for changing the widgets and so on. A self-
sustained life for elderly people can also be supported if a reminder for necessary items like 
an umbrella if it rains or the home keys are provided, or appointments are shown. 

 

 

Figure 68: Smart mirror prototype utilizing a t.RECS edge server in an acrylic case 

The focus of the smart home use case in this project was primarily on the most 
computationally intensive image processing techniques for these three features. In addition, 
speech and natural language processing are important topics for creating voice assistants, 
which have already found their way into everyday life. Due to being in the home 
environment, an essential aspect of such a trustworthy application is local calculation. This 



D7.5  Version 2.1 
 

72 
 

is done by focusing on utilizing hardware developed within this project, and no image or 
information leaves the system. Of course, this must not be done at the expense of the 
electricity bill, which is why efficient AI hardware accelerators and adapted machine learning 
methods are used and implemented. 

5.1 Developments & Optimisation  
The main work in this use case is centred around a smart mirror demonstrator used as a user 
interaction interface with the intelligent living environment, see Figure 68. The data path 
structure of the demonstrator in this project is shown in Figure 69. It is derived from the use 
case of the former project LEGaTO [26].  

 

Figure 69: Data flow of the smart mirror demonstrator 

As the primary input, an Intel RealSense camera records the user's image, and the 
background is removed. The image is shared with many nodes for different purposes, e.g., 
object detection. All detections are tracked using a tracking method called 
simple online real-time tracker (sort) [27]. A Kalman filter is used to predict the next 
position of the object, and the Hungarian algorithm combines the new detection and these 
predictions. This aims to assign a unique ID so that the object can be traced over several 
frames.  Additional information is also added to the detection, like depth for gestures and 
objects or identity and emotions for faces. 

All collected data is streamed into the MagicMirror² [28] instance for visualization, and all 
decisions are made there. All person-related detections are combined within the person 
recognition to attribute all gestures and faces to the right person. This combination also 
enables one to keep track of a person even if the face is not visible for a moment. 

The following subsections describe changes made to the general software stack of this 
smart mirror within this project to enhance performance. 
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5.1.1 ROS2 Implementation 
In the original system deriving from the LEGaTO project, communication was realized via the 
framework OmpSs [29], GStreamer, and standard io. The various blocks formed sub-
programs between which the data had to be exchanged (sometimes even across system 
boundaries). However, this became a bottleneck, limiting the framerate to 16 FPS. 

In this project the various parts of the prototype were transferred into ROS2 nodes in C++ 
with different backends to simplify interchangeability and communication between the 
different algorithms, e.g. the object detection can be executed on the Nvidia Jetson 
modules, the Hailo-8 or the Xilinx FPGA. Initial difficulties of ROS2 with older Ubuntu 
versions of various modules and packet dependencies were solved, and the performance 
increased to 30 FPS, which is the limitation of the attached Intel RealSense camera. A 
NodeJS ROS2 bridge finally provides parts of the data stream to the MagicMirror² UI. 

5.1.2 Restructuring the Face Recognition 
Originally, face recognition was split into two parts. Faces were detected and tracked, and 
these tacked faces were periodically identified. For the first part, a derivative of a Retina 
Face model was evaluated, and a support vector machine was used to identify the seen user. 
The SVM step was forming a bottleneck for more trained persons, and other solutions were 
needed. 

The comparison using the cosine similarity can be used to compare the tracked faces' feature 
vectors and saved values for recognized users and return the similarity [30]. This also implies 
that no image needs to be saved; only the feature vectors are needed. The feature vectors 
are 1024 floats in width calculated by a feature extractor, which enables high performance. 
Figure 70 depicts the interaction between face detection, user recognition, and emotion 
recognition. Images are fed into face detection, which calculates the bounding boxes around 
the faces. These faces are cropped out and sent to emotion detection and user identification 
using a feature extractor and the cosine similarity. 

 

Figure 70: Structure of the face detection and recognition. Cropped images of faces are handed to emotion 
detection and the feature extractor. The additional information is added to the tracked faces. 

The face-detecting model was removed in the last step, and the face class was integrated 
into the gesture dataset. This reduces the necessary amount of DNN and helps to run on less 
power-hungry hardware. This feature is optional to enable the usage apart from this use 
case. 

5.1.3 Additional Feature Integrations 
Similar to face identification, emotion detection and mask placement assessment were 
integrated but kept optional to stay comparable to the baseline setup. For both modules, 
open-source datasets and models were used.  

Due to the direct interaction with the user, the user's emotions can be beneficial for 
decision-making. If a user is sad or depressed, nice words or other emotional support could 
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be provided. A neural network was introduced to recognize the six basic emotions (neutral, 
happy, angry, disgust, sad) with an accuracy of 83%.  

In the frame of the COVID-19 pandemic, a neuronal network that verifies the correct fit of 
the mask was introduced. It determines whether the mask is worn correctly, incorrectly, or 
is missing altogether. The Accuracy of this model was around 90%. 

Additionally, an LED strip was attached to the camera and screen to provide better lighting 
conditions for the user in front of the camera and screen. This improves user recognition as 
it had trouble recognizing faces in low light conditions. 

5.1.4 Depth Information for Gesture Control 
Due to the usage of the RealSense camera, depth information is already available. The 
distance of the gestures and object to the mirror is calculated and added to the bounding 
boxes in a third step of the processing pipeline and used for interaction with the user. 

   

Figure 71: Examples for the menus used in the smart mirror prototype. The main menu on the left, a wheel for 
numbers in the middle, and the onscreen keyboard on the right. All are controlled by the distance of the flat right 
hand. 

For the gesture control different menu structures are implemented, seen in Figure 71. A 
main menu using tiles is the main way for interaction. A wheel is used for inputting numbers 
and an onscreen keyboard is used for strings. The location and distance of the flat right hand 
is used as input. With the location the tile or element is selected and with reducing the 
distance this element then activated. 

5.2 Hand Gesture Dataset and Automated Capturing 
The creation of the gesture dataset was reworked entirely and automated. The idea of an 
image crawler using openly accessible sources was evaluated. Hand gestures, people, and 
faces in YouTube videos are to be used to generate a data set. A multi-stage process was 
implemented for this purpose. Firstly, YOLOv7 is used to recognize people reliably. These 
people were cut out of the image, and the landmarks for faces and hands were found with 
the help of Google MediaPipe [31]. This is necessary because the MediaPipe is limited to one 
person. Several people in one image are making the result unusable. Each person's 
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detections can then be fed back into the original image to determine the appropriate 
bounding boxes. 

 

Figure 72: Example for the detection of landmarks within an image using YoloV7 and the google MediaPipe. YoloV7 
is used to find persons in the image as the MediaPipe is limited to one person. This is afterwards used to extract the 
needed landmarks. 

The described process of landmark extraction is shown in Figure 72. In the next step, a simple 
SVM or a machine learning algorithm is used to classify the image if a gesture is seen. 
Therefore, a small benchmark dataset is required to train this classification step. This small 
benchmark dataset was captured using the same algorithm, but a given gesture to be seen. 
The dataset consists of 38 gestures of 14 people with 100 images each. With the two steps 
of detecting landmarks and persons in images and a simple classification if a gesture is 
included, many YouTube videos can be analyzed autonomously without manual labeling. 

A large and evenly distributed data set across the various gestures was collected and labeled 
using the entire tool flow. Around 3000 of these images for each of the 38 gesture classes 
were used to train YOLOv7 and YOLOv7-tiny, and the mean Average Precision (mAP) for 
each class is shown in Figure 73. In all classes, the mAP was above 0.73. This is an overall 
useful result for both versions. For performance reasons, the tiny version was primarily used 
for the smart mirror prototype until optimizations with the EmbeDL tools were conducted. 

 

Figure 73: mAP at IoU threshold of .5 for YOLOv7 and YOLOv7-tiny for the captured gesture dataset 

5.3 Optimization of YOLOv7  
Two of the most used neural networks in this use case are based on the YOLOv7 
architecture. To improve energy efficiency, reducing the required operations would be 
beneficial. Evaluations were conducted using the EmbeDL Toolchain [32] for pruning the 
object detection DNN, which is using the COCO dataset, and the gesture detection DNN, 
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which is using a self-created dataset. YOLOv7, with an input resolution of 640x640 pixels, is 
used for pruning in both cases. With the initial DNN, processing one image requires 104,5 
Giga Floating Point Operations (GFLOPs). The focus here is on increasing energy efficiency 
by reducing the required GFLOPs. However, it should be noted that reducing the number of 
neurons is expected to decrease the accuracy, which is measured by the mean Average 
Precision (mAP) with an Intersection over Union (IoU) threshold of 0.5 or the average from 
0.5 to 0.95. Therefore, a balance between GFLOPs and the mAP must be achieved. 

For the pruning process, the EmbeDL tool calculates the score for each neuron, indicating 
its importance. The least essential neurons are removed, and the process is repeated until a 
predefined size is reached. Only the input size and output size remain unchanged, as these 
are based on the input image and the number of classes. Furthermore, no layers are 
removed. The resulting smaller DNN has lost accuracy and must be retrained. Each model 
considered here was retrained for 15-50 epochs after pruning. The number of epochs 
required depends on the model's size and the dataset's difficulty. The COCO data set, for 
example, requires a higher number of epochs than the gesture data set. An effort was made 
to avoid overfitting. The two following sections are showing the results for the two different 
datasets. 

5.3.1 Optimization of Object Detection 
Figure 74 shows the measured results for pruning YOLO trained with the COCO dataset [33] 
to different sizes, ranging from the original size to only 10% of it. The blue bars represent 
the GFLOPs required, while the two lines represent the combined map achieved. 
Additionally, the value for the tiny model version is included for comparison purposes. If only 
a small number of neurons are removed, the overall accuracy remains reasonably high; a 
higher drop is noticed after the size is reduced to smaller than 40%. Additionally, the 
YOLOv7 model adds extra detections at this pruning size, as shown in Figure 75. The 10% 
size version is also less accurate than the tiny variant with a comparable size. The layer 
structure and the number of layers can explain this. YOLOv7 has 306 layers, and YOLOv7-
tiny has only 200 layers for inference. After observing hallucinations and problems in some 
classes, each object's accuracy was evaluated. 

 

Figure 74: Comparison between different pruning sizes regarding the needed GFLOPs and the achieved accuracy for 
the object dataset.  
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Figure 75: Example for additional detections from smaller network sizes. Here 50% pruned YOLOv7 adds a cow 

When comparing the individual object classes across the different pruning sizes of YOLOv7, 
it becomes apparent that some classes are 'forgotten' earlier than others, and some appear 
to be favored. Figure 76 depicts the accuracy for all 80 classes of the COCO dataset. It is 
ascending sorted for the top line, representing the initial pre-trained YOLOv7 model. The 
mAP accuracy of some objects is very low from the start. This is due to the dataset's lack of 
images for these classes, such as the hair dryer. Generally, a uniform decrease in mAP for 
higher-pruned models is expected. However, some classes are exceptions, such as 
toothbrush, scissors, remote, fork, and especially the toaster, which are forgotten faster. On 
the other hand, many classes are remembered longer, such as parking meter, sports ball and 
many classes with a higher mAP in the initial model. Further investigations into the 
relationship between all single neurons and the individual classes extend beyond this use 
case in this project. 
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Figure 76: Accuracy comparison for all model pruning sizes and each class of the coco dataset individually 

In the case of the smart mirror prototype, object detection is the biggest DNN and is 
primarily outsourced to accelerators like the Hailo-8. Reducing the needed GFLOPs is 
beneficial for reducing the amount of context switches on this accelerator. The initial 
YOLOv7 model is too big for a single context and split into five contexts on the Hailo-8. 
Therefore, for each image the context is switched five times, and this overhead is also 
consuming energy. The pruned to 60% sized model only uses four contexts instead. Figure 
77 depicts the evaluation of the different pruning sizes and the resulting values in max FPS, 
latency and power consumption. As expected, the maximum FPS rate increases sharply as 
the size decreases. As the number of layers is kept the same, the latency only decreases 
slightly. Because the maximum FPS and the shortest latency are always determined, the 
energy consumption is only slightly reduced. 

 

Figure 77: Benchmarked performance evaluation for varying model sizes of YOLOv7 on the Hailo8 accelerator. 
Measured are the maximal FPS and Latency on the left axis and the corresponding power consumption on the right 

5.3.2 Optimization of the Gesture Detection  
Similar to the previous chapter Figure 78 shows the comparison of the GFLOPs and the mAP 
for different pruned YOLOv7 models for the gesture dataset. A stronger focus was placed 
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on the smaller variants as these still have a very high level of accuracy with the gesture data 
set. Even when pruned to a comparable size, the pruned model shows a higher map than the 
tiny version. As the dataset is very simple, the mAP@.5 of all variants are above 90%. As only 
the average mAP of all classes was evaluated before, the tiny version was running in the 
smart mirror prototype so far. 

 

Figure 78: Comparison between different pruning sizes regarding the needed GFLOPs and the achieved accuracy for 
the gesture dataset 

After calculating the mAP@.5 for all individual gesture classes a strong drawback was 
discovered, depicted in Figure 79. The thumbs-up class is not as easy for smaller models as 
the other gestures. As the thumbs up gesture is used as a direct command, hick-ups can be 
explained by this lower value and the pruned YOLOv7 model can help circumvent this 
behavior. The 15% size model shows slightly better accuracy by around the same calculation 
amount needed. In further prototypes, this model will be used instead of the previously used 
tiny version. 

 

Figure 79: Accuracy comparison for all model pruning sizes and each class of the gesture dataset individually 
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5.4 FPGA usage for Object and Gesture Detection 
In addition to the GPU implementations, the object and gesture detection network nodes 
were implemented on Xilinx FPGAs, utilizing the accelerators and the hardware-software 
infrastructure, developed in WP3 and WP4. First, a YoloV4 network trained with the COCO 
dataset was implemented, which is also part of the general model zoo of this project. As 
detailed in Deliverable D3.4 [34], the model was implemented on an UltraScale+ FPGA and a 
Versal XCVC1902 ACAP (Adaptive Compute Acceleration Platform), integrated into a 
VCK190 Evaluation Kit [35]. While the FPGA implementation was not able to provide the 
required performance, the implementation on the Versal achieved a performance of up to 
195 FPS, which is comparable to the Jetson Orin AGX. For this benchmark, the power 
consumption of the Versal was 43.7 Watt, while the Orin required 60.2 Watt (192 FPS). 

For easy integration into the smart mirror and evaluation of the complete environment, the 
FPGA-implementation was also encapsulated as a ROS2 node. Experiments combining the 
Nvidia AGX Orin and the Xilinx VCK190 were conducted, and the full smart mirror setup was 
running showing 30 FPS with a power consumption of around 83 Watt. For this 
implementation, only a small fraction of the Versal resources were utilized, implementing a 
small DPUCVDX8G Xilinx DPU with batch size one. This design can be run also on the new 
Versal edge devices, which will be integrated into the u.RECS. Running the compute-
intensive DL-models on the FPGA significantly reduces the compute load of the Nvidia Orin. 
Hence, a small Orin NX can be utilized instead of the currently used larger Orin AGX, further 
reducing power. Therefore, the u.RECS combining an Orin NX and the Versal edge module, 
developed in WP4, will be an ideal platform for energy efficient implementation of the 
complete smart mirror environment. 

5.5 Creation of a Virtual Mirror Image from 3D Point Clouds 
In order to remove the necessity of the reflective foil of the first prototypes, the potential 
application of point clouds for reconstructing a virtual mirror image was explored. This film 
was applied to the screen and showed both the user image and the interesting information. 
Unfortunately, it had its drawbacks, as either the screen or the surroundings were too dark 
to see both. Nodes were implemented for this, and an attempt was made to implement this 
in the prototype. 

   

Figure 80: ROS2 node architecture for the virtual mirror image creation and an example of the result 
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For the registration of point clouds, a voxelized version of the generalized iterative closest 
point algorithm (VGICP) [36] was implemented, which provides an affine transformation, 
estimating the translation and rotation between the two cameras. The recalculation can be 
executed at a low frequency as the camera does not shift that often. Subsequently, a virtual 
camera with the merged point cloud can determine a frontal image. For this purpose, a 
processing pipeline containing ROS2 modules was implemented, and the processing was 
split between the two NVIDIA Xavier modules, as shown on the left in Figure 80. This first 
implementation achieved a performance of 27 FPS with a latency of 100ms, which is 
sufficient for real-time operation. The resulting image was not used as a mirror due to image 
artefacts. These artefacts are due to the point clouds of the used Intel RealSense cameras 
and are shown on the right in Figure 80. The evaluation of implementing solutions to this 
problem showed that the targeted hardware configurations were not sufficient to run 
everything in parallel, which is why energy efficiency was investigated further. As a result, 
the focus was on optimizing the DNN and using less energy-consuming hardware, and the 
work was not carried out further in the direction of the virtual mirror image. 

5.6 Hardware Evaluation  
This use case was built mainly around the smart mirror prototype and increasing the energy 
efficiency of running object, gesture, and face detection and recognition in parallel on 
embedded hardware. The structure of the dataflow was described in chapter 5.1. At the 
beginning of this project, the smart mirror prototype consisted of two Nvidia AGX Xavier 
interconnected on the t.RECS [34]. This setup consumed around 150 Watt and showed 
around 16 FPS for the three detections. The hardware was also changed after the first 
software updates, and different setups were evaluated. Figure 81 shows the measurements 
for different setups and combinations. After implementing the smart mirror modules into 
ROS2 nodes the performance was already increased to 30FPS while consuming around 100 
Watt on the two AGX Xavier. The combination of a Nvidia AGX Orin with 8 cores and a Hailo-
8 is marked in red, as it is the efficient setup evaluated in this project and was shown at the 
latest fairs. It achieved 30 FPS while consuming around 38 Watt. In this setup, most of the 
smart mirror prototype runs on the AGX Orin, and the YOLOv7 model for object detection 
is outsourced to the Hailo-8. 

The different hardware modules are also interchangeable and, e.g., the combination of an 
Nvidia AGX Xavier and an AGX Orin would be possible, but not purposeful. The selection was 
kept simple by only evaluating combinations which have shown an increased performance 
chronological. 

The blue dot represents the expected performance of the Nvidia Orin NX with a Hailo-8 for 
object detection. Due to unresolved issues surrounding the current limitation of the Nvidia 
Orin NX on the u.RECS, evaluations in this combination are still to to be conducted in its 
entirety. Apart from the UI of the smart mirror, everything is functional and running. 
However, an overcurrent protection error and slight hiccups can be noticed. This will be fixed 
in the new revision of the u.RECS. 

 

Figure 81: Power consumption and frames per second of the smart mirror on different hardware setups 
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If the combination of these values is considered, the baseline system using two Nvidia Xavier 
AGX has a performance value of 9.375 Watt / FPS. The latest smart mirror prototype based 
on the Nvidia AGX Orin and Hailo-8 is showing a performance of 1.266 Watt / FPS, while 
expected value for the Nvidia Orin NX and the Hailo-8 is 0.933 Watt / FPS. This shows an 
improvement of around factor 10x. 

5.7 Local Voice Assistant 
The previous smart mirror demonstrator centred significantly on image-processing 
algorithms. In addition to gesture recognition, a voice assistant is a powerful interaction 
capability. So far, however, only a rudimentary hotword detection has been used. In this, 
keywords like "show" and "weather" were detected, for example, to start the weather skill. 
To enhance this, a voice assistant based only on local processing was evaluated in this 
project. For a long time, the most suitable frameworks for speech-to-text (STT) were Coqui 
STT [37] or Vosk [38], but they were replaced by OpenAI’s whisper [39]. For Text-to-speech 
(TTS) the models from Coqui [40] or PyTTSx3 [41] were evaluated and implemented into 
ROS2 nodes. The Coqui TTS shows a more humanlike voice than PyTTSx3.  

For data protection reasons, the STT node was the important focus of this project. Audio 
recorded in the home environment must be encrypted and must never be easily readable. 
Therefore, how a neural network can be executed within a secure area was investigated. For 
this purpose, the whisper model was to be executed within the OP-TEE area of a Nvidia AGX 
Xavier. For this purpose, TensorFlow lite should be used as the backend and executed with 
the help of WASM. Difficulties were caused by missing operations of a too-old TensorFlow 
version and very limited memory. The deliverable [42] in WP5 deals with this in more detail. 

The natural language processing solutions with SpaCy [43] and RASA [44] are evaluated and 
show comparable results. The data flow is shown in Figure 82. A simple skill system was 
implemented based on user intent, and the local voice assistant could present cafeteria and 
weather information or tell a joke. A version is implemented on a Raspberry Pi 4 using 11 
Watt and showing a latency of 40 seconds using the Coqui frameworks or 3 seconds using 
the other two. This high latency is due to the limited performance of the Raspberry and could 
be improved using more powerful hardware. 

 

Figure 82: System design of the local voice assistant 

5.8 Secure Smart Microphone with Hotword Recognition 
As an extension of the integration within a smart home environment, we conceived a 
wireless smart microphone device as an accessory to the smart mirror demonstrator. The 
device is based on an Arduino Nano RP2040 Connect [45] microcontroller with a built-in 
microphone. Spoken keywords are recognized by a small machine-learning model running 
on the microcontroller. Upon detection of the hotword, a transcript of the word and the 
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sound wave is sent to a secure service over Wi-Fi. The communication is TLS encrypted and 
the secure service runs inside a trusted execution environment (TEE) based on Intel 
Software Guard Extensions (SGX), to ensure the spoken words cannot be spied on. Figure 83 
shows an overview of the secure smart microphone architecture. 

Currently, the neural network of the smart microphone is using the TensorFlow Lite Micro 
machine-learning framework and is trained on a Google spoken word dataset containing 35 
words [46]. It can recognize a subset of eight different words: “yes”, “no”, “up”, “down”, 
“left”, “right”, “on”, “off”, and “Marvin” with an accuracy of around 79 percent. In a pre-
processing step, slices of the recorded audio waveforms are converted from the time 
domain into the frequency domain using the short-time fourier transform (STFT). This 
conversion results in spectrograms showing frequency changes over time and are 
represented as 2D images. This conversion allows the use of established image recognition 
machine-learning models to classify audio data. A simple model, consisting of just two layers, 
with a size of 48 kB fits into the memory of the microcontroller, having the drawback of a 
lower accuracy compared to more advanced voice recognition architectures, but retaining a 
better latency due to no communication overhead. 

Once the hotwords have been identified, the microcontroller establishes a secure 
connection to an edge computing node using TLS encryption. Initially it was planned to 
dispatch the recognized commands to a program running in a secure enclave, bootstrapped 
by Intel SGX. An enclave is an isolated area of memory which cannot be subverted by high-
privileged software, such as the operating system and the hypervisor. The software running 
in the enclave should have received the voice commands and stored them in an in-memory 
database. But we encountered unforeseen problems during the implementation: The 
software development for TEEs is constrained by the absence of the POSIX API and thereby 
system functions, e.g. “fopen”. But these are required by machine learning frameworks like 
TensorFlow which were planned for the task of running our neural network models. We 
removed these functions from the depending libraries and were able to compile TensorFlow 
into a WebAssembly program. But executing it in a trusted runtime [47], the missing 
functions led to errors we were not able to resolve. 

Nonetheless, in order to implement the speech recognition feature, a decision was made to 
implement the audio receiver node outside of the trusted zone and without WebAssembly 
as a requirement. The audio data received by the wireless microphone is now processed 
using the state-of-the-art speech recognition model Whisper by OpenAI [39], which can 
generate a transcript of spoken sentences. Although not employing a trusted environment, 
the data is sent through an encrypted connection, and a possible attacker has to break into 
the system and gain root privileges to access any audio data in memory. At this point, the 
system as a whole is already compromised. 
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Figure 83: Secure smart microphone architecture overview 
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5.9 Evaluation of the Key Performance Indicators 
The achieved improvements regarding the KPIs are listed below. Some are not trivial to 
measure and therefore estimated. The baseline system is the smart mirror setup at the 
beginning of the project, consisting of two AGX Xavier on a t.RECS running the software with 
16 FPS by consuming 150 Watt.  

The main objective in this project was to increase the energy efficiency by 10x while 
maintaining 30 FPS and a low latency. 

Performance Metrics: 
• Latency: Calculating the detection of objects, gestures, and faces are all done in 22 

ms. The big YOLOv7 represents the biggest bottleneck and was accelerated using 
EmbeDL. 

• Achieved performance: The imaged-based detection nodes for face, gesture and 
objects are running with a performance of 30 FPS. This is the maximum perfor-
mance of the camera. Depending on the accuracy and hardware accelerator a pro-
cessing performance from 42 up to 124 FPS can be achieved. 

Resource Metrics: 
• Resources: A number of different hardware realizations has been evaluated 

o t.RECS with 2x Nvidia AGX Xavier (8-Core ARM Carmel, 512-Core Volta, 32 GB 
RAM) 

o t.RECS with Nvidia AGX Orin (8-core Arm Cortex-A78AE, 1792-core Ampere 
, 32GB RAM / 12-core Arm Cortex-A78AE, 2048-core Ampere, 64 GB RAM) 
and a Hailo-8 (26 TOPS, 32 MB SRAM) or versal core Ai (Versal XCVC1902 
ACAP). 

o u.RECS with Orin NX (8-core Arm Cortex-A78AE, 1024-core Ampere, 16 GB 
Ram) and a Hailo-8 (26 TOPS, 32 MB SRAM) or versal edge Ai (Versal 
XCVE2302 ACAP). 

• Cost: Listed below, please find the cost of the different setups. In case VEDLIoT 
hardware the VEDLIoT hardware is utilized, prices reflect the cost per unit for a 
medium-sized production quantity. For third-party components, prices are based on 
medium quantities where volume discounts are available. 

o t.RECS with 2x Nvidia AGX Xavier: 2116 € 
o t.RECS with Nvidia AGX Orin: 2803 € 
o t.RECS with Versal XCVC1902/VCK190: 13146 € 
o u.RECS with Orin NX and Hailo-8: 934 € 
o u.RECS with Orin NX and Versal Edge.AI: 1440 € 

• Power / Energy: The power consumption was decreased from 150 Watt to around 
38 Watt and is expected to be decreased to around 28 Watt. 

Quality Metrics: 
• Accuracy: The accuracy of the optimized models are depending on the pruning de-

gree and the training data set. Good results for the YOLOv7 trained with the coco 
dataset are between the initial 69.2% and 64.4%. For the gesture dataset the accu-
racy could be increased from 90,7% for the initial YOLOv7-tiny to 93.8% for YOLOv7 
version in a comparable size. 

Combined Metrics: 
• (Energy) Efficiency: The latest smart mirror prototype based on the Nvidia AGX 

Orin and Hailo-8 achieved 1.266 Watt / FPS. The expected value for the Nvidia Orin 
NX and the Hailo-8 is 0.933 Watt / FPS. The baseline system showed 9.375 Watt / 
FPS.  
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6 Conclusion 

This document is the third of three deliverables about the development of the four project 
use cases and the transition from traditional algorithms to a machine learning approach and 
its optimisation. It presents the final results including comparisons of the optimised metrics 
and KPIs vs. the baselines and defined goals. 

All four use cases have been successfully developed and optimised. Both Industrial IoT use 
cases have been developed from scratch, although the base idea was already available in 
similar formats. The AI part of the automotive use case was also developed from scratch 
while having the research focus of distributed AI in mind. Finally, the Smart Home use case 
was based on previous projects, but massively improved in terms of performance and 
features. Also, for all use cases, the defined metrics and KPIs have been measured and 
evaluated, therefore the Milestone 8 “Final evaluation and benchmarking” is fulfilled. 

For both industrial use cases, a systematic workflow has been progressively developed and 
implemented for the creation of AI-based solutions for cyber-physical systems. This process 
encompasses problem analysis, data collection and analysis, model training and 
optimization, and hardware acceleration. 

In the motor monitoring use case, we not only integrated deep learning capabilities into the 
smart end-field device for data processing, but also optimized the hardware toward better 
energy efficiency. Additionally, a comprehensive IoT system was established for the purpose 
of demonstration. For the arc fault detection use case, we constructed a real-time DC series 
arc fault detection system from the ground up and further refined it for optimal 
performance. By creating a testbench for arc fault simulation and optimizing the data 
collection procedure, we expanded the variety of datasets, enhancing the model's 
robustness. 

Despite achieving the goal of optimized runtime and energy efficiency, challenges persist in 
integrating AI into the industrial use cases, particularly for anomaly detection. The accuracy 
of deep learning models requires improvement, a metric significantly influenced by dataset 
size and quality. Addressing this issue will be a primary focus for future development in both 
use cases. This will be achieved by conducting a more in-depth problem analysis and 
enhancing DL-based algorithms further. This is possible as software optimization and 
hardware acceleration are poised to facilitate the optimal performance of deep learning 
algorithms.  

The smart home use case significantly improved performance and especially energy 
efficiency. With this step, realizing a real product is more feasible in the context of living 
environments. With the new gesture interaction functionality and a local voice assistant, 
critical points for a pleasant user experience are set. The evaluated safety and security 
methods are promising to handle any privacy concerns. Further energy efficiency 
improvements are expected with an Orin NX and an accelerator on the u.RECS platform. This 
improvement will be made in conjunction with the integration of the edge versal AI module 
developed within this project. Gamification and more user interaction will be implemented 
on the software side to get an even better experience, especially with regard to fairs. 

The work on the automotive use case within Vedliot has shown that it is possible to divide 
calculations of a NN between two geographically separated locations with computational 
nodes. There is a need to do further work regarding the communciation between these 
locations in order to reduce the latency of the distributed computations. The accuracy of the 
inference is promising but also needs further work. However, it is important to emphasize 
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that the goal was to show that distributed calculations are viable, not to completely handle 
a saftety-critical function. That part of the project was successful, and the implementation 
of the detection part of the automatic emergency brake function shows promise.  
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