
ICT-56-2020— Next Generation Internet of Things

D5.3
Second implementation of Security,

Safety and Robustness mechanisms and
tools

Version 1

Document Information

Contract Number 957197

Project Website https://vedliot.eu/

Dissemination Level PU (Public)

Nature R (Report)

Contractual Deadline 31 January 2023

Author Piotr Zierhoffer (ANT)

Contributors Wojciech Rajtar (ANT), Kamil Zwarycz (ANT),

Marcelo Pasin (UNINE), Jämes Ménétrey (UNINE),

Pascal Felber (UNINE), Valerio Schiavoni (UNINE),

Carina Marcus (VEONEER), Olof Eriksson

(VEONEER), Anum Khurshid (RI.SE), Shahid Raza

(RI.SE), Tiago Carvalho (FC.ID), José Cecílio (FC.ID),

Bakary Badjie (FC.ID), Erik Funke (CHR)

Reviewers Mario Porrmann (UOS), Pedro Trancoso (Chalmers)

The VEDLIoT project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No 957197.

https://vedliot.eu/


D5.3 Version 1

Change Log

Version Date Description of Change

c9f544a 2022-11-14 Initial structure

31490ec 2022-11-14 Gitlab CI setup

7432512 2022-11-14 Add GH CI

acd337f 2022-11-14 Document stubs

e95075b 2022-11-22 Added UNINE titles and contrib proposal

6233f22 2022-12-14 Initial draft for SIRE’s chapter

6270287 2022-12-19 Veeoneer submission

8e1b672 2022-12-19 Add file with RI.SE submission

5448bfe 2022-12-19 Add figures to RI.SE chapter

9267045 2022-12-20 Add WebAssembly chapter

2687916 2022-12-20 TOCTOU - use numbered sections

1ff0b3e 2022-12-20 Rename Renode chapter

d997758 2022-12-20 Update robustness chapter

b99f4a4 2022-12-20 Update of tables and figures

13d41ac 2022-12-20 Add robustness figures

6a0982a 2023-01-03 Add chapter: Co-simulation improvements and

testing in Renode

cd46035 2022-12-28 ReviewWebAssembly chapter

f75a33b 2022-12-28 Add full names to abbreviations

93ad26f 2022-12-28 Review TOCTOU chapter

6b5bce2 2022-12-28 Review Runtime Monitoring

64bc626 2022-12-29 Review SIRE

5f911ce 2022-12-29 Review Robustness

3a57d57 2023-01-05 Modified WebAssembly intro, added ref to

wasm-continuum paper

5849e8e 2023-01-05 Reformatted Robustness chapter

b7ae091 2023-01-06 Review the introduction of Robustness chapter

30e44c8 2023-01-10 webassembly: Minor review

0914fb6 2023-01-10 toctou: Minor review

2



D5.3 Version 1

c4e392e 2023-01-10 Reordered chapters

eba9930 2023-01-10 Review of Robustness chapter

eb5ff9b 2023-01-10 Use paragraph rather than subsubsection in

TOCTOU chapter

71ea2f7 2023-01-10 Review SIRE chapter

48af1f9 2023-01-11 Add future work of Task T5.2 to the conclusion

41a5b76 2023-01-10 Review and edit intro in Runtime Monitoring

013c9b7 2023-01-10 Add Conclusions chapter

af49b2a 2023-01-11 Add renode-issue-reproduction-template reference

4a5e90f 2023-01-11 Review and expand Conclusions chapter

bd1df49 2023-01-11 Add future plans for SIRE

6e2a8a6 2023-01-12 Intro clarification in Runtime Monitoring

c8cf7f1 2023-01-12 Add future work to TOCTOU paragraph in

Conclusions

0f013df 2023-01-16 Add conclusions section to Runtime Monitoring

e18b13c 2023-01-16 Review Renode chapter

02f9eb4 2023-01-16 Fix SIRE figure placement

3769c07 2023-01-16 Reference previous deliverables

7f21d8b 2023-01-16 Renode review

b74bb6e 2023-01-12 Add Intro chapter

b03dfc5 2023-01-17 robustness: Format the tables, fix labels

6bfdf7b 2023-01-17 Finish intro

979fc87 2023-01-17 Add missing figure

cd3ef93 2023-01-17 Add contributors and changelog

9c3c14d 2023-01-17 Minor fixes in Runtime Monitoring

359c9c7 2023-01-17 Add reviewers

41c3bb4 2023-01-31 Applied changes suggested by reviewers

This log reflects major revision numbers from Gitlab (version control software used).

3



D5.3 Version 1

Table of Contents

1 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Common Layer for the Cloud-edge Continuum . . . . . . . . . . . . . . . . 13

3.1 WebAssembly as a common layer . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Building the cloud-edge continuum . . . . . . . . . . . . . . . . . . . . . 15

3.3 WebAssembly under the hood . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 WebAssembly binary instruction format . . . . . . . . . . . . . . 17

3.3.2 Trusted execution environments . . . . . . . . . . . . . . . . . . 18

3.3.3 Live migration of applications . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Technological limitations and pitfalls . . . . . . . . . . . . . . . . 19

3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 PolyBench/C micro-benchmarks . . . . . . . . . . . . . . . . . . . 21

3.4.2 SQLite macro-benchmarks . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Closing remarks concerning the common layer . . . . . . . . . . . . . . 22

4 TOCTOU-secure Remote Attestation and Certification for IoT . . . . . . 23

4.1 AutoCert - Proposed Mechanism . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Pre-deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Implementation of Secure Boot into the Secure IoT Gateway IoT

Bridge component . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Verification for TOCTOU-security . . . . . . . . . . . . . . . . . . 26

4.2 Implementation and Experimental Evaluation . . . . . . . . . . . . . . . 27

4.3 AutoCert - Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Trusted Verifier Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Recalling SIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Implementation Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 SIRE Server Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 Verifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Coordinator Module . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Proxy Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Socket Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 REST Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.1 Read and Write data – get & put . . . . . . . . . . . . . . . . . . . 42

5.5.2 Attestation protocol – join/attest . . . . . . . . . . . . . . . . . . 44

5.6 Wrapping-up SIRE and looking ahead . . . . . . . . . . . . . . . . . . . . 45

4



D5.3 Version 1

6 Co-simulation improvements and testing in Renode . . . . . . . . . . . . . 46

6.1 Improvements in the Renode co-simulation framework . . . . . . . . . 46

6.1.1 Improving transaction accuracy . . . . . . . . . . . . . . . . . . . 47

6.1.2 Trace generation and model evaluation procedures . . . . . . . 48

6.1.3 Peripheral as transaction initiator and recipient . . . . . . . . . . 49

6.2 Testing infrastructure for ML processing . . . . . . . . . . . . . . . . . . 49

6.2.1 Difficulties of ML workflows . . . . . . . . . . . . . . . . . . . . . 49

6.2.2 Testing in the cloud . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.3 Proposed cloud-based testing infrastructure solution . . . . . . 50

6.3 Future work on the testing workflow . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Providing ML with data . . . . . . . . . . . . . . . . . . . . . . . . 52

7 DNN robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Evaluating safety and robustness for neural networks . . . . . . . . . . 53

7.2 Branch and Bound (BaB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 CROWN incomplete verifier . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Alpha-CROWN incomplete verifier . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Beta-CROWN incomplete Verifier . . . . . . . . . . . . . . . . . . . . . . 59

7.6 Alpha-beta-CROWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.7 Experimental validation network and datasets . . . . . . . . . . . . . . 62

7.8 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Monitoring and mitigation strategies of run-time errors . . . . . . . . . . 65

8.1 Categories of run-time errors . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Example system with run-time errors grouped in categories . . . . . . 66

8.2.1 External, Mitigable . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2.2 External, Non-Mitigable . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.3 Internal, Mitigable . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.2.4 Internal, Non-Mitigable . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 Mitigation options/strategies . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4 Possible ways of increasing the mitigation level . . . . . . . . . . . . . . 73

8.5 Achieved system reliability and safety . . . . . . . . . . . . . . . . . . . . 73

8.6 The relation to existing standards, conclusions and outlooks . . . . . . 75

9 Overall Achievements and Future Work . . . . . . . . . . . . . . . . . . . . 76

10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5



D5.3 Version 1

List of Figures

2.1 VEDLIoT abstracted overview. WP5 components appear mostly on the

right-hand side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Independent cloud, edge, and IoT silos. . . . . . . . . . . . . . . . . . . . 14

3.2 Relative performance of Polybench/C benchmarks. . . . . . . . . . . . . 20

3.3 Relative performance of SQLite Speedtest1 benchmarks. . . . . . . . . 20

4.1 Remote attestation procedure . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Verification procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Overview of SIRE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 SIRE’s implementation architecture. . . . . . . . . . . . . . . . . . . . . . 31

5.3 SIRE’s attestation protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 SIRE’s web interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 example of operation in SIRE’s web interface. . . . . . . . . . . . . . . . 41

5.6 Performance evaluation of the get operation, using 11 client machines

andamaximumof 3000 clients. Thegraphpresents a relationof through-
put and latency in function of an increasing number of simulated de-

vices interacting with the system. . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Performance evaluation of the put operation, using 11 client machines

andamaximumof6000 clients. Thegraphpresents a relationof through-

put and latency in function of an increasing number of simulated de-

vices interacting with the system. . . . . . . . . . . . . . . . . . . . . . . 44

5.8 Performance evaluation of the attest/join operation, using 11 client

machines and a maximum of 6000 clients. The graph presents a rela-

tion of throughput and latency in function of an increasing number of

simulated devices interacting with the system. . . . . . . . . . . . . . . 45

6.1 Sample waveform generated by Renode with Verilator . . . . . . . . . . 48

6.2 Renode cloud-based testing workflow . . . . . . . . . . . . . . . . . . . 51

7.1 Illustration of bounding step in BaBprocess concerning aReLU-activation 55

7.2 Illustration of the possible bound region of a ReLU-neuron . . . . . . . 57

7.3 Illustration of a block diagram of DNN . . . . . . . . . . . . . . . . . . . 57

7.4 Illustration of convex relaxation introduced by the tradition CROWN in-

complete verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5 Illustration of convex relaxation introduced by the alpha-CROWN in-

complete verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.6 Illustration of the designed neural network segmentation technique

for network summarization inbound propagation . . . . . . . . . . . . . 61

7.7 Illustration of a residual learning block . . . . . . . . . . . . . . . . . . . 62

8.1 The automotive use case . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6



D5.3 Version 1

8.2 Interaction between a vehicle and its environment . . . . . . . . . . . . 66

8.3 Interaction between a vehicle and the cellular communications infras-

tructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.4 Redundancy applied to enhance safety, availability, and fusion results. 72

8.5 Error detection distributed between separate processing platforms . . 72

8.6 Application of FUSA and SOTIF for monitoring a distributed AI infer-

ence system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.7 Description of an automated driving process, courtesy Thorbjörn Jer-

mander, Veoneer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.8 Probabilities of being in a certain state as a function of time. . . . . . . 74

7



D5.3 Version 1

List of Tables

5.1 Policy Manager Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Coordination Manager KV store interface. . . . . . . . . . . . . . . . . . 36

5.3 Extension manager interface. . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Membership interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 A comparison of techniques for NN robustness verificationwithout the

use of our network segmentation method. . . . . . . . . . . . . . . . . 64

7.2 A comparison of techniques for NN robustness verification using our

network segmentation method. . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 Run-time error categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8



D5.3 Version 1

1 Executive Summary

The work described in this document, ”D5.3: Second implementation of Security,

Safety and Robustness mechanisms and tools”, is part of Work Package 5 (WP5) of

the European Union funded VEDLIoT project and focuses on development of the

part of the platform ecosystem related to tools and mechanisms for ensuring secu-

rity, safety, and robustness of VEDLIoT solutions.

The report is organized as follows:

Chapter 2 provides an introduction, overview and summary of the structure and con-

tent of the remainder of the document. The second chapter is an introduction to the

project and WP5’s goals with reference to the tasks contained in the Work Package.

Chapter 3 describes the capabilities of the WebAssembly as a go-to technology to

provide interoperability in the cloud-edge continuum, in contrast to other popular

solutions aiming to solve similar problems. We discuss various implementations of

Trusted Execution Environment concept and the place of WebAssembly in this land-

scape. Finally, we present our novel research onWasm performance across different

architectures and discuss possible technological limitations in its current state.

Chapter 4 presents the issue of Remote Attestation of IoT devices in the context of

the well known Time-Of-Check to Time-Of-Use race condition. To address this issue,

we propose theAutoCertmechanism, combining the RemoteAttestation procedures

with the classic Public Key Infrastructure authentication processes. We also discuss

experimental results of the Proof-of-Concept implementation.

Chapter 5 presents the details of the implementation of SIRE, an infrastructure pro-

viding services crucial for a secure IoT system, such as remote attestation, auditabil-

ity, membership management and others. As SIRE achieved its full functionality, we

delve into the description of various modules and their responsibilities, concluding

with the analysis of its performance and scalability.

Chapter 6 focuses on software testing, specifically addressing latest developments

in the ML IoT space and describes the improvements in co-simulation capabilities of

Renode, an open source simulator of IoT and embedded systems. We discuss the pro-

posed automatic testing infrastructure and recent improvements in the simulation of

a Machine Learning accelerator developed in the Work Package 4.

Chapter 7 discusses the issue of robustness in Machine Learning algorithms and re-

views various techniques for its evaluation. It proposes a network block segmenta-

tion strategy that, when applied to the alpha − beta − CROWN algorithm, provides

better performance, result quality and lower resource cost than the classic approach.

Chapter 8 details the process of monitoring and mitigation strategies for run-time

errors. The chapter divides many possible errors into groups based on their source,

proposes solutions to combat errors from each group, and compares the efficiency

of implemented strategies to the existing standards.

Finally, in Chapter 9, we sum up our significant achievements and outline our plans

for future work and further development of proposed solutions.
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2 Introduction

VEDLIoT (Very EfficientDeep Learning in IoT) is developing a framework for theNext

Generation of IoT architecture, using deep learning algorithms distributed through-

out the IoT-edge-cloud continuum. The proposed new platform, which includes in-

novative hardware accelerators and software toolchains, is expected to bring sig-

nificant benefits to a large number of applications, including industrial robots, self-

driving cars, smart homes, and predictive maintenance of industry and assisted living

at home.

The growing criticality of automated systems depending on Artificial Intelligence re-

quires us to push for quality of these systems. In Work Package 5 (WP5) we focus on

several key aspects of these systems: security, safety, and robustness. This document

follows up from the second deliverable, ”Extended design and first implementation

of Security, Safety and Robustness mechanisms and tools” (D5.2) [62] as it takes the

implementation of these aspects and mechanisms to the next level.

Figure 2.1. VEDLIoT abstracted overview.

WP5 components appear mostly on the right-hand side.

Task 5.1 End-to-end attestation of distributed trusted environments

Duration: M1-M36

Building up on thework on attestation conducted in previous periods of the VEDLIoT

project, in this deliverable we discuss two approaches to attestation.

The first approach, described in Chapter 4, aims to address the well-known TOCTOU

problem. TOCTOU, or Time-Of-Check to Time-Of-Use, is a race condition observable

in various kinds of system, in which there is a period of time between verifying access

to a resource and actually using it. This period can be exploited by malicious parties

to interfere with this resource access.

As TOCTOU is a valid problem in the attestation scenarios we analyze, we propose

AutoCert, a mechanism described in Section 4.1 that aims to mitigate it using a well-

known Public Key Infrastructure. In Section 4.2 we discuss our experimental results.

10
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Another approach to the attestation problem, but also addressingmembershipman-

agement, auditability and coordination primitives, is the Trusted Verifier Service, or

SIRE, described in Chapter 5. With most of the functionality of SIRE already in place,

in Section 5.2 we present technical details of the implementation of various available

modules. Later, in Section 5.5, we discuss the evaluation procedure and test results

both for simple data reads/writes and for more complex join/attest operations. We

conclude with the introduction of one of our goals - implementation of a SIRE-based

application in the autonomous vehicle field (see Section 5.6).

Task 5.2 Security support for distributed execution and communication

Duration: M4-M36

In T5.2 we continued our work on a unified, secure execution and communication en-

vironment that would span the entire cloud-edge continuum of the class of systems

considered by VEDLIoT. In Chapter 3 we reintroduce the concept of WebAssembly as

an execution platform, then in Chapter 3.3.2wediscuss our involvement in combining

Wasm payloads with trusted execution environment, exemplified by Twine [84] and

WaTZ [85] - trusted Wasm runtimes for Intel and Arm solutions.

We present performance analysis of Wasm applications in Section 3.4. We discuss

two benchmarks: PolyBench/C (see Section 3.4.1) and SQLite-based benchmark suite

(see Section 3.4.2).

We are still working on evolving Twine. This work is done in cooperation with Cre-

dora, an American industrial partner developing fintech applications using software

derived from Twine. Thanks to this cooperation, we received a HiPEAC Tech Transfer

Award in December 2022 [13]. HiPEAC looks for examples of technology research

which have made it to the market, whether through licences, services or even the

launch of a company. Winners receive a monetary award and get coverage in the

HiPEACinfo magazine, and the HiPEAC website and social media accounts.

Task 5.3 Simulation platform for development and testing

Duration: M7-M30

This task aims at building a platform that will enable extensive testing at every stage

of the development of VEdLIoT to enable proper securitymechanisms. Themain goal

of this task is toprovide a tool toproject participants and futureusers ofVEDLIoT that

will serve as a testing and simulation solution, speeding up the platform’s develop-

ment process by providing a reliable and deterministic testing environment, as de-

scribed in the Chapter 6. Thorough testing of solutions like VEDLIoT is an extremely

important issue as critical IoT applications need to satisfy high-level security require-

ments. The platform mentioned above is being built on top of the Renode Frame-

work [21], an open source simulation environment developed by Antmicro, capable

of simulating complex multi-node, heterogeneous, interconnected IoT systems. The

tool will be able to simulate the platform developed as part of Task 4.7. Users will be

able to use the same unmodified software that will be running on the target hard-

ware, which reduces the overhead often associated with extensive software testing

and, as a result, encourages the user to use the tool as it can be easily integrated into

their existing workflows. Renode will provide additional tracing, inspection, and de-

bugging capabilities that may not be available on the target platform. To improve

development experience we have greatly extended our co-simulation capabilities,

polishing support for currently available buses (see Chapter 6.1) and adding new fea-

11



D5.3 Version 1

tures like two-way communication for peripherals acting as both transaction recipi-

ents and initiators (see Chapter 6.1.3). All improvements to the Renode Framework

will be released publicly on a permissive, open source license.

Task 5.4 Continuous integration workflow

Duration: M18-M36

With the aim of to prepare a system that can be used by project participants to test

and verify the software for the SoC (System-on-Chip) created as part of Task 4.6 and

Task 4.7, we have started our work described in Section 6.2.2. The system will be

based on the platform developed in Task 5.3. It will provide continuous integration

capabilities, ensuring the fitness of the software at each stage of development. The

testswill range fromverificationof basic functionality to analysis of the entire system

behavior, including remote attestation and encryption mechanisms. The system will

allow project members to add their own tests to the suite and share themwith other

participants. Testing suites will be executed using a CI (Continuous Integration) sys-

tembasedonGitLab. The implementation of cloud-based testing provides significant

improvements compared to local testing, like almost endless scalability, flexibility,

and the ability to collaborate on the project regardless of the physical location. Tests

will be executed in a deterministic manner, in a strictly controlled environment, for

every version of the software, using unmodified binaries. Users will be able to pro-

vide input for sensors and other available interfaces, testing the system’s behavior in

synthetic, possibly hostile conditions, thus improving the robustness and security of

the system.

Task 5.5 Safety and Robustness

Duration: M7-M36

In the course of VEDLIoT we conducted analyses of adversarial attacks on Deep Neu-

ral Networks (DNN). DNNs deployed in safety-critical applications need to be well

understood in terms of their susceptibility to malicious inputs and decisions made in

extreme scenarios. We analyzed the available solutions for verification of robustness

of such networks in Chapter 7.

We also propose a network block segmentation approach, which, when applied to

the alpha− beta−CROWN algorithm, helps us significantly improve performance of

computation. In Section 7.7we present our experimental network and, in Section 7.8,

we discuss the results of evaluation of different algorithms.

In the last technical Chapter 8 we discuss safety in the context of a real-life, safety-

critical use case - PedestrianAutomatic EmergencyBraking (PAEB) system, developed

as part of T7.4. We discuss monitoring of ML systems via the quality of input and

output data, and we present the categorization of run-time errors (see Section 8.1).

Finally, we analyze various error mitigation strategies in Section 8.3 and conclude by

presenting current trends in safety standardization.
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3 Common Layer for the Cloud-edge Continuum

VEDLIoT’s WP5 aims at developing several system-level tools for adding dependabil-

ity and security to the execution of machine-learning applications on a distributed

environment. One particular aspect developed is the support for secure execution

and communication of critical code on edge devices.

For that matter, we leverage hardware features for trusted execution environments

combinedwithwell-established dependability techniques to support the tools devel-

oped in other work packages (accelerator design, hardware, deep learning, and use

cases). In terms of execution environment, VEDLIoT has provided a number of tools

for supporting secure execution of code in untrusted (edge) devices.

In this chapter, we develop our main idea of using WebAssembly as the interopera-

ble environment and trusted hardware as the means for achieving secure execution.

This chapter is largely inspired by a scientific paper, published in the Workshop on

Flexible Resource andApplicationManagement on theEdgeof theHighPerformance

Distributed Computing (HPDC) conference in 2022 [76].

3.1 WebAssembly as a common layer

In the last decades, numerousWeb applications have been developed to be accessed

from anywhere, including personal computers and smartphones. Many of these pro-

grams were later moved to the cloud to be more practical or cheaper to maintain.

Other applications were initially designed for the cloud for scalability and availability

while relying on the cloud’s naturally distributed and replicated nature. No matter

the reason, cloud computing has become one of the main infrastructures supporting

applications today.

The cloud was not always big as it is today. It started simpler, with a handful of

providers and basic services such as virtual machines and virtual storage. Numerous

cloudproviders have come toexist to supply today’s enormous cloudmarket demand.

Nowadays, some applications are built to exploit the cloud as a heterogeneous envi-

ronment. They can exploit it to obtain, for example, lower latency, more resilience,

or legal compliance. With a growing number ofmulti-cloud applications, dealingwith

different cloud providers and technologies has become a frequent issue.

Telecommunication companies started to deploy a more distributed infrastructure,

with smaller, cloud-like clusters closer to the consumersof network-based services, to

improve the latency of their services. Local administrations and other infrastructure

providers such as energy and transportation followed suit, deploying small groups of

rather powerful computing devices close to the human activity they support. The use

of these highly distributed devices has been collectively named edge computing [94].

To complete today’s scenario, billions of sensing and actuating devices have been de-

ployed, called the Internet-of-things, or IoT. These devices are often tiny, with limited

processing capabilities. They execute simple tasks, such as sensing a temperature or

turning on and off a light bulb. Yet, they are connected to the Internet, often coordi-

nating their function using some edge device and connecting users through a cloud

service.

13



D5.3 Version 1

Cloud Silo

Cloud
Infrastructure

Cloud
Applications

Cloud Data

Edge Silo

Edge
Infrastructure

Edge
Applications

Edge Data

IoT Silo

IoT
Firmware

IoT Data

GPS

Figure 3.1. Independent cloud, edge, and IoT silos.

IoT, edge and cloud infrastructures form together what has been called the cloud-

edge continuum [37]. This collective infrastructure is far from seamless today. They

actually exist in separate silos, dominated by proprietary solutions, as shown in Fig-

ure 3.1. Developers of applications that span the whole continuum must implement

specific solutions for each silo, often built using incompatible software components.

The absence of a seamless environment makes it much harder to use the cloud-edge

continuum. Yet, a good part of VEDLIoT’s intentions is to help building distributed

machine learning applications, partly running in the edge and cloud devices, and us-

ing data streams form the IoT.

Security has always been a component of applications shared among multiple users.

Traditional security is used to deal with encryption, authentication, and access con-

trol, andmany established tools exist. With the advent of the cloud, which is accessed

through the Internet, security has become a fundamental component of all applica-

tions. Providers, developers, and users must be able to trust in the whole continuum

— cloud, edge, and IoT— to ensure that their data is safe and their computations are

correct.

We advocate that the technology provided by WebAssembly is adequate for imple-

menting seamless applications across most hardware devices and software environ-

ments of the cloud-edge continuum, with the appropriate level of security. To sup-

port our claims, we present a comparison ofWebAssembly running benchmark suites

on two processor architectures. To the best of our knowledge, we were the first to

compare WebAssembly performance on different CPU architectures.

Modern hardware allows running WebAssembly while achieving good performance

and high levels of security. When paired with trusted computing, a technology that

guarantees the confidentiality and integrity of secure applications,WebAssembly ab-

stracts the complexity of software development while offering a trustworthy execu-

tion environment. Nonetheless, many pieces are still missing from a fully-fledged

cloud-edge continuum. Consequently, we also shed some light on the work yet to be

covered by the research and industrial community.

In the particular case of VEDLIoT, we have several use cases developed in Work Pack-

ageWP7 that can benefit froma seamless common layer spanning over all the contin-

uum. As an example, the Automotive AI Use Case relies on four types of processing

nodes: a camera processing device, the vehicle central processing unit, a 5G base

station edge processor, and a cloud server. It is already complex enough to simply

deploy an application on such a different (and incompatible) set of devices. Program-

ming them involves knowing and using several different programming environments,
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which may even impose specific languages, increasing heterogeneity. With devices

deployedon thefield, such as the vehicle or the base station, security becomes a clear

need. A common layer and the added security features as proposed here can clearly

simplify the task of developing and deploying such applications.

In the following, we start by developing the current drawbacks of existing software

architectures in more detail. We then present WebAssembly and its advantages for

executing applications in the cloud-edge continuum. We complement our presen-

tation with a preliminary performance comparison when executing selected applica-

tions usingWebAssembly on twoprocessor architectures to prove our claims of cloud

to edge viability. We conclude with a few ideas for future work on the subject.

3.2 Building the cloud-edge continuum

A typical cloud environment is a rather complex systemcontaining numerous (anddif-

ferent) hardware components. Such components are exploited using extensive col-

lections of software, managed by large engineering teams, and shared by many ten-

ants. Adding the edge (and IoT) to the picture pushes size and heterogeneity to an-

other dimension. An ideal seamless cloud-edge continuum should offer a lightweight

execution environmentwith a similar (or even identical) software and hardware inter-

face, allowing unmodified code to be executed in any machine in the system.

Some initiatives already exist for a common environment for cloud, edge, and IoT

silos. The Java Virtual Machine (JVM) [104] is one of the first practical common envi-

ronment implementations that address the issue of applications running on hetero-

geneous underlying systems. To a considerable extent, the JVM is today one of the

most comprehensive choices, with implementations for commodity servers to em-

bedded devices. Still, the JVM supports very few programming languages and adds

substantial performance overheads compared to the native execution of C programs.

Java programs depend on a vast number of class libraries, imposing a large memory

footprint for executing even the simplest of programs. Containers appearedmore re-

cently [32] as an alternative for running applications in heterogeneous environments.

Still, containers are defined for specific architectures and a particular operating sys-

tem interface. One needs to rely on recompilation to obtain containers that can run,

for instance, on Intel and Arm devices (respectively popular as cloud and edge de-

vices). WebAssembly has thegenerality of JVMand the lightness of containers, allow-

ing to build multi-platform software that can execute with negligible performance

losses and small memory footprints.

To automatically deploy applications in a distributed system, one has to deal with as-

pects such as admission control and resourcemanagement, aswell asmonitoring and

optimising the use of the devices to compute and communicate. We are unaware of

any practical, specific tool spanning thewhole cloud-edge continuum, butwe assume

it would be straightforward to adapt many of the existing tools developed for the

cloud [38], provided that the underlying systems become more homogeneous. Also,

a few authors have already startedworking onmodels for integrating cloud and edge

devices into a seamless system [37, 31, 33]. We do not address the issue in this chap-

ter. Instead, we propose to use a homogeneous runtime model to close the gap at

low-level.

As said, security has become an essential issue in cloud systems. Application users
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need guarantees that their data’s confidentiality and integrity are respected. These

guarantees are hard to provide in amulti-tenant system, where co-tenantsmay abuse

the system’s vulnerabilities to uncover (or infer) someone else’s application data. It

is even more complex when the infrastructure provider is curious, as it has all the

administrative power needed to inspect all contents in all physical machines. On the

other hand, infrastructure providers wish to be protected from malicious tenants,

who may want to exploit the infrastructure vulnerabilities for their own profit.

Edge computers are much more distributed when compared to the cloud. They are

installed in user buildings, shared infrastructures, or even next to roads, making it im-

possible to maintain physical control over resources. Edge administrators have phys-

ical access to the edge devices they manage, with similar powers to cloud providers.

On the other hand, users are in the proximity of the edge devices andmay even phys-

ically abuse them. Edge-based infrastructure offers far fewer guarantees than the

cloud.

Most recent versions of popular computer architectures include a form of a Trusted

Execution Environment (TEE), a practical solution for establishing trust. Such TEEs

allow code execution in a separated hardware section, where access from other soft-

ware is architecturally impossible. A TEE can execute a program and protect its data

so that amachine administrator cannot access it. Current hardware implementations

may include an extra execution mode in the processor or even memory encryption

for TEE data. The most popular implementation of TEE today is Intel’s Secure Guard

Extensions (SGX) [75], for which commercial cloud services such as Azure Confiden-

tial Computing [78] already exist. A similar solution is also necessary for edge de-

ployments, where the most popular architecture is Arm, which in turn offers Trust-

Zone [26] as a TEE. The existence of proprietary and incompatible solutions in the

underlying hardware makes it harder to reuse trusted software from cloud to edge

and vice versa.

Confidential containers could be a practical alternative for deploying applications on

the cloud-edge continuum, as proposed by Scontain [27]. They are similar to tradi-

tional containers, except they run entirely inside a trusted environment. However,

like other containers, they are platform-dependent. Also, they are costly in terms of

the resources needed in many cases, as they may incorporate substantial amounts of

operating system features.

Microsoft’s Azure Sphere [79] follows the same idea but offers a unified program-

mingmodel and support for certain trusted execution technologies. As a proprietary

solution, it is heavily dependent on other Microsoft services. It offers a high-level

interface but only supports a few programming languages.

By proposingWebAssembly as the executionmodel combinedwith trusted execution

environments, we can offer a seamless portability base for running trusted applica-

tions. The same base can be used to deploy applications on edge or cloud devices

with similar security guarantees. Besides, it has been shown that a WebAssembly

TEE enables a double-sided sandbox [47], providing better security for the provider

and the tenants.

Many different IoT infrastructures have been deployed and continuously generate

data, feeding cloud applications worldwide. Components in the application chains

(IoT to edge to cloud)may be updated independently, adding new functionalities and
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removing vulnerabilities. Particularly in this application area, we observe the grow-

ing use of federated Machine Learning, where edge devices collaborate to build a

model without revealing all details of each user’s data, helping to maintain data pri-

vacy. Besides, attestation [83] plays a fundamental role in such a dynamic, distributed

scenario. It allows for establishing trust in specific pieces of software, verifying their

authenticity and integrity. Through remote attestation, one can ensure to be com-

municating with a specific, trusted (attested) program remotely. We believe that at-

testation plays an essential role in building a fully trusted environment for running

cloud-edge continuum applications.

3.3 WebAssembly under the hood

This section describes how the cloud-edge continuum can leverage WebAssembly as

a unifying technology and the keybenefits over the current state-of-the-art solutions.

3.3.1 WebAssembly binary instruction format

WebAssembly (Wasm) [52, 11] is a novel and general-purpose virtual instruction set

architecture (ISA). In contrast to previous efforts for platform-independent execu-

tion, such as Java fromOracle andMicrosoft .NET,Wasm is developedby a consortium

of technology companies from the beginning, such as Microsoft, Google and Mozilla,

among others. While it was initially designed to increase the performance of Web

applications, Wasm does not depend on anyWeb-related features and is increasingly

used for building standalone applications. Wasm has many advantages to be used as

a unified execution unit for the cloud-edge continuum. First, Wasm is a compilation

target for awide variety of programming languages, enabling developers towrite ap-

plications using their favourite programming languages and deploy them across the

continuumwithout adaptation. Second, contrary to Java and .NET, Wasm is compact,

has minimal dependencies, and offers additional security benefits, such as sandbox-

ing.

Wasm interacts with the underlying operating system thanks to the WebAssembly

System Interface (WASI) [82], a specification standardising a POSIX-like interface. It

has beendesignedwith conciseness andportability inmind, enabling theplatforms to

implement the specifications with ease, ideal for constrained environments, such as

IoT andedgedevices, aswell as TEEs. It currently offers a set of 46 functions, allowing

applications to interactwithfiles, networking, andmanyotheroperating systemfunc-

tions. Popular compilers for languages such as C and Rust seamlessly translate POSIX

calls to WASI calls. Additionally, WASI follows the concept of capability-based secu-

rity, a security model where each resource (e.g., socket, file) access must be granted

by the Wasm runtime, enabling establishing a sandbox. For example, WASI restricts

the application to a subtree of the file system by introducing an abstraction layer be-

tween the Wasm program and the operating system interface.

Finally, Wasm runtimes can have different memory footprints depending on the exe-

cution model, such as interpretation, just-in-time compilation (JIT), or ahead-of-time

compilation (AOT). As an example, WAMR [12] is a micro runtime aimed for edge de-

vices that has a file size of 209 KiB when running AOT code and 230 KiB when inter-

preting, and 41 MiB when executing JIT code. A growing list of toolchains already

supports Wasm as a compilation target for different source languages, including C,

C++, and Rust. Examples are LLVM [66], an entire compilation infrastructure, and
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Emscripten [116], a source-to-source compiler. Support for other programming lan-

guages, including C#, Go, Kotlin, Swift, and more, are under active development. For

all these reasons, we believe Wasm to be an excellent choice for the binary architec-

ture of the entire cloud-edge continuum.

3.3.2 Trusted execution environments

Trusted execution environments aim to provide safe and trustworthy code execu-

tion on (remote) untrusted hardware. Hardware manufacturers have provided TEE

implementations more than a decade ago, each one of them offering different fea-

tures and guarantees. Themost influential TEEs that are currentlymarketed are Intel

SGX [39], Arm TrustZone [26], and AMD Secure Encrypted Virtualization (SEV) [41].

These technologies enable processing data in isolated memory areas that cannot be

accessed nor tampered with by more privileged software, such as the operating sys-

tem or the hypervisor. Hence, cloud providers and edge device owners with manage-

ment rights or even physical control cannot access the data and computation of a

tenant, protecting the confidentiality and integrity of their applications.

Cloud providers, such asMicrosoft Azure andGoogle Cloud, alreadymarket confiden-

tial computing, and we expect widespread adoption of these services due to the de-

mand driven by the cloud-edge continuum [78, 49]. We observe that the rich ecosys-

tem of trusted environments largely varies in terms of security, threat models, and

implementation. However, defining a common basis for trusted execution and mak-

ing it widely available in both cloud and edge environments is essential for the con-

tinuum and the industry in general. For that reason, Arm, Intel, Microsoft, and others

created the Confidential Computing Consortium (CCC) [1], supporting open-source

projects for trusted execution technology under the umbrella of the Linux Founda-

tion. A unified abstraction for TEEs in the cloud-edge continuum must take support

and shape from such ongoing efforts. For that reason, the CCC is involved in many

projects, such as Enarx [2] and Veracruz [8], which aim to provide Wasm support in

TEEs independently from hardware.

In our previouswork, we proposed a few solutions to execute general-purposeWasm

applications within TEEs. We developed Twine [84] to bring a Wasm runtime into In-

tel SGX enclaves, leveragingWASI to interactwith the TEE facilities and the untrusted

operating system. More recently, we proposedWaTZ [85], a trusted runtime for Arm

TrustZone with added remote attestation. The latter, an essential feature for pro-

viding trust for remote applications, is surprisingly missing in Arm’s architecture. We

believe that industrial versions of our prototypes will help pave the way to build dis-

tributed applications on the cloud-edge continuum that providers, developers, and

users can safely trust.

3.3.3 Live migration of applications

Migration is another need of the cloud-edge continuum that can be helped with the

homogeneity offered by . Migration may be needed for a variety of reasons. Some

applications have strict latency constraints and may need to migrate to keep close

to mobile users. Some applications temporarily require high processing power and

may need tomigrate to powerful cloud processors. Some applicationsmay alsomove

closer to where data is collected because of legal regulations, because users want to

process their private data locally, or simply because it is faster to process it closer to

their sources. Migration is much more of a challenge if the underlying environment
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is as heterogeneous as the continuum.

Previous work covered the needs and solutions to hand off virtual machines [51], re-

quiring transferring large amounts of data representingmemory or even disk images.

Transferring Intel SGXenclaves [17] is not only bound to a specific TEE technology but

also depends on the application’s help to provide its state since the operating system

cannot access enclave memory. In contrast, Wasm offers a great environment to mi-

grate running applications, thanks to its linearmemory design and sandboxingmech-

anism. Indeed, Wasm’s memory is stored in a contiguous memory segment, where

references in code are relative to its starting address. Moving the linear memory to

another address ormachine does not involve any changes to the references in the ap-

plication state. Furthermore, the opened resources are tracked by the runtime with

WASI, enabling the reproduction of external dependencies. Jeong et al. [58] studied

the live migration of applications loaded in browsers by replicating the linear mem-

ory. Nonetheless, migrations of Wasm applications with opened dependencies from

cloud to edgemachines are yet to bedemonstrated. Theprocess ofmigrating execut-

ing software depends on the underlying system and its dependencies (e.g., opened

files, sockets). We believe future work will enable applications to be seamlessly de-

ployed and moved across the cloud-edge continuum, regardless of the device’s pro-

cessor architecture, TEE technologies, and operating systems.

3.3.4 Technological limitations and pitfalls

While we presented many advantages of Wasm, limitations also exist. One first chal-

lenge is simply compiling applications in Wasm. Even though compilers are mature

enough to translate source code into Wasm bytecode (e.g., LLVM), the support of-

fered by WASI for surfacing system calls remains limited. Lifting this limitation by

extending WASI to match POSIX fully would probably restrict the ability to execute

Wasm applications in various environments, such as Web browsers or TEEs. Also, the

behavior of WASI diverges from POSIX by adding sandboxing. One alternative is to

avoid usingWASI, as done by Emscripten, which compiles and defines the import sec-

tion of Wasm applications with POSIX functions and system calls directly. While this

helps run legacy Wasm programs with only a few changes on POSIX systems, it re-

duces portability for platforms without POSIX, such as other OSes (e.g., Windows)

and restricted environments (e.g., TEEs or IoT devices).

Executing Wasm code imposes a performance overhead, as it happens with all inter-

mediary representations. As we demonstrate in Section 3.4, Wasm programs may be

up to 3× slower when compared to their native version, depending on the type of

workload. This is explained by many factors, such as increased register pressure, ad-

ditional branch instructions, increased code size, stack overflow checks, and indirect

call checks. While some of these issues can be compensated by allowing compilers

to spend more time generating better code, other factors are a consequence of the

design constraints ofWasm, which would require changes in theWasm specifications

to be solved at the cost of complicating the implementation of the compilers and the

way Wasm operates [57].

Another less perceptible limitation is the size of the allocatable volatile memory for

Wasm applications. Wasm uses linear memory to store the heap of an executing pro-

gram. The linear memory is measured in pages, where each page has 65536 B (216). A

linear memory instance can contain up to 65536 pages, for a total of 4 GiB (232). Be-
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Figure 3.2. Relative performance of Polybench/C benchmarks.
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Figure 3.3. Relative performance of SQLite Speedtest1 benchmarks.

sides, Wasm memory instructions’ indices are 32-bit unsigned integers. While most

software does not require more than 4 GiB of linear memory, this may restrict some

applications ofWasm, such as training sizeable deep learningmodels or keeping large

databases in memory. Fortunately, recent proposals [4] aim to extend this limitation

by increasing the number of allocatable pages to 248, pushing the theoreticalmemory

cap to 16 EiB (264).

Finally, Wasm is still young and improving through community proposals. Its second

major version has been recently released [11], introducingmany features, such as ref-

erence types, bulk memory, and SIMD instructions. Future contributors may propose

Wasm and WASI extensions to relax the limitations or extend the capabilities of the

specifications. For example,wasi-nn is a proposal to add a WASI module for machine

learning to facilitate model inferences [9]. In conclusion, we expect that the current

limitationsofWasmwill recedewith respect to software compilationanddeployment

for the cloud-edge continuum, thanks to advances in compilation toolchains, exten-

sions of the specifications, and better support of Wasm for all types of devices and

environments, including TEEs.

3.4 Performance

This section shows howWasm scales across the continuum, going from cloud to edge

devicesusingdifferenthardware configurations. While recent researchdemonstrates

the performance of Wasm in general, we are the first to compare two benchmark

suites on different processor architectures. Our goal here is to show that Wasm is vi-

able for running code on a variety of devices for similar workloads without suffering

from significant performance overheads.

As an example of a cloud server, we use a Supermicro 5019S-M2, equipped with an

Intel Xeon E3-1275 v6 (3.8GHz). We settled for an off-the-shelf NXPMCIMX8Mboard

as an edge device equipped with an Arm Cortex-A53 (1.5 GHz). While TEEs are not

demonstrated in this work, these two platforms support trusted execution, namely

Intel SGX for the former and Arm TrustZone for the latter. We already illustrated how

Wasm could be embedded within SGX and TrustZone in our previous work [84, 85].

We opted for WAMR as a Wasm runtime for its small size and portability across op-

erating systems and constrained environments, such as TEEs. TheWasm benchmarks

are compiled into Wasm format using Clang, then compiled again ahead-of-time into
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a native format using the compiler provided by WAMR (i.e., wamrc). Time is measured

using the POSIX function clock in all the benchmarks and averaged using themedian.

3.4.1 PolyBench/C micro-benchmarks

PolyBench/C [5] is a CPU-bound benchmark suite comprised of various mathematical

experiments and commonly used to evaluate the performance of Wasm applications

and runtimes [57, 47, 84]. The name of the experiments has been abbreviated in this

chapter for conciseness. We assessed 30PolyBench/C experiments and compared the

performance overheads Wasm introduced on x86 and Arm architectures relative to

each of their native versions (plain x86-64 and Arm ELF binaries). As such, thesemea-

surements compare how Wasm applications perform depending on the deployment

target (i.e., cloud or edge machines).

In Figure 3.2, weobserve a similar slowdownbetween theWasmexperiments onboth

architectures. Indeed, Wasm on x86 and Arm architectures both achieve a slowdown

relative to the native of 1.3×. We identify and summarise the following groups based

on the test performance results: (1) the run time ofWasm and native are similar (e.g.,

lu, gra, adi), (2) the run time of Wasm is similar but slower than native (e.g., s2k, f2d,

j1d) (3) the run time of Wasm is faster than native (e.g., der, tri, nus), and (4) the run

time of x86 Wasm are significantly slower than ArmWasm and native (e.g., j2d, h3d).

Wasm is naturally slower than native code because of the increasing register pres-

sure and code size and the presence of extra branch statements, as discussed in pre-

vious work [57]. In some rare cases, Wasm may be faster than native thanks to a re-

duced number of cache misses, as we observed in our previous work [84]. Finally,

someworkloads are notwell optimisedwhen compiled inWasm and then recompiled

ahead-of-time into native code, as can be observed for the Arm versions on the left-

hand side of Figure 3.2.

3.4.2 SQLite macro-benchmarks

SQLite [59] is a widely used full-fledged embeddable database. Thanks to WASI, we

showcase theversatility ofWasmbycompilingand runningSQLiteoutsideof abrowser.

As such, we diverted the operating system calls made by the database engine to be

handledbyWAMR. For this purpose, we implemented a shimOS layer as theminimum

set of POSIX functions in WASI necessary to support SQLite’s in-memory databases.

We assessed SQLite performance using its official benchmark suite (Speedtest1 [7]),

running 29 out of the available 32 tests, covering a large spectrum of scenarios (we

excluded 3 experiments because of issues with our shim layer). Each Speedtest1 ex-

periment targets a single aspect of the database, e.g., selection using joins or the

update of indexed records.

Figure 3.3 presents our evaluation, wherewe compare the execution speed ofWasm,

using both x86 and Arm architectures, and again normalise against the native run

time. Overall, the Wasm slowdown relative to native is 2.7× for x86 and 2.1× for

Arm. Most of the experiments (located on the right-hand side of the figure), which

are slower, are related to inserting, updating, or deleting data (i.e., 100-120, 180, 190,
230-250, 270-300, 400, 500). The remaining experiments are related to data reading

(i.e., 130-145, 160, 161, 260, 320, 410, 510, 520) and housekeeping (i.e., 980, 990). There-
fore, we correlate an increasing impact on the performance of write-intensive oper-

ations. Finally, when preparing the experiments presented here, we noticed a per-
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formance improvement in WAMR’s ahead-of-time compiler compared to our results

from 2020. Indeed, in our previous work on Twine [84], we measured similar native

performance on the same x86 hardware and a considerablyworse performancewhen

usingWAMR (was 4.1×). This strengthens the perspective of usingWasm as a univer-

sal, lightweight, yet versatile bytecode to enable platform independence across the

continuum.

3.5 Closing remarks concerning the common layer

We envision the cloud-edge continuum as an interoperable, scalable, and distributed

systemwhere softwaremay be located to any peer, regardless of the underlying plat-

form. This practice will transform the development life cycle of future applications,

enabling developers to focus on the business value instead of dealing with the com-

plexity of each different piece of infrastructure. Wasm is a perfect fit for that task,

thanks to its abstraction from the operating system, device type, programming lan-

guage, and the added security guarantees it can provide using TEEs.

We presented some performancemeasurements showing thatWasm is a viable alter-

native to native execution, with acceptable overheads. We covered many aspects of

howWasmcanbe successfully adopted for the cloud-edge continuum, suchas trusted

computing, which enforces the applications’ confidentiality and integrity, and livemi-

grations, diminishing the latency or increasing the computation power by relocating

running software seamlessly.

The remaining challenges concern enhancing the interoperability with the existing

programming languages towards Wasm while extending WASI to increase the capa-

bilities of hosted applications. For example, recent initiatives are bringing neural net-

works [9] and parallelisation [10] into the WASI specifications. Building middleware

software that connects the spectrum of the cloud-edge continuum, based on many

factors (e.g., latency, computation power) to ease the deployment and migration of

Wasm applications, is yet another milestone to reduce the gap between the cloud

and the edge worlds. We are confident that Wasm and trusted computing can serve

as the foundation for software development for large-scale systems in the years to

come.
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4 TOCTOU-secureRemoteAttestationandCertification

for IoT

A key component in securing connected IoT systems is ensuring the integrity of the

IoT software-state and detecting any change. This is typically achieved with Remote

Attestation (RA), which aims at verifying the state of the software/memory of an

untrusted attester (i.e., an IoT device) by allowing a trusted verifier to engage in a

challenge-response-based exchange of proof. RAmechanisms rely on hardware/soft-

ware/hybrid Root-of-Trust. As a result of said attestation, the attester is certified

with a certain level of assurance guaranteeing software-state integrity that impacts

trust decisions within networked systems. The attestation often results in software

updates or issuing certificates indicating device assurance levels. The certificates in-

clude information like the assurance evidence, device IDs, assurance level indicating

the trustworthiness of the device, etc. These certificates issued for IoT devices dif-

fer from conventional certificates due to the resource constraints of the device, dy-

namic operational environment, diversity in the supply chain, vulnerability manage-

ment, etc.

In Deliverable D5.2, we briefly introduced the standard IETF RATS in the context of

remote attestation schemes suitable for IoT and highlighted the TOCTOU challenge

that the schemes face. In this chapter, we introduce and explain Automated digital

Certification (AutoCert) to provide TOCTOU-security by combining Remote Attesta-

tion results about assurance of device health with standard Public Key Infrastructure

(PKI) authentication processes.

In the context of RA and certificates that reflect the attested state of the device,

the Time-Of-Check to Time-Of-Use (TOCTOU) race condition may take effect. The

Time-Of-Check to Time-Of-Use invalidity is a highly contextual problem, existing in

remote attestation, operating systems, certifications, etc., and remains possible in

this case as well. Due to the dynamic nature of IoT systems, the software-state of

the device may have changed in the delta time between the RA and the certificate

issuance due to a software update, vulnerability exploitation, or software version

update. Although potential solutions exist to prevent and resist TOCTOU attacks in

Trusted Platform Module (TPM)-based remote attestation, a solution that provides

a mechanism to validate the current software-state against the attested state and

use an assurance certificate without invoking RA again, is missing and is critical in the

IoT domain. However, a solution that provides a mechanism to validate the current

software-state against the attested state in certificates without invoking RA again is

also critical in the IoT domain.

4.1 AutoCert - Proposed Mechanism

The mechanism we called AutoCert is an automated procedure comprising of inter-

actions among an IoT owner, IoT devices as a part of a networked system, a trusted

third-party responsible for attesting the device’s software-state, e.g., a Conformity

Assessment Body (CAB), and a standard Certification Authority (CA) to enroll device

certificates.

23



D5.3 Version 1

4.1.1 Pre-deployment

The manufacturer commissioned the IoT device with software, platform/device cer-

tificate, a dedicated TPM 2.0 chip, and a secure unique device identifier during de-

vice initialization. The platform certificate binds the TPM to the IoT device. The se-

cure unique device identifier, i.e., UDevID, is a hardcoded identity like a device URI,

EUI, or DevID playing a role in IoT device identification in local and global networks.

The TPM’s Root-of-Trust originates with a unique 2048-bit RSA key pair, known as the

Endorsement Key (EK ). The TPM restricts the use of the EK to a limited set of de-

cryption operations as per the TCG rules, and it cannot be used directly for device

authentication or digital signatures. Therefore, we generate a 2048-bit RSA key pair,

the Attestation Key (AK), using the EK as a seed for attestation. The attestation cer-

tificate (CertAK) corresponding to the AK is also generated at this state by the IoT

manufacturer. The IoTmanufacturers and solution providers classify IoT devices into

usage profiles based on their deployment scenario, e.g., smart home, automotive, in-

dustrial, critical infrastructure, smart grid, etc. In AutoCert, the IoT owner assigns a

device_profile to the IoT device to enable security policies for devices within a net-

work. This categorization assists CAs and CABs in conducting reasonable risk assess-

ment and vulnerability management throughout the device lifecycle. The IoT device

is configured to boot with trusted software that measures (i.e., calculates the hash)

the next software to be run and stores this hash in a Platform Configuration Reg-

ister using the TPM2_PCR_Extend function. This process continues through the OS

kernel code resulting in a chain of measurement. In AutoCert, we propose configur-

ing security-critical software, libraries, files, and executables as a part of this chain of

measurements.

4.1.2 Implementation of Secure Boot into the Secure IoT Gateway IoT Bridge

component

The Secure IoT Gateway, as described in Deliverable D5.1 [82], secures network con-

nections between hosts by establishingVPN connections between the IoTBridge and

Local / Cluster Gateway, thus encrypting network traffic sent between hosts. IoT

Bridges provide the VPN entrypoint for hosts by directly connecting the host via eth-

ernet orWi-Fi to an IoT Bridge. These Bridges are later deployed within a close range

of the to-be-secured hosts, which raises the necessity to further secure the system

beyondVPNencryption. It is possible that IoT systemsor hosts arephysically exposed

or open to public access, like sensors or network cameras in buildings. Because the

IoT Bridge is designed to be kept within range of the secured host, it has to be hard-

ened towards physical access attacks.

Until now, the IoT Bridges are using SD-Cards or on-board eMMC as their boot drives,

whose contents are unencrypted and not authenticated upon boot. By accessing the

unencrypted filesystems on the boot drives, an attacker could run their own software

on the IoT Bridge, thus bypassing the VPN tunnel or re-routing the traffic to another

server. The private and public keys, which are used for authentication on theNetwork

Cockpit backend, are also stored in the filesystem. They could be used by an attacker

to imitate the device at the Network Cockpit side. It would also be possible to gain

partial access to the VPN network created by the Secure IoT Gateway. This could be

done by extracting the shared-key and the OpenVPN settings and parameters used

for VPN encryption. So called “Zones” restrict the routing between VPN tunnels. All

devices placed in the same Zone could be accessed by the hijacked VPN tunnel.
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In order to circumvent the listed attack vectors, we are planning to integrate a Root-

of-Trust inside the IoT Bridge. All known attack vectors depend on the unencrypted

file system and a lack of boot ROM verification. By establishing a Root-of-Trust inside

the SoC of the IoT Bridge, these attacks can be circumvented. We are focussing to

integrate Secure Boot on the IoT Bridge, because the used ARM SoCs are equipped

with eFuses to enable bootloader verification by the boot ROM.

4.1.3 Remote Attestation

AutoCert’s remote attestation is built on the Challenge/Response Interaction Model

from the RATS architecture. Before a device is attested (Fig. 4.1), the IoT owner is

responsible for generating the reference values corresponding to the device soft-

ware/s and securely transferring them to the verifier. We assume a confidential ex-

change of these values. Before the remote attestation begins, the IoT owner sends a

signed request to the CAB with the UDevID and device_profile of the IoT device. The

CAB sends a signed attestation request containing a random nonce N and a PCRSe-

lection is sent to the IoT device. The TPM2_Quote function is used to generate the

evidence. The cryptographically strong random nonce N uniquely distinguishes the

evidence, determines its freshness, andprevents replay attacks. Wepropose thegen-

eration of an integrity key pair, IK, by the IoT device and sending it along with the ev-

idence for the creation of an integrity_proof. The IK is an RSA key-pair, IKpriv and IKpub

generated with the TPM2_Create function using the PCRSelection. Since any change

in the security-critical software on the device is recorded with an update to the PCR

using TPM2_PCR_Extend, the use of this PCRSelection in creating the IK ensures that

this key will not be valid if the software-state of the device changes.

A valid TPM-generated attestation key, the AK, is used to sign TPM-generated evi-

dence. It serves as a way for third parties to validate keys and data generated by

a specific TPM on an IoT device. On receiving the evidence, the CAB validates the

accompanying signature and compares the evidence against reference values. Fol-

lowing the attestation result and using a suitable risk assessment mechanism (not

discussed in this work), the attester’s Assurance Level is calculated against the de-

vice_profile. The results of attestation and the Assurance Level are used by the CAB

to ensure the software-state integrity.

TOCTOU and integrity_proof

The integrity key pair, IK, is proposed to address the TOCTOU race condition. The

PCRSelection contains themeasurements computedand storedduringmeasuredboot,

representing the IoT device’s software-state.

Using these PCRs in RA and generating the IKpriv and IKpub key pair creates a depen-

dence of the IK on the software-state of the device. As soon as the software-state

changes due to a new vulnerability or malicious update, the IK is invalidated.

This forms the core of AutoCert procedures and is a part of the proof of the IoT de-

vice’s software-state integrity, as it strictly locks the IK to a valid state of the device.

We compute an integrity_proof by aggregating the value of PCRSelection used in ev-

idence generation, i.e., PCRIntegrity and the IKpub. The integrity_proof , Assurance

Level, and UDevID are then shared with a trusted CA. The CA now possesses records

of attested IoT devices against their UDevID and the assurance attributes. These at-

tributes are integrated with the IoT profile of the standard X.509 certificate using
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Figure 4.1. Remote attestation procedure

custom extensions. This certificate CertAC reflects a CA-verified device identity (au-

thentication) as well the CAB-attested software-state of the IoT device (assurance).

4.1.4 Verification for TOCTOU-security

The verification of this integrity_proof for TOCTOU-security applies to all IoT devices

using X.509 certificates for authentication and establishing secure DTLS communica-

tion sessions with clients.

To achieve assurance of the IoT device’s software-state, the client performs two lev-

els of integrity checks, as presented in the Figure 4.2.

The first level of integrity check includes verifying the Assurance Level stated in the

CertAC. This Assurance Level would form the basis of network access policies or au-

thorization to access system resources.

However, as stated earlier, it is possible that the IoT device’s software-state changes
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after the remote attestation process, or CertAC enrollment. This can happen due

to malware or vulnerabilities in existing software. This scenario presents itself as

an instance of a TOCTOU attack, and checking the Assurance Level is insufficient in

security-critical cases.

To eliminate this TOCTOU condition, AutoCert facilitates another level of integrity

verification. Toperformthis Level 2 integrity check, AutoCert introduces a lightweight

service to ensure that the integrity_proof is valid. The verification process includes

sending a random challenge by the client to the IoT device after signing it using the

IKpub from integrity_proof in the CertAC. Since the integrity_proof is locked to the

state of the IoT device attested by CAB, it can only be decrypted by the IoT device if

it possesses IKpriv, hence guaranteeing proof of possession. The IoT device decrypts

the challenge, includes the current value of the PCRIntegrity, and signs it. The chal-

lenge ensures the freshness of this message exchange. The current value of the PCR

concatenated with the challenge is received by the client, which verifies it against

the PCR values from the integrity_proof , i.e., the PCRIntegrity confirming that no

changes have occurred concerning the software-state since attestation.

4.2 Implementation and Experimental Evaluation

As a Proof-of-Concept (PoC), we implemented theAutoCert setupwith an attestation

service on the IoT device, which is invokedwhen it receives an attest request. We also

implemented an integrity verification service corresponding to the two levels of in-

tegrity checks. The experiments are performed using the OPTIGA TPM Evaluation

Kit comprising of a Quad Core 1.2 GHz, 64-bit Raspberry Pi 3 with 1 GB RAM and an

Iridium board with OPTIGA SLM 9670 TPM 2.0. We choose TPM SLM 9670 for this

evaluation since it is specially designed for use automotive/industrial applications.

The following set of experiments aims to measure the system-wide execution time

of the proposed mechanism during different phases. We measured the Round Trip

Time (RTT) as the time elapsed from the start of each AutoCert phase until the com-

pletion of the phase. We measured the phases using a system clock in nanoseconds

and iterated the experiments 5-10 times to ensure statistical accuracy.

Phase 1 of AutoCert begins with a request to the CAB to initiate AutoCert remote

attestation with the IoT device. The RTT of this phase is 28800 ms. This phase is ex-

pected to execute during device assembly after the uniquedevice keys are integrated

into the hardware, and device software is installed. This does not interrupt runtime

services likemutual authentication, where excessive delays disrupt services, timeout,

or cancellation of operations.

Phase 2 of AutoCert is the certificate enrollment. On receiving a certificate enroll-

ment request from the IoT device, the CA checks for assurance attributes received

from the CAB, associated with the UDevID of the IoT device, and enrolls the certifi-

cate, including the assurance attributes. The enrollment of CertAC with assurance at-

tributes takes 7104ms. Thismeasurementmerely gives an estimate of the generation

of a certificate with additional extensions. In actual events, certificate issuance and

enrollment time also vary depending on the computational capabilities of the CA and

network capacity.

Phase3ofAutoCert provides 2 levels of assurance to the communicatingdevices. The

proposed Level 1 integrity check attains a basic level of assurance. This begins by ver-

27



D5.3 Version 1

Figure 4.2. Verification procedure

ifying the signature and the Assurance Level from the CertAC. An extended TOCTOU-

security of assurance is provided in Level 2. The Level 1 verification steps are exe-

cuted in 0.7ms, and the RTT for Level 2 verification, including minor network delays

between the two involved entities, is 4746 ms. The majority of the execution time

during Level 2 verification can be traced to the creation and loading of the encryp-

tion key. As these operations depend on the implementation of TPM specifications

and adjacent function libraries, it is reasonable to state here that the RTT for Level 2

verification is justified considering the hardware security guarantees provided by the

TPM.

4.3 AutoCert - Conclusion

This chapter presented AutoCert, addressing TOCTOU-security in Integrity Certifi-

cates corresponding to software-state assurance in IoT devices and providing a stan-

dardized mechanism to distribute Integrity Certificates. AutoCert’s remote attesta-
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tion is based on IETF RATS relying on TPM2.0 for evidence generation. We have pro-

posed the integration of the AutoCert mechanisms into existing standards to facili-

tate its adoption in the emerging PKI for IoT. The complete set of results and discus-

sions are published in a scientific journal [63].

4.4 Future Work

In the current approach, the remote attestation is built on the challenge/response

Interaction Model from the RATS architecture, which is not primarily developed for

low-power IoT devices. In future, we plan to extend this work and develop a highly

optimized remote attestation and certification mechanism that fits low-end IoT de-

vices. The planned work will also encompass lightweight attributes of the certificate

taking advantage of our recent work on concise X.509 certificate for IoT [74], the op-

timization of certification process, and the certificate usage. In the current work, the

risk evaluationof individual softwarewas consideredout-of-scope. Apotential future

direction for this research is the study of vulnerability assessment and risk evaluation

of individual software, and its integration with our TruCert solution, which can help

certify IoT devices with different assurance levels.

In the future, we also plan to focus on dissemination of our trusted execution, re-

mote attestation, and automated certification of IoT work in relevant venues. We

plan to push this work as a potential solution for the implementation of EU Cyber-

security Act for IoT. Towards this end, we have submitted a presentation request in

a highly selective conference on EU Cybersecurity Act aimed at industry and public

organizations: The International Conference on the EU Cybersecurity Act 2023. Our

proposal [15] is already accepted, and we will prepare and present this work in this

conference. RISE is also a member of Stakeholder Cybersecurity Certification Group

(SCCG), the highest-level external grouphelpingENISAandEUon the implementation

of EU Cybersecurity Act; we plan to disseminate our work via SCCG.
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5 Trusted Verifier Service

In this chapter we will describe further the implementation of the Trusted Verifier

Service (SIRE), a replicated infrastructure that supports multiple functionalities nec-

essary to an IoT System. In Deliverable 5.1 [86], we outlined the main features of

SIRE on a conceptual level, while in Deliverable 5.2 we gave further insight into the

system’s architecture and a few implementation details. In this deliverable, we will

give further insight into the implementation of all of the SIRE’s features, which is cur-

rently in a fully functional state. We will also provide a performance evaluation of

SIRE and an analysis of its results.

5.1 Recalling SIRE

Figure 5.1. Overview of SIRE.

In this section, we will give a brief summary of the design of SIRE described in the

previous deliverable.

SIRE is an infrastructure that supports remote attestation, application membership

management, auditable integrity-protected log, and coordination primitives. It con-

siders that each device belongs to one application, with the possibility of havingmul-

tiple applications running simultaneously. Each of these applications can have differ-

ent requirements, specifications, and contexts (e.g., the same SIRE deployment can

manage a set of devices that belong to a smart home application while having an-

other set that belongs to a smart industries application). A good example of this kind

of applicationwould be the Automotive AI Use Case, where there aremanymigrating

components that would need to be accounted for and certified to ensure proper and

secure operation of the critical car subsystem.

The SIRE system is composed of three main entities, the SIRE server, the proxy, and

the devices, as illustrated in Figure 5.1.
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5.2 Implementation Architecture

Figure 5.2. SIRE’s implementation architecture.

SIRE is implemented in Java over theBFT-SMaRt library, and its implementation archi-

tecture is described in Figure 5.2. Since SIRE is a systemwith multiple functionalities,

we divided its implementation into multiple modules, each responsible for a differ-

ent feature. Thesemodules do not function independently andwill interact with one

anotherwhenever needed. For example, theVerifierManagerwill call thePolicyMan-

ager, which in turn can call the ExtensionManager to execute the policy script. SIRE’s

implementation is structured as follows:

• SIRE Server:

– Server Main Class – Handles requests and relegates them to the appro-

priate managers. Contains the attestation protocol.

– Verification Manager – Verifies the attester’s evidence.

– CoordinationManager –Manages the key-value store of the coordination

kernel.

– Membership Manager – Holds the state of the membership of each appli-

cation; responsible for pruning invalid and timed-out devices as needed.

– Extension Manager – Compiles, stores and executes Groovy [25] exten-

sions of each application.

– Policy Manager – Compiles, stores, and evaluates the policies of each ap-

plication.

• Proxy:

– SocketProxy –Accepts communications through socketswithProtobuf [50]

serialization.

– REST Proxy – Accepts communications through REST requests with JS-

ON [3] serialization mapped with Spring [106]; holds a web interface.
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In the following sections, we will detail the implementation of these modules and

their interactions.

5.3 SIRE Server Implementation

As mentioned before, SIRE’s server is replicated on top of BFT-SMaRt [36], which

grants it Byzantine fault-tolerance. Since SIRE possesses many features, it is impor-

tant, for the sake of clarity and good programming practices, to separate them into

multiple modules, with each being responsible for one of the functionalities.

Server Main Class

All requests sent to the server are handled by its Main Class which relays them to the

proper classes. This class also contains the attestation protocol that will be further

detailed and explained in the following section.

5.3.1 Verifier Module

In the case of SIRE, deviceswill act as attesters and the server as the verifier. Themain

class of the server is responsible for executing the multiple steps that compose the

attestation protocol, relaying the verification and policy process to their respective

entities. The process of verifying these properties and their correctness is performed

by the Verification Manager. This process is usually done using a set of rules in a pol-

icy which is used to evaluate the evidence and, therefore, the attester’s correctness.

These policies will be created, stored, and evaluated in the Policy Manager, as wewill

see later in this chapter. Using both the Verification and Policy Manager, SIRE can

evaluate a device’s correctness and whether it can join the system.

Attestation Protocol

The main class of the server contains the entirety of the attestation protocol except

for the verification of the evidence and policy evaluation.

We will be using signature algorithms to ensure that the messages of the remote

attestation protocol have not been tampered with. Since SIRE is replicated, an ade-

quate signing algorithm is needed, and as such, SIRE uses Schnorr signatures [92, 93]

with Lagrange Interpolation. This signature algorithm uses the properties of elliptic

curves to compute and verify signatures. Schnorr uses random nonces in its imple-

mentation, which have a high performance cost when generated in runtime. To avoid

this performance issue, the nonces are pre-generated and stored in text files, which

the systemwill access during startup and load a randombatchof thosepre-generated

nonces. During runtime, each time a nonce is needed to sign data, one will be picked

at random from the batch loaded during system startup. The elliptic curve used for

all operations involving Schnorr signatures was the secp256r1 curve [6].

Every attester is assumed to have an asymmetric key pair and the verifier’s public

key, while on the verifier’s side, it is expected to have an asymmetric key pair and the

policy of each existent application. These keys can be hardcoded or obtained from a

Public Key Infrastructure (PKI). As described in Figure 5.3, SIRE’s attestation protocol

is structured in the following way:

• Message 0 (attester→verifier): The attester signs its public key using Schnorr

and sends it to the verifier.

32



D5.3 Version 1

• Message 1 (attester←verifier): When the verifier receives Message 0, it veri-

fies the signature, and if it is correct, it will generate a timestamp tobe returned

to the attester. This timestamp is generated through BFT-SMaRt, which pos-

sesses leader-generated timestamps, making it so that every replica will have

the exact same one. After generating it, it will be stored associated with this

device’s id and used when processingMessage 2. This timestampwill be signed

using Schnorr together with the attester’s public key, using the verifier’s key,

and sent to the attester.

• Message 2 (attester→verifier): The attester verifies the signature ofMessage

1’s content (attester’s public key and timestamp), and if it is valid, it will gen-

erate the evidence of its hardware and software properties. The format and

contents of this evidence are specific to each application. After the evidence is

generated, Message 2 will be prepared, composed of the application’s id, the

timestamp that the verifier sent in Message 1, the evidence, and the attester’s

public key. All of this will be signed and sent to the verifier.

• Message 3 (attester←verifier): After receiving Message 2, the verifier checks

the signature to be sure themessage has not been tamperedwith. If it is valid, it

will first check if the timestamp sent by the attester is the same as it has stored

and if it is within the established time-bound specified by the application ad-

ministrator. This verification ensures that the evidence is only valid for a short

time. If this verification is successful, the verifier will then proceed to evaluate

the evidence using the policy from the corresponding application. The proper

policy is obtained using the application’s id sent in Message 2. If the evidence

is validated, the attester is now assumed as correct and will be added to the ap-

plication’s membership which can trigger the execution of an extension in the

Extension Manager. After adding the attester to the membership, the verifier

will send the attester a message composed of a timestamp of the time of its

attestation, the attester’s public key, and a hash of Message 2, which will all be

signed. If the evidence is invalid, an empty message will be sent to signal the

attester that it has not been correctly attested. When the device receives the

third message, it will check the hash’s signature and validity as an assurance of

it being attested.
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Figure 5.3. SIRE’s attestation protocol.

Timestamps are used to limit the interval of time in which the evidence is valid. By as-

suring the freshness of the evidence, we can limit the possibility of attackers pretend-

ing to be a correct device by replaying messages to successfully perform attestation

and be added to the membership. This way, we can prevent devices that are not in

the system from being assumed as such. For example, if an attacker saves Message 0

andMessage 2 sent by deviceA, that, since then, has left the system, it can execute an

attestation on behalf of device A, adding it to the membership of its application. By

allowing this, we would undermine the membership management provided by SIRE.

However, we should note that our scheme only works if clocks are loosely synchro-

nized and under periods of synchrony.

Verification Manager

The Verification Manager is responsible for performing the verification process of

the device’s evidence. The evidence’s composition is specific to each application, but

an example of an evidence format, which is the one used in Intel SGX RA [55] and

WaTZ [85], is: anchor, claim, attestation protocol version and public session key. We

used this evidence format for evaluation and testing purposes, but SIRE can support

any evidence format. The evaluation of the evidence is done using a set of rules de-

fined in the policy, which is stored and evaluated by the Policy Manager. Each appli-

cation has a corresponding policy which is expected to be implemented by the appli-

cation administrators.

Policy Manager

The Policy Manager has the responsibility of storing and evaluating policies. These

policies are to be implemented by the application administrators and will be specif-

ically used with devices belonging to that application. These policies can be imple-

mented in two different ways:

• Logical Expressions, which are parsed and evaluated with the given values.

Simpler to implement for users but harder to support for the attestation ser-
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vice. An example of this is Microsoft Azure attestation’s policies [30].

• Scripts, which are populated and executed with the given values. Harder to im-

plement for users but easier to support for the attestation service. An example

of this is Intel SGX Remote Attestation’s policies [55].

The interface that application administrators can use to manage their application’s

policy is described in Table 5.1 and can be accessed through the proxy, as we will

see in Section 5.4. Each application has only a single policy. Currently, SIRE supports

only policies in script format, executed in the ExtensionManager of the coordination

kernel, simply associated with the proper extension key. This will be further detailed

in Section 5.3.2.

Function Description

setPolicy(appId, policy) Sets policy from app with Application ID appId

deletePolicy(appId) Deletes policy from app with Application ID appId

getPolicy(appId) Gets policy from app with Application ID appId

Table 5.1. Policy Manager Interface

5.3.2 Coordinator Module

TheCoordinatorModule is responsible for storing a coordinatedKey-Value (KV) store

with a ZooKeeper-like [53] interface, managing the applications’ membership and

their extensions. The coordination property is achieved through the ordered exe-

cution of operations granted by the BFT-SMaRt library [36]. This module is divided

into three classes: (1) Coordination Manager, which manages the KV store and calls

the ExtensionManagerwhen needed; (2) ExtensionManager, which compiles, stores,

and executes the application’s extensions, including the script policies from the Veri-

fier Module; and (3) Membership Manager, which stores, manages and maintains the

membership of each application, including checking if a device is still valid and prun-

ing invalid devices.

Coordination Manager

The Coordination Manager maintains the KV store, which can be accessed by both

devices and application administrators, to store any data they might need to coordi-

nate. The key-value store has a similar interface to ZooKeeper [53], as can be seen

in Table 5.2, distinguishing itself by having generic values, as opposed to ZooKeeper,

which only stores strings.

The keys are represented in Strings as they can be compared and aremore intelligible

compared to more generic types, such as byte arrays. The generic values allow users

to store any data they might need without any restrictions other than having to be

serializable into byte arrays. This was necessary due to the serialization method SIRE

uses, Protobuf [50], which does not support generic types, requiring the object to

be deserialized before being stored, and serialized after each access, adding unnec-

essary computations. The values are stored as they are sent, meaning that SIRE will

not perform any additional encryption, leaving that responsibility to clients. When-

ever an operation is called on the KV store, the Coordination Manager will call the

Extension Manager to execute the corresponding extension if existent. Besides be-

ing used for the attestation protocol, timestamps can also be used for coordination

35



D5.3 Version 1

between devices. These timestamps are also stored on the KV store to be accessible

by another device.

Function Description

put(appId, key, value) Adds a new entry to storage

delete(appId, key) Deletes an entry from storage

getData(appId, key) Gets data associated with key from storage

getList(appId) Gets list of all entries

cas(appId, key, oldValue, new-
Value)

If the value of a key is equal to oldValue, replace it with
newValue.

Table 5.2. Coordination Manager KV store interface.

Extension Manager

The Extension Manager is responsible for compiling, storing, and executing exten-

sions. Extensions are small pieces of custom code that will be executed when certain

criteria are met, on the server side, making the coordination kernel more versatile

and efficient without sacrificing its simplicity [42].

The extensions should be implemented in the form of Groovy [25] classes by the ap-

plication administrators. Since they are assumed to be trusted clients of the system,

no measures are taken to assure the security of their code. We chose Groovy as the

programming language for the extensions because it is already included in JDK and

can be directly run on the JVM.

The extension is sent to SIRE by the application administrator in the form of a string

of text, which in turn is compiled by the extension manager present on the server

and instantiated. These will be run whenever an operation from the membership

(join, leave, ping and getView ) or KV store (put, get, getList, delete and cas) interface

is called. The interface that application administrators can use tomanage their appli-

cation’s extensions is described in Table 5.3. This interface can be accessed through

the proxy, as seen in Section 5.4. The extension is required to have a method called

executeExtension, which takes anExtParamsobject as anargument. ThisExtParams
is just an encapsulator for the parameters that the operations might receive (key,

newValue, and oldValue).

When the extension is first introduced in the system, it should be associated with

a key in the form of appId + extType + key, with the possibility of extType and key
being null. The extType parameter corresponds to the type of operation, and the

key parameter is the key associated with the operation that will trigger the execu-

tion (e.g., an extension associated with application app1, operation type extPut and
key exampleKey will be executed whenever put(app1, exampleKey, exampleV alue) is
called). Since some parameters can be null, the extension manager will first check

for extensionsmatching appId + extType + key, then for anymatching appId + extType,
and at last for appId only.

In the case of the script policies mentioned in Section 5.3.1, these will be treated as a

normal extension associated with a key in the format appId + ext_attestation. The re-
sult of the execution of the extension is returned to the Policy Manager and treated

accordingly. This script policy is expected to have a method called verifyEvidence,
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which takes an Evidence object as an argument and returns a boolean. In the fol-

lowing example, the script policy defines the reference values for the hardware and

software claims which it compares with the one contained in the evidence. It also de-

fines the endorsed keys, which are the public keys it expects devices to have. At last,

it defines which version of the device’s attestation protocol should be running.

package sire.attestation

def verifyEvidence(Evidence e) {

def refValues = ["measure1".bytes, "measure2".bytes]

def isClaimValid = false

for(value in refValues) {

if(value == e.getClaim())

isClaimValid = true

}

def keys = [[3, -27, -103, 52, -58, -46, 91, -103, -14,

0, 65, 73, -91, 31, -42, -97, 77, 19, -55,

8, 125, -9, -82, -117, -70, 102,-110, 88,

-121, -76, -88, 44, -75] as byte[]]

def isKeyValid = false

for(key in keys) {

if(key == e.getPubKey())

isKeyValid = true

}

def expectedVersion = "1.0"

return isClaimValid && isKeyValid

&& expectedVersion.equals(e.getVersion())

}

Function Description

addExtension(appId, type, key,
code)

Adds extension for the app with Application ID appId
to be executed when an operation of a given type is
called with the given key. The given type and key can
be null. The codewill be stored associatedwith exten-
sionKey (appId + type + key, in this order).

removeExtension(appId, type,
key)

Removes extension associatedwith extensionKey (ap-
pId + type + key, in this order). The given type/key can
be null.

getExtension(appId, type, key) Gets the code of the extension associated with exten-
sionKey (appId + type + key). The given type/key can
be null.

Table 5.3. Extension manager interface.

Membership Manager

The Membership Manager is responsible for storing and maintaining the member

state of each application. Each application membership will store the id of the mem-

ber devices and the device’s state. The device’s state is composed of twomain fields:

the device’s last ping and the device’s attestation certificate. The Membership Man-

ager’s interface is described in Table 5.4.
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The devices’ last ping is used to detect possibly crashed devices, preventing them

from wasting system resources. Since SIRE is distributed and each replica holds the

membership state, it will use the leader-generated timestamp fromBFT-SMaRt to up-

date the device’s last ping to avoid possible inconsistencies. To prevent the devices

from sending unnecessary pings and wasting resources, each interaction it has with

the system will update its last ping. If a device does not interact or ping the system

for a certain amount of time, it is assumed as crashed and is removed from the ap-

plication’s membership, preventing it from communicating with SIRE before being

attested again.

The attestation certificate is provided by the Verification Manager when the attes-

tation protocol is executed successfully. When a device calls the join operation to

become amember of an application, it will also trigger the attestation protocol, with

it only being added to the membership if it is attested successfully. When an attes-

tation certificate expires, the device has to attest again to be able to communicate

with SIRE.

To avoid SIRE from constantly checking the membership for invalid devices, these

will only be pruned when they are accessed, for example, when a View operation is

called or when the invalid device attempts to interact with the system. Since a de-

vice’s membership state might not be accessed for long periods, SIRE still employs a

garbage collecting mechanism by executing a periodic prune to the entire member-

ship, preventing timed-out devices from wasting resources.

Function Description

join(appId, deviceId) Finish the attestation protocol and join the application’s mem-
bership

leave(appId, deviceId) Leave the system

ping(appId, deviceId) Assures the system that the device is still running

getView(appId) Get current membership of system from the app with Applica-
tion ID appId

Table 5.4. Membership interface

5.4 Proxy Implementation

Asdescribed in the previous deliverable, the proxy is used to relaymessages between

the server and devices as well as between the server and the application administra-

tors. The proxy is divided into two entities, the Socket Proxy and the REST Proxy,

which mostly differ in the method of communication they use: sockets using Proto-

buf [50] and REST requests using JSON [3], respectively. Even though the REST Proxy

is more oriented to application administrators since it has a user-friendly web inter-

face for their use, it also accepts requests from devices.

5.4.1 Socket Proxy

The Socket Proxy receives the requests through sockets using Protobuf [50]. Each

time a client connects to SIRE, the Socket Proxy creates a socket and thread for it.

This thread remains active until it leaves the system.

Each time the Socket Proxy receives a request, it is relayed to the server replicas using

the BFT-SMaRt’s client (called Service Proxy). If the request has a return value, the
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Socket Proxy encapsulates it in a Protobuf message before returning it to the client.

Thesemessage formats are used both in communications between Clients and Proxy

and between Proxy and server.

The Protobuf messages have the following format:

• ProxyMessage

– operation – The type of the operation. Can be any of the ones described in

the APIs defined in the modules in Section 5.3.

– evidence – Evidence for the attestation protocol.

– timestamp – Timestamp for the attestation protocol.

– pubKey – Device’s public key for the attestation protocol.

– signature – Signature for the messages of the attestation protocol.

– key – For operations on the KV store interface of the Coordinator Module.

– value – For operations on the KV store interface of the Coordinator Mod-

ule, as described in Section 5.3.2. Also acts as the newValue for the cas

operation.

– oldValue – Value to be compared with the current one in the KV store for

the cas operation.

– deviceId – Identifier of the device that sent the request.

– appId – Identifier of the application of which the sender of the request is

part.

– code – Code of the extension for the Extension Manager, as described in

Section 5.3.2, as well as the policy for the Policy Manager, as described in

Section 5.3.1.

• ProxyResponse

– responseType – The operation this message is a response to. Can be one of

the following: mapGet,mapList, view, extensionGet, and policyGet.

– list – The list of all the entries of an application’s KV store of the Coor-

dination Manager, as described in Section 5.3.2, in response to a getList
request.

– value – Value returned from amapGet request to an application’s KV store

of the Coordination Manager, as described in Section 5.3.2.

– members – List of all the members of an application’s membership from

the Membership Manager, as described in Section 5.3.2. Contains each of

the device’s id, last ping, certificate and expiration time.

– extPolicy – Code of extension returned from an extGet request to the Ex-

tension Manager, as described in Section 5.3.2, as well as the definition of

the policy from the Policy Manager, as described in Section 5.3.1.

– sign – Signature for the messages of the attestation protocol.

– timestamp – Timestamp for the attestation protocol and coordination be-

tween devices.
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Each time a new connection is established, i.e., a new device interacts with the sys-

tem, the Socket Proxy creates a new thread that is dedicated entirely to this device’s

requests. After a device leaves the system (or is removed due to being invalid), the

thread is closed.

5.4.2 REST Proxy

TheREST Proxy receives requests through aREST interfacewith contents in JSON [3].

These requests are encapsulated into a ProxyMessage, as described in the previous

section, and relayed to the server replicas using the BFT-SMaRt’s Service Proxy, which

processes in the same way it does with requests coming from the Socket Proxy. En-

capsulating the result of the request into a ProxyResponse is also not needed as it

is simply sent in the response body in JSON format. In the case of application ad-

ministrators, they need to be authenticated to have permission to access the REST

interface.

The requests are mapped to URLs using Spring [106] in the following way:

• https://sireurl.com/resource/secondary_resource/_accessed?parameter=value

The resource on the URL can be one of the following:

• extension to access the Extension Manager. POST request to add an extension,

DELETE request to remove an extension, GET request to fetch an extension.

• policy to access the Policy Manager. POST request to set the policy, DELETE

request to remove the policy, GET request to fetch the policy.

• membership to access the Membership Manager as well as the Verifier Module

in the case of a join. POST request to join the system or update the timestamp,

GET request to fetch the membership, DELETE request to leave the system.

• map to access the KV store from the Coordinator Module. POST request with

just one value in the body for put, two values for cas; GET request with an ap-

plication ID and key in the body for getData, just the application ID for getList;
DELETE request for delete.

The parameters are mostly IDs that specify the application (in the case of applica-

tion administrator operations) or the device (in the case of device operations). The

other parameters are sent in the body of the request (extension’s code, map values,

etc.), for example, if an application administrator wants to add an extension to its

application called ”App1”, it sends a POST request to the URL ”https:/sireurl.com/ex-

tension?key=App1” with the code of the extension in the body of the request.

Web Interface

The web interface is simply a more user-friendly way of accessing the REST interface

and as such, is only to be used by application administrators.

First, the application administrators are presented with a login page to authenticate

themselves with a username and password. Then, a list of their applications is shown,

from which they can pick one to configure. After choosing an application, they are
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presented with a page with the multiple operations they can call (create, delete and

get extensions; set, remove and get the policy; and view the state of the app’s mem-

bership and devices).

The multiple screens of the web interface can be seen in Figure 5.4, where the top

left side is the login page, the bottom left side is the list of applications, and the

right side is the operation page. The operation page is divided into three sections,

Extensions, Policy, and Membership, where each operation has the corresponding

text boxes to fill in with the arguments needed. The result of the execution of an

operation is shown directly under it, as can be seen in Figure 5.5.

Figure 5.4. SIRE’s web interface.

Figure 5.5. example of operation in SIRE’s web interface.

5.5 Evaluation

In this chapter, we address the evaluation of SIRE. Firstly, we describe and discuss

the evaluation of the throughput and latency of get, a read operation, and put, a write
operation, performedon theCoordinationManager’s KV store. After that, wediscuss

the evaluation of the join operation, which includes the attestation protocol. With

this evaluation, we want to answer the following questions:

• What is SIRE’s overall performance?

41



D5.3 Version 1

• What is the performance of SIRE’s attestation protocol?

• How scalable is SIRE?

All tests were executed in machines with the following characteristics: Dell Pow-

erEdge R410 with two quad-core Intel Xeon E5520 (2.27 GHz) CPUs; two hardware

threads per core; 32 GB of RAM; Ubuntu 20.04 operating system with OpenJDK RE

17.0.3. The machines are connected through gigabit Ethernet.

5.5.1 Read and Write data – get & put

To evaluate the performance of the get operation, we used 4 server replicas in 4 dif-
ferentmachines and 11 clientmachines with amaximumof 3000 clients spread across
them. We assume a worst-case scenario in which devices run their own proxies, im-

posing a higher load on SIRE servers. One additional machine was used to just gather

the measurements without executing any operations in order to avoid the measur-

ing process from affecting the results. The get operation was evaluated using a key

with 100 bytes that obtained another 100 bytes in return. To minimize the impact the

clients had on the performance, we used pre-processed get requests, which allowed
us to reduce the processing done by the clients.

We performed this evaluation using rounds, having the number of clients increase

incrementally from 1 to 3000. These clients were distributed equally between each

machine. In each round, every client executed 10million operations.

In each round, measurements of the throughput are taken around every two seconds

by the leader replica that counts the number of requests in that period of time. This

number is then divided by two to obtain the throughput and stored, updating the

max throughput accordingly. At the end of the round, we perform an average of all

these throughput measurements. For the latency, we measure it for each request in

the client, store it and update the max latency accordingly. At the end of the round,

we perform an average of all the latency measurements.

With this setup, we obtained an average throughput of 130K operations per second

across all rounds andanaveragemax throughputof 140K op/s. Thebest performance

obtainedwas in the roundwith 800 clients, inwhichwemeasured an average through-

put of 169K op/s and a maximum throughput of 172K op/s.

Regarding latency, we obtained an average of 3.6 ms across all rounds. The lowest

latency was obtained on the round with 10 clients, with it being on average 0.6 ms,

which is to be expected as there was a lower load, and requests could be attended to

more quickly.

When it comes to the relation between latency and throughput, as can be seen in

Figure 5.6, the latency started increasingwhen the average throughput reached 140K
op/s with 1 ms of average latency, going to 4.5 ms with an average throughput of

169K op/s (800 clients). After that, the performance declinedwith each round, having

a lower throughput and a higher latency than in previous rounds, due to saturation

and a bit of memory thrashing due to the high number of clients in BFT-SMaRt. In

the last round, with 3000 clients, we had an average throughput of 139K op/s and an

average latency of 3.6ms.
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Figure 5.6. Performance evaluation of the get operation, using 11 client machines and a maxi-

mum of 3000 clients. The graph presents a relation of throughput and latency in function of an

increasing number of simulated devices interacting with the system.

To evaluate the performance of the put operation, we had a similar setup that only

differed in the maximum number of clients, which was 6000, due to the write client

being less computationally heavy. We also assumed the same worst-case scenario in

which the clients run their own proxies to impose a higher load on SIRE servers. The

number of roundswas incrementally increased to accommodate the highermaximum

number of clients from 1 to 6000. To take measurements, we employed the same

method that was used for the get operation.

With this setup, we obtained an average throughput of 26K operations per second

across all rounds and an averagemax throughput of 27K op/s. The best performance

obtainedwas in the roundwith 3000 clients, inwhichweobservedanaverage through-
put of 34.3K op/s and a maximum throughput of 35.3K op/s.

As for latency, we obtained an average of 36.5 ms across all rounds. The lowest la-

tency was obtained in the round with 10 clients, with it being on average 4.6ms.

When it comes to the relation between latency and throughput, as can be seen in Fig-

ure 5.7, the latency increased at a steady pace until the average throughput reached

20K op/swith an average latency of 9.7ms (200 clients round). From that point, the la-

tency increased at a higher rate compared to the throughput, becoming even higher

when the throughput reached around 30K op/s with a latency of 25.8ms (800 clients
round). From that point, the curve became almost a vertical slope due to saturation.

In the last round, with 6000 clients, we had an average throughput of 34K op/s and an

average latency of 59.7ms.
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Figure 5.7. Performance evaluation of the put operation, using 11 client machines and a maxi-

mum of 6000 clients. The graph presents a relation of throughput and latency in function of an

increasing number of simulated devices interacting with the system.

The difference in performance between the get and put operations is significant, with
the throughput being almost 5 times higher on the get and the latency being almost

3 times lower. Such disparity is due to the get being executed in an unordered way

by the server replicas in a single round trip, while the putmust be ordered across all

replicas, requiring the execution of the BFT-SMaRt consensus protocol to order every

batchofoperations. This protocol requires threeadditional communication steps and

several cryptographic operations.

5.5.2 Attestation protocol – join/attest

In the case of the join/attest operation, we used a similar setup with the same max-

imum number of clients and rounds as the put operation described in Section 5.5.1.

To take measurements, we employed the same method used for the get and put op-
erations described in Section 5.5.1. In this case, the average throughput was mostly

constant through each round, around 160 op/s, with only the average latency increas-
ing along with the number of clients, going from 25ms with one client to about 72 s
with 6000 clients. The reason for the constant throughput lies in the signing algorithm
we used, Schnorr [92, 93], more specifically, the verification of signatures, which per-

forms operations on elliptic points that are very computationally heavy, being the

bottleneck of the attestation protocol. We performed a microbenchmark to evalu-

ate the performance of the Schnorr [92, 93] signatures. On average, it took 5.435ms

for the verification, which means it can perform around 184 signatures per second,

thus explaining the values we obtained for the attestation protocol.

Despite these performance values being significantly lower than the ones obtained

for the get and put operations, these are still satisfying results given that the attesta-
tion protocol should only be executed ever so often and not something devices will

constantly be running, like the get and put.
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Figure 5.8. Performance evaluation of the attest/join operation, using 11 client machines and a

maximum of 6000 clients. The graph presents a relation of throughput and latency in function

of an increasing number of simulated devices interacting with the system.

5.6 Wrapping-up SIRE and looking ahead

In this chapter, we detailed SIRE’s implementation, which is now in a functional state,

containing themajority of the intended features. Development is moving forward as

planned, having only a few deviations from the original design and idea, which were

needed to deal with challenges that arose during implementation. Although SIRE is

in a functional state, there are still improvements and further developments to be

done. Currently, our focus is on demonstrating how SIRE could be used as a solution

in real-world scenarios.

For this purpose, we want to implement an application for the autonomous vehicle

field where SIRE could be used to coordinate the movements of vehicles in order to

solve problems such as intersection management [73]. By exploiting SIRE as a coor-

dination service, we could solve these problems with the added security benefits of

remote attestation.

Wealso intend to implement anapplication forByzantine fault-tolerantmachine learn-

ing. Nowadays, most machine learning implementations are distributed. Most of

these rely ona core component, a parameter server, which is in chargeof updating the

parameter vector while workers perform the actual update estimation. Although the

implementations are distributed, the workers cannot tolerate computation errors or

attackers trying to compromise the system. In this scenario, SIRE can act as a param-

eter server, storing and aggregating parameter vectors in a Byzantine fault-tolerant

way.
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6 Co-simulation improvements and testing in Renode

VEDLIoT aims to improve the state-of-the-art for two areas of engineering that are

notoriously difficult to test: IoT and Machine Learning. During the course of the

project, we have been working on supporting the development of RISC-V-based ML

accelerators using Renode [21] - an open source simulation framework by Antmicro.

We aimed to support developers at all stages of development, starting with acceler-

ator hardware design, with Renode’s co-simulation capabilities.

The initial phases of development were focused mainly on CFUs - Custom Function

Units [19], which are AI accelerators for Field-Programmable Gate Arrays, tightly in-

tegrated with RISC-V CPUs via the custom instructions mechanism [90]. The Renode

simulation framework provides support for CFUs through Verilator [105], a fast sim-

ulator that converts Verilog (a hardware description language) to a cycle-accurate

model in C++. More technical information regarding our work with CFUs and a de-

scription of Renode’s use in Google’s CFU Playground [48] can be found in deliver-

able D5.2 [62] for the VEDLIoT project. Here we present other improvements to the

co-simulation capabilities of Renode, aiming to improve the support for theML accel-

erator developed as part of Work Package 4.

We also present the recent developments in building a testing infrastructure for ma-

chine learning processing as well as describe the used technologies, their potential,

and their issues. This chapter also includes a description of the developed solutions’

workflow.

6.1 Improvements in the Renode co-simulation framework

Renode, in its nature, is a high-level functional simulator. It doesnot intend tobe cycle

accurate and focuses on fast prototyping, inspectability, and ease of integrationwith

other tools. However, during the years of Renode development, we have identified

the need for a more detailed approach in selected parts of the system.

This level of precision can be achieved via co-simulation with Verilator.

The very high-level flow of a co-simulated scenario can be summarized in a few steps:

1. CPU issues a bus transaction or a co-simulated instruction,

2. Verilator integration layer receives the operation and sends it to the verilated

block,

3. The bus implementation provided by Renode translates the operation into a

sequence of signal changes,

4. Meanwhile, the peripheral’s clock signal is being toggled to drive the logic for-

ward.

Whilepreviousdeliverables focusedonco-simulationwithCFUs, Renodeenablesmore

scenarios including verilated peripherals. The framework also allows for work with

memory-mappedperipherals. Currently, several buses for connectingperipherals are

supported:
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• AXI4,

• AXI4-Lite,

• APB3,

• Wishbone.

Precision is a key aspect of co-simulation with verilated blocks. To increase the pre-

cision, our work focused on introducing better alignment between the integration

layer and the specifications of the supported buses, with themost emphasis on AXI4-

Lite. The results of this work were published on the Renode repository [23], and in a

dedicated repository listing sample Renode-Verilator integrations [24].

6.1.1 Improving transaction accuracy

In order to achieve this, firstly, we have focused on improving the accuracy of transac-

tions between a peripheral and the CPU from the perspective of their conformance

with the specification. Buses are, in short, a set of standardized signals constituting

a communication system for data transfer between components. The specification

defines these signals’ behavior, relationships, and constraints.

In the case of AXI4-Lite, a sample write transaction can be divided into the following

steps:

1. The initiator sets the address of the transaction via a handshake mechanism

2. Similarly, the initiator writes data

3. Lastly, the transaction recipient responds with a transaction completion status

The handshake mechanism is used to ensure that all relevant values (address and

data) are transferred when both the initiator and recipient are in a correct state. A

simplified handshake process for setting the address (awaddr signal) can look as fol-

lows:

1. the initiator sets the address to the awaddr signal

2. the initiator informs the peripheral that the awaddr value is correct by setting

awvalid

3. the peripheral marks that it’s ready to read out the awaddr value by setting

awready

4. on the next rising clock edge, when both awready and awvalid are asserted, the

handshake and the transfer are complete

During the latest period of VEDLIoT, we have worked on improving the accuracy of

these procedures, striving to emulate the synchronous nature of signal transition in

an imperative, sequential codewhile also keeping the implementation clear and easy

to follow.
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6.1.2 Trace generation and model evaluation procedures

Secondly, we have also introduced improvements in the fields of trace generation

and model evaluation procedures. While trace generation is a feature of Verilator

itself, the programmer gets to control the moment of evaluation and generation of

trace steps.

When co-simulatingwith Renode, users give up a certain level of control over the sim-

plicity of use - they only need to connect signal names in order to get a fully functional

simulation. This simplicity comes at the cost of not being able to mark moments in

which traces are generated explicitly. Users must rely on the integration layer’s in-

ternal implementation in Renode.

Figure 6.1. Sample waveform generated by Renode with Verilator

The initial approach in the Renode co-simulation library was to generate traces on

every signal change. This approach had many benefits - it clearly showed the causal-

ity of changes and their precise order in time. It also reflected the implementation

details of specific buses in Renode.

However, with the quasi-synchronous nature of HDL programming, these traceswere

not what hardware engineers expected. The biggest downside of generated traces

was unbalanced clock signals, which typically indicate serious errors.

To make traces more understandable to their typical users, all trace generation is

now being done only during clock signal changes, after the signal is changed and the

model is evaluated.

After these adjustments, traces, as seen in Figure 6.1, are easier to follow for hard-

ware engineers and provide a more accurate view of the verilated block’s behavior.
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6.1.3 Peripheral as transaction initiator and recipient

Then, we have focused on improving flowswhere a peripheral converted via Verilator

acts as both the initiator and the recipient of a transaction. While it is typical for a pe-

ripheral to be the recipient, a situation when it is an initiator is common in scenarios

involving Direct Memory Access (DMA) engines. In order to reflect the behavior of

hardware in such cases, where each signal of every bus is evaluated simultaneously,

we needed to adjust the behavior of Renode, where the buses were checked sepa-

rately. At first, we introduced a mechanism that has allowed us to freeze the signal

status of a bus when suspending its analysis (possibly mid-transaction), thus prevent-

ing its use by the peripheral. We were then able to grant control to another bus and

resume signal status and analysis for the initial bus when needed. This flow enabled

us to simulate the environment accurately, but unfortunately, the simulation speed

was significantly low.

In an effort to vastly improve performance, ensure fine-grained control over process-

ing stages, as well as represent the hardware description and behavior as closely as

possible, we have divided the flow into the following stages:

1. Run the pre-pos-edge stage for all buses, preparing them for the upcoming

clock rising edge

2. Set the clock signal high for all interfaces

3. Evaluate model

4. Run the pos-edge stage for all buses, allowing them to react to their state after

the tick

5. Set the clock signal low for all interfaces

6. Evaluate model

7. Run the neg-edge stage for all buses

This improved scenario allowed us to reduce the runtime of some of our scenarios

from over a minute to a few seconds. As future work, we plan to prepare a more

thorough evaluation of the implemented changes.

6.2 Testing infrastructure for ML processing

In this section, we have described the developments in building testing infrastruc-

ture for ML processing required to verify the software created for the SoC used in

the VEDLIoT project. The proposed infrastructure is based on the Google Cloud Plat-

form and utilizes Renode Framework to simulate the target hardware and test the

developed solution.

6.2.1 Difficulties of ML workflows

ML is a powerful tool that gives the user the to analyze vast amounts of data and

make predictions or decisions based on that data. It has undoubtedly revolutionized

the field of computer science, but the process of implementing an ML solution is of-

ten lengthy, time-consuming, and resource-heavy in general because ML algorithms

49



D5.3 Version 1

require a largenumberof resources in order to runeffectively. Thehigh resource con-

sumption of ML solutions lies mainly in the complexity of the algorithms themselves.

Many ML algorithms are highly sophisticated, with multiple layers and many param-

eters. These algorithms can take a long time both to train and run, especially when

working with complex models, large datasets or different execution parameters.

The training process involves adjusting the algorithm’s parameters so that it can ac-

curatelymake predictions or decisions based on the data. This process can be compu-

tationally intensive, requiring a significant amount of processing power andmemory,

which comes at a cost. In order to make accurate predictions or decisions, ML algo-

rithms need to be trained on a large and diverse dataset. Resource consumption of

machine learning processes also highly depends on the amount of data used to train

the algorithms. Additionally, machine learning algorithms often require significant

amounts ofmemory in order to store themodel parameters and intermediate results

during the training process. This can be especially true for deep learning algorithms,

a machine learning algorithm that uses multiple layers of interconnected nodes to

analyze data. These layers can be vast, requiring a significant amount of memory to

store.

6.2.2 Testing in the cloud

Cloud-based testing refers to testing software applications and systems using cloud

computing environments. Using this technology allows users to replace testing soft-

ware applications and systems on a local machine or on-premises with the cloud’s

computational power. This approach can pose significant advantages compared to

local testing, the most evident one being far greater scalability. Cloud testing allows

for creating a testing environment that can be easily scaled up or down as required by

the current computational needs. This is particularly useful for testing applications

that are expected to handle a large number of test cases or a sudden increase in traf-

fic. With local testing, the computational resources are significantly less adaptable,

especially when it comes to scaling down. What is more, cloud testing can be more

cost-effective than local testing because it eliminates the need to purchase andmain-

tain expensive hardware and software licenses, as cloud providers typically charge on

a pay-as-you-go basis, whichmeans that users only pay for the resources they actually

use.

What is also important when it comes to projects like VEDLIoT is the superior acces-

sibility of cloud-based testing solutions. This is particularly useful for teams that are

distributed across different locations. With on-premise testing, all team members

must either be in the exact location to collaborate and work on the testing process

or use custom remote access solutions. While very well known and often used, these

seldom provide collaboration features expected from a modern system.

Cloud-based testing additionally allows users to create testing environments that

closelymimicproductionenvironments. Combining the cloud-based testingapproach

with Renode Framework will enable users to work with a highly accurate and control-

lable environment, which can be easily modified or replicated.

6.2.3 Proposed cloud-based testing infrastructure solution

The process of appropriate testing of complex systems and platforms like those de-

veloped in VEDLIoT is a process requiring a lot of resources and know-how of the
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software we want to test. The aim of Task 5.4 was the development of a reliable sys-

tem that project participants could use to test and verify the software for the SoC

created as part of Task 4.6 and Task 4.7. To address this issue, we have developed

a dedicated environment that will allow the user to successfully perform testing of

their solutions with only a basic understanding of the testing infrastructure itself.

The constructed system is based on the platform developed in Task 5.3. It will pro-

vide continuous integration capabilities, ensuring the software’s fitness at each stage

of development.

The infrastructure was built using the Google Cloud Platform (GCP) to ensure avail-

ability and enable users to benefit from testing in the Renode framework. The se-

lected platform allows for easy scalability of used resources, helping us balance the

need for computational resources with the costs of operation.

On adesignatedGCP runner, wehavedeployed aGitLab instancewith aDocker image

registry and the ability to spawn CI runners. The GitLab infrastructure is private to

the project members but allows for easy publication of test results without exposing

details of underlying tests. This is particularly helpful if tests were to use non-public

data or ML models.

Figure 6.2. Renode cloud-based testing workflow

All of these elements lead us to the complete testing workflow, as presented in Fig-

ure 6.2. We envision the ideal workflow as starting with local testing with Renode -

developers would use their local installations to verify the parts of their system they

are currently working on.

When they are satisfied with their results and push the code upstream, the CI envi-

ronment takes over and runs the developed payload against a range of tests. These

tests can be easily reproduced locally if needed but can also benefit from the scala-

bility of the cloud setup to run more test cases than users would be willing to verify
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on their own machines.

6.3 Future work on the testing workflow

Recent significant improvements in the co-simulation capabilities of Renode allow us

to present this feature as a viable alternative to full RTL simulation. In the next stage

of the project, we plan to focus on the usability aspect and present users with an

easy-to-reproduce testing setup while still improving the support for various buses

and co-simulation scenarios. The work on this setup has already started.

The workflow of the testing solution starts in a repository containing all of the com-

ponents necessary to begin testing in Renode. The centerpiece of this testing envi-

ronment is a package containing Renode Framework, which will allow the simulation

of all the elements of the target hardware, like CPU or all the necessary peripherals,

as well as simulated hardware surroundings.

The repository also comes with a preinstalled Verilator for cycle-accurate simulation

that can be used alongside Renode. It also contains a customizable test that will run

on each git push to ensure the correctness of the changes with each commit and

quickly identify potential problems. The tests are being built using the Robot Frame-

work, which allows the user to write tests using easy-to-read syntax and generate

reports from a test suite. Additionally, the repository contains a REPL (Renode Plat-

form) file for the platform developed as part of Work Package 4 and sample tests to

base upon.

After the testing repository reaches the required level of maturity, users will be able

to fork it and update test cases with their own conditions, input data, emulated ap-

plication, and co-simulated payload. This will follow the idea of ”Renode issue repro-

duction template” [22], which is used by the Renode community to report issues and

suggest improvements.

6.3.1 Providing ML with data

In the traditional testing setup, the user cannot reliably control the physical envi-

ronment of the tested hardware, but thanks to Renode’s support for strictly con-

trolled external input, a completely simulated environment becomes a feasible al-

ternative. Renode allows users to provide input to a wide variety of sensors like tem-

perature, acceleration, gyro, or cameras. With the latest addition of support for time-

synchronizedmulti-sensor data input [20], Renode becomes invaluable in testing var-

ious scenarios against ML payloads.

These featureswill be integratedwith the testing environment, allowingusers to eas-

ily generate the most complex setups to improve their ML solutions further.
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7 DNN robustness evaluation

Themost popular algorithms, deep neural networks (DNN), have improved their abil-

ity to handle a broad rangeof challengingML tasks, fromcomputer vision to language

processing. However, the behaviors of DNNs are difficult to analyze because of their

non-linear and large-scale nature. As a result, they are often deployed as black-box

models without formal robustness and safety assurances. In particular, neural net-

works (NNs) are not robust to input perturbations, which makes them highly vulner-

able to adversarial attacks in run-time settings. For example, in the context of image

classification in a self-driving car, the neural vision of a well-trained NN can be easily

fooled if a slight perturbation is applied to the same image it was trained and tested

withwithout changing the context of the image. In this case, the car could confidently

perceive a stop traffic sign image as a speed limit traffic sign in the autonomous driv-

ing environment, which could lead to catastrophic consequences [81].

This chapter presents a literature review about evaluating the robustness of DNNs.

The main techniques, such as Branch and Bound and incomplete verifiers, are dis-

cussed. Then, a new approach is conceptually described, and experiments and re-

sults are shown to validate the proposal. In the end, we demonstrate that the new

technique is more scalable and requires fewer iterations for robustness verification.

7.1 Evaluating safety and robustness for neural networks

The deployment of NNs in safety-critical settings is constrained by several limita-

tions [103]. Therefore, it is pivotal to have a formal understanding or knowledge

of the areas where NNs may be likely to wane in their decision-making under ex-

treme scenarios, as well as the validation of their tendencies under potentially mali-

cious inputs. However, several tools have been devised by researchers aiming to pro-

vide a formal safety and robustness guarantee for DNNs, which includes tools such

as Satisfiability Modulo Theory (SMT) [87], mixed-integer linear programming [100,

65, 35, 70], convex relaxations and duality theory [91, 110, 91, 45], Abstract Interpre-

tation [46, 113, 80, 16], and interval-based methods [117, 108, 107], DeepPoly [97],

Bounded-Block Poly (BBPloy) [119]. All of these studies strive to analyze and verify

the behaviors of DNNs under extremeworst-case scenarios when the input is/are de-

fined within a certain range of perturbations. In practice, NN safety and robustness

verification is the process of demonstrating desirable linear correlations between its

inputs specifiedwithin a certain perturbation set and its output by optimizing a set of

linear constraints imposed on the network [16]. In addition, the scalability and flex-

ibility of NN analyzers are urgently needed as NNs get deeper and bigger in design.

Their scalability and flexibility will give us a quicker and easier way to formally pro-

vide a guarantee that the network is safe and robust for all inputs within a certain

perturbation range.

Threedimensionsmaybeused to evaluate the effectiveness of safety and robustness

verification algorithms for neural networks. The first dimension measures the tight-

ness of the verification constraints, the secondmeasures the computational complex-

ity, and the third measures how effectively it cooperates with other DL models (like

different state-of-the-art activation functions, such as ReLU, Tanh, Leaky ReLU, Sig-

moid, Parameterised ReLU, and Exponential Linear Unit). There is a disagreement

53



D5.3 Version 1

between these dimensions. For instance, the verification algorithm’s prudence and

computational complexity are generally in conflict with one another. Each of the NN

certification algorithms has a particular domain in which they may perform better,

which is the basis for their significant advantage. For instance, less conservative al-

gorithms are required for applications such as reachability assessment for robustness

verification [112, 113, 102, 68, 96, 95], but fast-running algorithms are required forDL

robustification [69, 40, 72, 43].

However, the generation of tighter linear bounds for DNNs in a formal verification

fashion is done by techniques such as Satisfiability Modulo Theory (SMT) solver al-

gorithms [34, 44, 87, 60, 61], and integer programming algorithms [100, 70, 18, 96].

Nonetheless, the intricacyof these algorithms in a conundrumscenario is directly pro-

portional to the size of the network. This means that the bigger the size of the NN,

the more complex these algorithms become and, as a result, the more difficult it is

to provide a formal robustness guarantee for the network in question. In their work,

”Lomuscio, Alessio”, and ”Lalit Maganti” [70] leveraged mixed-integer programming

algorithms to perform exact robustness verification of a non-linear DNN, which they

claimed reduced the computational burden and complexity of providing formal veri-

fication for the network. There is no doubt that this made a significant contribution

to scalability optimization. However, in terms of generating tighter linear bounds

on the ReLU-neuron while optimizing scalability, our network segmentation strategy

outperformed their approach, and even computationally, our approach requires less

computational resources than their approach.

According to what we currently know, the most accurate and sophisticated robust-

ness verification tool that canprovide aprovable formal guarantee to aDNN is alpha−
beta − CROWN [29], which is a combination of alpha − CROWN [114] and beta −
CROWN [109] incomplete NN verifiers. It is an award-winning NN verification tool

in the 2021 and 2022 International Verification of Neural Networks Competition with

the maximum overall score, outperforming several other NN verification tools. The

foundationof alpha−beta−CROWN wasderived fromthe traditional boundpropaga-

tion algorithmknownas "CROWN" [117] and the ”branch andbound” (BaB) [56] tech-

nique, and it scales to reasonably large convolutional neural networks (CNNs) [71] and

can effectively work on GPUs. Thanks to the adaptable ”autoLIRPA” library created

by Wang et al. [109], alpha− beta− CROWN can verify a wide variety of NN designs,

including CNN, ResNet, GoogleNet, AlexNet, etc., and multiple activation functions.

However, alpha− beta−CROWN is expensive for verifying the robustness of a large

network, even on a single image. Even with GPUs, it takes a significant amount of

computational resources and time.

We suggest a network block segmentation approach, whichwe applied to the alpha−
beta−CROWN algorithm to improve the scalability of the verification tool and to re-

duce the need for high computational power in alpha−beta−CROWN . Interestingly,

compared to applying the alpha− beta−CROWN algorithm to the whole network at

once, our method delivers superior verification scores and generates tighter bounds

for ReLU-neurons in each segment or block.

In the sections that follow, we present four methods available in the literature that

can be used for evaluating robustness. Following, we evaluate all the methods in

comparison, using ResNet-50 (a 50 layers deep convolutional neural network) as a

baseline. Finally, we show and discuss the results for robustness levels of our model
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using three benchmark datasets.

7.2 Branch and Bound (BaB)

BaB is a robustness verification process that divides a non-linear optimization prob-

lem into two sub-problemswhile simultaneously relaxing each ReLU-convex neuron’s

vertexusingan incomplete verifier, suchas those specified in [100], [70], [18], and [96].

There are two steps in the BaB process: the first is the ”branching step”, and it in-

volves splitting each unstable ReLU-neuron into two sub-problems by adding split

constraints (z1 > 0) or z1 ≤ 0 to the optimization problem. However, these additional

constraints make the bounds tighter because they convert the unstable ReLU into a

stable ReLU. The second step is the ”bounding step”, in which we use an incomplete

verifier to compute the lower bound for each sub-problem.

Figure 7.1 shows how branching constraints could be made more efficient with the

useof complete verifiers. After thefirst split, the active and inactive zoneshave lower

bounds of−2.5 and+0.8, respectively, compared to the original lower bound of−4.0.
The result of 0.8 indicates that the lower bound of the branching step’s additional

constraint z1leq0 is greater than zero and that the sub-problem has been solved and

verified. However, for the split constraint where (z1 > 0), the sub-problem was not

solved because it’s lower bound of−2.5 (Figure 5b) falls inside the optimization prob-

lem’s negative axis. As a result, wemust split the ReLU-neuron iteratively until all the

sub-problems are verified within that region.

Figure 7.1. Illustration of bounding step in BaB process concerning a ReLU-activation

7.3 CROWN incomplete verifier

The traditional CROWN verifier was the most commonly used incomplete verifica-

tion tool for complementing the complete verification process in adversarial settings.
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"CROWN" is essentially a linear solver algorithm [99]. It is a broad framework de-

signed to verify and guarantee the robustness of DNNs with non-linear activation

functions for specific classes in a dataset. It can handle advanced activation functions

such as ReLU, sigmoid, and tanh because it has the power to create a linear bound for

a given activation function using both linear and quadratic requirements. However,

CROWN incomplete verifier is too weak to satisfy the split constraint imposed by

the BaB method because CROWN operates entirely on bound propagation, similar

to the back-propagation [111] in the normal NN. Although it is quite effective in the

incomplete verification process, it is too weak in the complete verification process.

In an incomplete verificationprocessusingCROWN , if the requirement that y∗CROWN >
0 =⇒ y∗ > 0 is satisfied, the network robustness can be guaranteed for all inputs. In a
bound propagation, CROWN computes the network’s output y(x) by linearizing the
input of theReLUactivation to determine the lower boundof eachReLU-neuron. This

entails relaxing the convexity so that the network’s x and y(x) have a linear relation-
ship. Hence, y(x) is computed in equation 7.1 and is expressed as:

y(x) = W 3ReLU(W 2ReLU(W 1x)) (7.1)

WhereW is the weight of the network, and the ReLU non-linear activation is given by

equation 7.2:

ReLU(z) = Max(0, z) (7.2)

Figure 7.2 shows how the ReLU-neurons have three possible outcomes depending on

the constraints on their inputs.

Case 1: The outcome of the ReLU-neuron will become linear if the output of the

σ between Z(i) and Z∗(i) (bounded region) are within the active region (i.e., L ≥ 0),
whichmakes all the values positive, in which case no linearization is required because

the activation is already linear, as shown in Figure 7.2a.

Case 2: The associated neuron can be deleted if the output of σ between Z(i) and

Z∗(i) (bounded region) falls within the inactive region (i.e., U ≤ O), as illustrated in

Figure 7.2b, because theweightsW (i) linked to that neuron are dropped during back-

propagation [111].

Case 3: The entire output of the ReLU-neuron becomes convex/non-linear if the out-

put of σ is between Z(i) and Z∗(i) (bounded region) falls within both active and inac-

tive region (i.e., L ≤ 0 and U ≥ 0) as depicted in figure 7.2c. As a result, the σmust be

relaxed to create a bounded region whereby the network will be stable, allowing its

robustness properties to be evaluated.
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Figure 7.2. Illustration of the possible bound region of a ReLU-neuron

Figure 7.3. Illustration of a block diagram of DNN

"CROWN" attempts to relax the convexity of the activation function by defining the

lower and upper bounds for each output ReLU-neurons in the network using two

linear functions on the activation function, as shown in Figure 8. However, since

CROWN lacks the ability to generate tighter linear bounds, the actual robustness

level of the model cannot always be determined. In some cases, it cannot give the

exact robustness level of the model because of its loose bounds. In such scenarios,

themodel could be robust, but wemight come to the opposite conclusion by looking

at the bounds produced by CROWN .

Figure 7.4. Illustration of convex relaxation introduced by the tradition CROWN incomplete veri-

fier

As the Figure 7.4 illustrates, for jth ReLU-neuron in the layer i, the equation 7.3 holds:
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z
∗(i)
j = ReLU(z

(i)
j ) (7.3)

Assuming the inputs of ReLU(z) are bounded, we have; L
(i)
j ≤ z(i) ≤ U

(i)
j and if un-

stable, we have L
(i)
j ≤ 0 ≤ U

(i)
j , which could be otherwise refers to as pre- and post-

activation bounds.

Through backward-bound propagation, convex relaxation aims to establish a linear

relationship between each hidden neuron in the network and the output. The in-

equality solver may be driven from Figure 7.3 such that

y(x) = z(3) (7.4)

Therefore, z(3) = W (3)T z∗(2) which is an inequality for y(x)with respect to z∗(2), from
where we represents as y(x) = W (3)TD(2)z(2) by replacing the ReLU-activation with

a diagonal matrix D(2) such that the inequality still holds. This paves the way for us

to establish a linear relationship between z∗(2) and z(2). TheD(2) is designed in such a

way that the lower and upper bounds can be easilymaintained for each ReLU-neuron.

CROWN establishes a linear relationship between the output y(x) and the input x
and computes the lower bounds of the final output neurons. It cannot optimize the

neuron-split linear constraint introduced by BaB because it generates certain slack

bounds that prevent the convex frombeing relaxed appropriately. Therefore, it could

not provide an accurate robustness guarantee to the model for all inputs. Given this

limitation, Xu et al. [114] proposed the cutting-edge alpha − CROWN incomplete

verifier, which generates tighter linear lower bounds than the CROWN algorithm,

and this is confirmed in our experiment.

7.4 Alpha-CROWN incomplete verifier

This alpha − CROWN algorithm focuses more on computing the linear lower bound

of the ReLU-neurons, based on the simple fact that if the requirement y(x) > 0 for
x ∈ C is satisfied, the robustness of the model could equally be verified and guaran-

teed. The fundamental technical insight of this approach is that it generates several

lower bounds, as shown in Figure 7.5 by the dot lines. As a result, there are numer-

ous alternatives for choosing the lower bound for each ReLU-neuron, which means

we could choose any lower bound as long as its slope falls between 0 and 1. This

indicates that alpha − CROWN is an adjustable bound generator, which generates

multiple linear lower bounds with values between 0 and 1. When optimizing the split

constraints imposed by BaB, we choose the solution with the tighter linear bound so

long it is not a negative value. Equation 7.5 demonstrates how the lower bound could

be adjusted by values between 0 and 1 through optimizing the α.

z
∗(i)
j ≥ α

(i)
j z

(i)
j (0 ≤ α

(i)
j ≤ 1) (7.5)

Where, 0 ≤ α
(i)
j ≤ 1 is adjustable. Furthermore, the lower bound of the alpha −

CROWN verifier could be computed as:

y∗CROWN = Min αT
CROWNx+ ConstCROWN where x ∈ C (7.6)
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Figure 7.5. Illustration of convex relaxation introduced by the alpha-CROWN incomplete verifier

Where α is the slope of the lower bound, between 0 and 1. α is an adjustable term,

which can be adjusted by values between 0 and 1. Our goal is to optimize α to find

the best possible linear lower bound for each output ReLU-neuron. We choose the

value of α in gradient ascent and apply a ”closed form” solution [77] to get its inner

minimization for the purpose of optimization.

However, the alpha−CROWN algorithm has an additional advantage in that it tight-

ens not only the lower bounds but also the ReLU-neurons’ pre-activation (z∗(i)) and
post-activation (z∗(i)) values. This helps enable a stronger robustness guarantee and
a better verification score than the CROWN and other existing incomplete verifiers

in BaB’s complete verification settings.

Although alpha − CROWN is a powerful verifier, it often took several iterations of

splitting the ReLU activation in BaB settings before a verification property could be

guaranteed to hold. When z1 ≤ 0 during backward bound propagation, it takes time

for alpha − CROWN to address the split constraint. It is often quick and effective

to optimize the split constraint when z1 > 0. Because of these limitations in alpha-

CROWN, Wang et al. [109] proposed beta-CROWN, an advanced incomplete NN veri-

fier quicker than alpha-CROWN at solving both sub-problems in BaB settings.

7.5 Beta-CROWN incomplete Verifier

Beta−CROWN is a bound propagation-basedmethod that can completely encapsu-

late neuron split constraints via an optimizable feature (beta), which is a ”Lagrangian

multiplier” [28] built from either primaeval or dual dimensions. The ”Lagrangianmul-

tiplier” always conditioned the split constraint z > 0 to be either 0 or 1, making beta−
CROWN faster and producing better bounds than alpha − CROWN verifiers with

neuron-split constraints while remaining as efficient and parallelizable as CROWN
on GPUs [109]. The lagrangian multiplier in beta-CROWN is an adjustable parameter

that can generatemultiple lower bounds for the ReLU-neurons between 0 and 1, sim-

ilar to what we described in alpha-CROWN. The lower bounds become equally tighter

from 0 to 1 as the value of beta increases. We took into account all of the positive

split constraints while bound back-propagating through the network from the out-

put to the input layer, and we then used the Lagrangian multiplier to provide various

lower bounds, and we chose the one with the closest value to the ground truth. The

rationale behind the beta− CROWN can be expressed as equation 7.7:
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Min [x ∈ C, z(2) ∈< 0]y(x) ≥Max[β ≥ 0]Min[x ∈ C]W (3)T

D(2) + βTS(2)z(2) + const. (7.7)

7.6 Alpha-beta-CROWN

Themost recent, fastest, andmost accurate NN verification algorithm, alpha− beta−
CROWN , use potent GPUs to ensure formal verification of the model. As far as

we know, it is the only verifier that can effectively handle the BaB’s split restriction

on high-dimensional NNs like ResNet50, VGG19, GoogleNet, InceptionV3, etc. How-

ever, in order to function efficiently on these networks, a lot of GPU is needed. The

alpha− beta− CROWN combines the alpha and the beta parameters in a traditional

CROWN verification. Its application in a BaB setting produces a complete verifica-

tion algorithm that can tell us ”Yes” the network is robust or ”No” the network is not

robust. The advantage of the alpha− beta−CROWN method is that it adds a double

extra constraint to the network that, if solved, creates tighter bounds andmakes the

ReLU-neuron split linear optimization problem work better, which helps transform

the unstable ReLU-neurons in the network into stable neurons. ”Branch and bound”

can be expressed with the equation 7.8:

Min[x ∈ C, z ∈ Z] y(x) ≥Max[β ≥ 0]Min[x ∈ C](α + Pβ)Tx

+ αTβ + C (7.8)

Where x ∈ C and P be the probability of β and z is all the split constraints.

The alpha − beta − CROWN [109] is computationally expensive for verifying the ro-

bustness of large networks. Regardless of whether we use a GPU to scale up or accel-

erate the verification process, it still requires a significant amount of memory space

and computation time. In order to respond to the high computational demand posed

by the alpha− beta−CROWN algorithm, we suggest a network block segmentation

approach in which we divide the network into three different segments. Instead of

applying the alpha − beta − CROWN algorithm to the entire network (i.e., from the

first hidden layers to the output layer), we applied it to segments and mapped their

outputs together to compute the final overall output of the network. This improved

the verification tool’s scalability and minimized the requirement for the heavy com-

putational demands imposed by the alpha−beta−CROWN . Our approach generates

tighter bounds for ReLU-neurons in each segment or block and, interestingly, delivers

superior verification scores compared to applying the alpha − beta − CROWN algo-

rithm to the entire network at once. This allowed us to outperform the approach

suggested in [109] and achieve a higher overall verification score for the entire net-

work. Our network segmentation is expressed with the equation 7.9:

n∑
i=1

Min y(x) ≥Max[βn ≥ 0]Min[x ∈ C](αn + Pβn)
Tx+ αT

nβn + C

where x ∈ C (7.9)
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Then the overall output is computed as:

Min y1(x1) +Min y2(x2) +Min y3(x3) +−−−+Min yn(xn)

N − c
(7.10)

WhereN is the number of segments, and c is a small constant value.

Figure 7.6 shows how we divided a NN into three parts. This lets us make a summary

of the entire network, which we then use during bound back-propagation on the net-

work to solve the ”ReLU-neuron split” constraints that the alpha−beta−CROWN im-

poses on the network. Technically, the ReLU activation is the ending point for every

hidden layer in a NN. Initially, we attempted an intuitive segmentation method [64]

by splitting the network such that each segment ends with a ReLU activation. How-

ever, we notice that doing so requires extra computation during the bound back-

propagation, and instead, we choose to divide the network into segments, such that

each ends with an affine layer, as illustrated by Figure 6. In comparison to the earlier

technique, the latter requires less computation and yields a better verification score.

Figure 7.6. Illustration of the designed neural network segmentation technique for network sum-

marization inbound propagation

Moreover, segmentation of a residual network such as ResNet50 [115] requires extra

care due to its skip connection, which is its most pivotal feature. As presented by the

curving line in Figure 7.7, it shows how it allows the network layer to establish ”short-

cut connections” with a previous layer. Accordingly, an ”intrinsic” residual block [115]

that may be leveraged to divide the network is made up of a group of layers that are

present between a layer and its skip-connected layer. However, it could be feasible

to strike a better balance between speed and accuracy if the number of segments or

the size of each segment could be selected with a more flexible approach. We have

not looked into this yet, so we will leave it for our future work.
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Figure 7.7. Illustration of a residual learning block

7.7 Experimental validation network and datasets

We developed our model from scratch using the ResNet50 DL architecture as a base-

line. It is pivotal toemphasize thatwearenot leveraginga transfer learningmodel [54]

for our evaluation. Rather, we are employing a comparable architecture that gives us

the freedom to choose the network’s hyperparameters and the number of hidden

layers. Thus, we initially created our network using ResNet50’s default hyperparam-

eter settings. However, weperformed somehyperparameter tuning [118] thanks to a

Python open source library called ”OPTUNA” that can be found in the PyTorch frame-

work [88]. The hyperparameter optimization enabled us to select the best hyperpa-

rameters that provided the model with the highest validation accuracy score and the

least amount of loss. After the hyperparameter optimization process, we designed

our final ResNet50 DL model, which we used to evaluate our network segmentation

algorithm.

Concerning the robustness verification, we verifiedandassessed the robustness level

ofourbuilt ResNet50DLmodel using the followingbenchmarkdatasets: CIFAR10 [89],

MINST [67], and GTSRB [101].

The CIFAR10 dataset consists of 60, 000 images divided into 10 distinct classes. Each
image in this dataset has a pixel size of 32×32 and three colored channels (red, green,
and blue). It is a balanced dataset with 6, 000 images in each class.

The MNIST dataset contains 70, 000 images, 60, 000 of which are from the training set

and the remaining from the test set. It has a total of 10 classes, where each class

consists of 7, 000 images with a pixel size of 28× 28. MNIST is a greyscale handwritten

digit image datasetwith numbers ranging from 0−9. It is extrapolated from twoNIST

databases, where 50%of the graphics were created by the staff of the Census Bureau

and the other 50% by high school students.

GTSRB is a dataset containing images of German traffic signs and can be used to train

DL image classification models for autonomous vehicles. These are common traffic

signs used across themember states of the EuropeanUnion except for a fewmember

states. The dataset comprises 12, 630 test images and 39, 209 training images from 43
classes of traffic signs (speed limit, crossing, stop, traffic signals, etc.). The number

of data points in each class varies, resulting in some classes having a small number of
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images while others have a huge number. With a file size of around 314.36MB, down-

loading thedataset does not require a lot of timeormemory space. It has twodistinct

folders: train and test. The train folder is divided into sub-folders, each represent-

ing a particular class, and each class has a variety of traffic sign images. It was first

published at IJCNN 2011 [98]. It should be emphasized that each of these datasets

represents a multi-class image classification benchmark that has been used in a sep-

arate image classification use case. For example, the GTSRB is used in the field of

autonomous and advanced driver assistance systems.

7.8 Result and Discussions

Our ResNet50 DL model’s resilience is quantified and verified against the L∞ norm

onslaught, which is defined by a fixed ε of adversarial perturbation using the three

datasets described in Section III (a). Traditionally, each x0 is described by the value

of q1, representing the luminance of each pixel it is composed of. However, following

the L∞ norm adversarial onslaught with epsilon set to 0.001, each pixel corresponds
to an intensity interval [qi − ε, qi + ε].

Therefore, in each segment, we added an adversarial disturbance ε to the pixels of x0.

Then, we used the alpha−beta−CROWN verification algorithm, inwhich our taskwas

to verify that each segment in the designed ResNet-50 model could produce output

that could classify all perturbed inputs with the same class as the original input. Also,

our task was to verify whether each segment could satisfy the condition described

by y(x) > 0,∀x ∈ C, where C is a set of perturbation. However, if all of these two re-

quirements are satisfied by themodel’s overall output, we conclude that themodel’s

robustness is verified for a certain amount of pixel distortion ε on the input image.

The output of every segment in the network is mapped to produce the model’s over-

all output, as described in equation 7.10. Furthermore, the adversarial tolerance of

the model was also determined by the magnitude of the perturbation size ε. In this
study, we evaluate the model’s resilience with various epsilon values, and at a point

where the robustness requirements are no longermet by themodel, we consider that

epsilon value as the model’s adversarial tolerance point.

In order to evaluate our approach, firstly, we used the alpha−beta−CROWN , alpha−
CROWN , beta − CROWN , and CROWN algorithms over the mentioned data sets.

Table 7.1 shows the results of applying those algorithms to the entire model. On the

other hand, Table 7.2 presents the results obtained from the network segmentation

approach.

We assessed the resilience of our network using the three benchmark datasets. Fur-

thermore, we utilized a L∞ norm as our Lp norm and a perturbation size ε of 0.001 for
evaluation.

The conventional CROWN algorithm’s poor verification score may be attributed to

its inability to performwell in both approaches, as demonstrated in tables 7.1 and 7.2.

This demonstrates that the CROWN cannot handle the neuron-split constraint in a

BaB context. Looking at the same tables, the alpha − CROWN and beta − CROWN
algorithms did not perform well individually in either approach. However, their veri-

fication scores were somehow optimized compared to the traditional CROWN algo-

rithm. Furthermore, as shownby their numberofbranches in the tables, theCROWN ,

alpha−CROWN , and beta−CROWN algorithms required a significant number of it-
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erations before their individual verification could hold in a BaB setting.

The alpha − beta − CROWN algorithm combination achieves a higher verification

performance score than the other algorithms when employed separately. Neverthe-

less, whenwe testedourmodel using the aforementioned threebenchmarkdatasets,

our network segmentation strategy beat the standard application of alpha − beta −
CROWN . Table 7.2 shows that, compared to the alpha-beta-CROWN standard used

in a BaB setting, our technique is more scalable and requires fewer iterations for a

verification to hold.

CIFAR10 MNIST GTSRB

Algorithms time (s) branches %score time (s) branches %score time (s) branches %score

CROWN 5525.7 509606 10.4 2369 74209 18.0 3578 64209 16.9

α− CROWN 5707.68 67933 24.8 1800.56 22339 49.6 2156 11339 36.0

β − CROWN 4340 48023 49.8 4107.70 6107.70 55.3 4001.70 14933 59.30

α− β − CROWN 212.3 9400 77.4 3180 4507.11 65.8 1011 8933 70.80

Table 7.1. A comparison of techniques for NN robustness verification without the use of our

network segmentation method.

CIFAR10 MNIST GTSRB

Algorithms time (s) branches %score time (s) branches %score time (s) branches %score

CROWN 2720 909606 11.8 1064 60401 20.0 1074 81094 17.4

α− CROWN 1612 40136 29.1 1601 13737 51.4 1043 26217 37.1

β − CROWN 1120 61014 51.7 3413.50 7900 60.4 5141 5037 67.10

α− β − CROWN 114.3 7203 79.9 2319.23 3740 73.20 986 7139 76.13

Table 7.2. A comparison of techniques for NN robustness verification using our network segmen-

tation method.

64



D5.3 Version 1

8 Monitoring and mitigation strategies of run-time er-

rors

Issues concerning the use of AI in the context of road safety have been becoming in-

creasingly important in the automotive industry in the recent years. This importance

has also been taken into account as part of the VEDLIoT project, in which the auto-

motive use case is one of the most important ones, developed as part of T7.4. This

section concerns the monitoring and mitigation of run-time errors in a system using

AI/ML models applied to the use case of Pedestrian Automatic Emergency Braking

(Pedestrian AEB), see D7.2, Section 4. Below, we describe howwe have defined cate-

gories for run-time errors and how examples of run-time errors related to the pedes-

trian detection system can be used to illustrate other potential run-rime errors. Then,

we discuss existing strategies for mitigation of such errors and propose possible im-

provements. Finally, we go over the achieved safety of the system in relation to ex-

isting standards.

As stated in Deliverable D5.2 [62], we have identified the need of a monitoring so-

lution capable of evaluating the performance of AI/ML models, in- and output data

quality, communication robustness and capacity in real-time.

According to its description, Task 5.5 was intended to develop adaptation or recon-

figurationmechanisms, which can arguably bring the system back to some safe state,

to react to unforeseen situations. A safe state will mean different things depending

on the selected application. In this chapter, we are using the VEDLIoT automotive

use-case of Pedestrian AEB as an example. The safe state could mean that we warn

the driver when the automatic system is not operating to its full performance and

the driver has to take control. In this document we try to reason of how to extend

the system intended function so that this transfer of control is less necessary.

(a) Testing of an AEB function (b) Distributed processing of sensor data

Figure 8.1. The automotive use case

The Automotive use-case of Pedestrian AEB is illustrated in Figure 8.1 (see D7.2 for
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further explanation). Westart by identifyingpossible run-timeerrors, their detectabil-

ity, and possible mitigation solutions.

8.1 Categories of run-time errors

The categorization of the run-time errors relates to whether the error occurs due

to factors that are internal to the vehicle or external. These two categories are then

further divided depending onwhether it is possible tomitigate the error, which yields

four categories, see Table 8.1.

Table 8.1. Run-time error categories

External Internal

Mitigable Section 8.2.1 Section 8.2.3

Non-Mitigable Section 8.2.2 Section 8.2.4

External is defined as something that depends on the environment, e.g., the sur-

roundings and other vehicle systems. Internal is defined as the subsystems mounted

in a vehicle, including sensors, central processing unit, communication devices, and

power supplies. Mitigation is defined as an activity that reduces the impact of the

run-time error so that the intended system function is still maintained to a level that

does not require any user involvement. Error detection and identification is the first

necessary step, but appropriate countermeasures or alternative processes adapted

to the scenario are also required. This will be discussed in Section 8.3.

8.2 Example system with run-time errors grouped in categories

In this section, the relationship between a vehicle and its environment will be ex-

plored given the use case for detection of a pedestrian in order to initiate automatic

emergency braking, as said before, developed in Work Package 7.

Figure 8.2. Interaction between a vehicle and its environment

Run-time error categories

• E External

• I Internal

• M Mitigable

• N-M Non-Mitigable

Environment

• E/N-M Out of the ODD

• E/N-M Unknown context
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• E/N-MWeather

• E/N-M Unknown objects

• E/N-M Light conditions

• E/N-M Interference

• E/N-M Unexpected scenario

• E/M Localization error

• I+E/M Hard maneuvers creating unexpected dynamics

Sensor connects External to Internal

• I/N-M Electric failure

• I/M Calibration loss/error

• I+E/N-M Small crash impact

• I /M Supply voltage variations

• E/N-M Blockage (full, partial)

• I /N-M FOV boundary performance

• I+E /M+N-M Low SNR (dirt, aging of lens or radome)

• I/N-M Point cloud correlation (information leakage)

Internal Connection #1

• I/M Comm data crosstalk

• I/N-M? Timing/clock error due to (capacitive) loading

• I/M EMC

Local processing

• I/N-M Electric failure

• I/N-M Processing parameter loss/error

• I/N-M Memory overwritten

• I/N-M Insufficient data precision, rounding errors

• I/N-M Insufficient data dynamic range

• I/N-M Unexpected processing time (interrupt handling)

• I/N-M Incorrect output data (specification error)

• I/N-M Incorrect re-programming

Internal Connection #2

• I /M Communication data crosstalk

• I/N-M? Timing/clock error due to (capacitive) loading

• I/M EMC

• I/N-M Scheduling/addressing/router error

Central processing

• I /N-M Electric failure

• I/N-M Processing parameter loss/error

• I/N-M Memory overwritten

• I/N-M OS issues (content switching, interrupts, priorities)

• I/N-M Not enough resource allocation

• I/N-M Resource allocation delay

• I/N-M Incorrect output data (specification error)
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Figure 8.3. Interaction between a vehicle and the cellular communications infrastructure

Cellular com connects Internal to External

• E/N-M Not enough resource allocation

• E/M Resource allocation delay

• E/N-M Low SNR

• E/N-M Retransmission required

• E+I/N-M Handover

• E/N-M Interference

Base station processing

• E/N-M Electric failure

• E/N-M OS issues (content switching, interrupts, priorities)

• E/N-MProcessing code implementationonOS (Insufficientdataprecision, round-

ing errors, word lengths)

• E/N-M Interfaces (data format, protocol)

Internet

• E/N-M Not enough bandwidth

• E/N-M Resource allocation delay

• E/N-M Retransmission required

• E/N-M Addressing issues (routers, lost packets)

Server processing

• Out of scope for this report.

The following sections aim to describe the reasoning for the categorization of the

automotive use-case different run-time errors.

8.2.1 External, Mitigable

Ego localization can be calculated based on multiple sources like Global Navigation

Satellite System (GNSS), sensor Simultaneous Localization and Mapping (SLAM), and

vehicle Inertia Measurement Systems (IMS). Vehicle dynamic behavior can be well

modeled, so it is likely that any instantaneous localization error is detected. The only

time this is not true is when the system has just started unless there is somememory

from when it was turned off.

As with the localization problem, good vehicle modeling may help counteract the ef-

fects of hard maneuvers. IMS information will also support mitigation of this poten-

tial error. In cellular communication, data transfer resources have to be requested

and acknowledged before transmission, which is handled by a base station. The vehi-
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cle does not have information about a possible resource allocation delay, which could

generate processing errors. This could bemitigated if a model for this delay could be

created based on known parameters like physical location, time of day, traffic den-

sity, and more. Including this model will allow for adapted processing mitigating the

effects of allocation delays.

8.2.2 External, Non-Mitigable

For many Non-Mitigable external errors, we have unforeseen scenarios like unex-

pected objects in the field-of-view of the sensors. For ADAS functions, this could be

an elephant on the road. From a functional standpoint, we may not be able to clas-

sify the object butmay still determine that it is blocking our travel path. The intended

function may be compromised, but the system will detect an anomaly and warn the

driver.

Operatingoutof theOperationalDesignDomain (ODD)with respect toharshweather,

bad lighting, or unknown context, i.e., not knowing the physical position of the vehi-

cle, will sometimes be difficult to identify. The used sensor types will behave differ-

ently with respect to these factors, and it may not be obvious that the ODD border

has been crossed. Due to this, it will be hard to mitigate the problem, but it may be

possible to generate a driver warning based on uncertainty criteria.

Many types of sensor interference may be identified based on entropy calculations.

With AI, minor interference like single-pixel modification may cause missed detec-

tions or wrong classification. This is hard to detect and must be considered non-

mitigable.

Sensor performancemay be compromised due to small crashes, for example, in park-

ing areas. The sensor datamay look reasonable but introduce bias due to unexpected

field of view. Based on long-time statistical data, it is possible to identify the error,

but during the initial phase after system startup (leaving the parking lot, for exam-

ple), this is an undetected fault.

Most current sensor systems are capable of detecting full or partial hard blockage of

the sensor field-of-view (FOV). This sensor cannot deliver the expected information,

and the full system cannot operate with full performance when this issue occurs, so

the driver must be informed about cleaning the sensor surface.

Low sensor Signal-to-noise ratio (SNR) can be caused by multiple physical effects.

Dirt, snow, and rain on the sensor facia or aging of the facia material are typical

reasons. As for the blockage, the problem may be detected, and the driver may be

warned, but the system will be non-operational.

Multiple communication parameters may affect the vehicle system’s performance.

They may be divided into physical problems and communication system design prob-

lems. LowSNR is a physical problem, and although it could be the result of bad system

design, it is assumed not to be in this case. The low SNR may require the retransmis-

sion of data packets, and the scheduling and protocol for this is part of the commu-

nication system design.

When the vehicle is traveling, it will need to change base stations and thereby require

handover and the effects of that are dependent on the communication system de-

sign. If the base station does not have sufficient communication resources (due to,
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for example, limited RF bandwidth), data transfer will be delayed or lost. All these

errors are detectable but cannot be mitigated in real-time. A warning to the driver

would most likely be the appropriate action.

Interference of the communication link will require a change of resource allocation,

using a different time-frequency slot for data transmission. If the interference is con-

tinuous and wideband, there may not be any available resources to counteract the

error. Errors due to interferencemay bemitigable up to a certain level, but a warning

to the driver is the only option above this level.

Electric and software failures in the base station may be hard to detect and mitigate

by the vehicle system. Software routines adapted to anomaly detection may have to

be included in any vehicle system software running on the base station processing de-

vices. Even if the base station has multiple redundant processing units, it may not be

possible to identify a problem from the outside, i.e., the vehicle system, and demand

a switch to any backup hardware or software within a maximum time limit. The base

station operates as a black box with special resources available to external users.

Suppose data should be transferred from the base station to any server on the In-

ternet. In that case, additional insecurities arise since other non-related users with

unknown priorities may affect the communication links. Data packets may be lost or

delayed by how the route between the base station and the server is selected. Nei-

ther of these problems is guaranteed to be detected within a limited time frame.

8.2.3 Internal, Mitigable

As described in Section 8.2.1, vehicle dynamics modelling may help detect and miti-

gate errors due to hard maneuvers. IMS information will also support mitigation of

this potential error.

System calibration information created either during production or as part of run-

time statistics may be compromised or lost. The easiest solution is to have multiple

copies of this information stored at different local locations that can be accessed

through multiple independent communication channels.

Any state-of-the-art hardware system has supply included quality supervision func-

tions. Dependingon the typeof problem itmay in some cases bepossible to prioritize

the quality of energy supply for some system functions.

As described in Section 8.2.2 low sensor SNR can be caused by multiple physical ef-

fects. By detecting dirt, snow, and rain on a sensor facia it may be possible to adapt

the system function for the current scenario. This could be by relying more on data

from some types of sensors. This may keep the intended function at a reasonable

level.

Electromagnetic interference (EMI) and electromagnetic compatibility (EMC) errors

which have not been handled during the system design phase and may be caused by

uncontrolled external systems may be hard to protect from. The mitigation possibil-

ity is to use alternative communication routes.

8.2.4 Internal, Non-Mitigable

A well-defined system can detect an electric failure, but it cannot keep the intended

function operating on the faulty hardware.
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Low-speedvehicle crashesmaygenerateerrors in sensors directly but also in the com-

munication and power supply links. If the system is damaged when turned off it may,

in some cases, be hard to detect the error at system startup. Based on long time

statistical data it is possible to identify the error (see Section 8.2.2).

At sensor FOV boundaries, the performance drops off rapidly. The effect with single-

point targets is well understood and modeled, but with real-life distributed targets,

the effect is much more complicated. The solution would be to use only information

within the designed FOV or multiple sensors with partially overlapping FOVs. When

relying on a single sensor, this is a non-mitigable error.

Timing errors on the clock or data lines within the system, caused by, for example,

capacitive loading, may distort the communicated information. The error may be de-

tected, but it is hard to remove the error without physical manipulation.

The same is valid for processing parameter errors as for system calibration informa-

tion (see Section 8.2.3). This information is also created during development/produc-

tion and may be compromised or lost. The easiest solution is to have multiple copies

of this information stored at different local locations that can be accessed through

multiple independent communication channels.

Overwritten memory containing either data or program code will cause severe sys-

tem errors. The system may hang completely, but it will restart if it is well-defined

with watch-dog functionality. This will cause moments of undefined system opera-

tion, which may jeopardize the intended function.

Processing errors caused by combinations of insufficient data dynamic range, low

data precision, and perhaps mathematical rounding errors may generate erroneous

results that do not fulfill the intended function requirements.

Interrupt handling could be a source of problems due to its possible randomness,

which may cause occasional long processing cycles where data is not produced with

the expected time synchronization.

Although mainly a design/specification problem, incorrect output data may be gen-

erated due to calculation overflowor saturated data. Depending on the specification

agreement between subsystems on how to report special cases of data, this may be

a source of run-time error.

Many automotive systems operate with over-the-air updates, which will require the

re-programming of subsystems in the vehicle. An incorrect or erroneous software

update may cause total system failure and fewer detectable errors.

Sensor data is sent to a vehicle central processing unit and from there through a

wireless communication channel (5G) to a base station edge processing device. All

of these are controlled by their individual OSs and processing switching and prior-

ities. A delay in time or insufficient resource allocation may create an error in the

intended automotive function. Other problems, like the ones related to communica-

tion scheduling or addressing through routers and switches, may be detected using

time stamps.
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8.3 Mitigation options/strategies

The most common mitigation solution is based on redundancy, where the same sys-

tem function can runonmultiple local or off-boardplatforms. Theseplatformsdonot

have to be dedicated to the intended function but may be allocated for the function

in case of failure in the primary platform. All platforms should have individual power

supplies and multiple interchangeable communication interfaces. Redundancy may

be applied in different ways, as shown in in Figure 8.4.

Figure 8.4. Redundancy applied to enhance safety, availability, and fusion results.

To avoid a central fault supervisor, the error detection functionality should be run-

ning on all platforms while supervising its own and all other platforms. Figure 8.5

illustrates the effect for the automotive use case with at least three separated pro-

cessing platforms. The arrows only indicate the additional communication needed

for real-time monitoring. This could generate an immense overhead in processing

and data transfer. The correct trade-off must be defined for the possible improve-

ment in the Safety of the Intended Function.

Figure 8.5. Error detection distributed between separate processing platforms

The first step to mitigation is error detection. Some possible error detection solu-

tions have been described in Section 8.2 and subsections. They include hardware de-

tectors, statistical analysis, and behavior modelling. The software implementations

can be based on AI as well as deterministic algorithms. In our example of Pedestrian

AEB, we assume an AI implementation distributed over many processing nodes. We

have identified the need for a separate real-time monitor, which is also distributed

over multiple hardware processing nodes.

Based on ISO26262 requirements, most modules have performance/error reporting
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functions, but this is insufficient when considering SOTIF (ISO 21448). We have to

analyze data between modules and also inject data into modules and evaluate the

response. This is illustrated in Figure 8.6.

Figure 8.6. Application of FUSA and SOTIF for monitoring a distributed AI inference system

8.4 Possible ways of increasing the mitigation level

The automotive use-case application is designed to be reconfigurable. This is pri-

marily done to guarantee sufficiently low response latency (breaking for a pedes-

trian). How to implement a reconfigurable VEDLIoT AI system is investigated in other

VEDLIoT work packages. This reconfigurability could also be used to change the pro-

cessing based on other errors detected by the real-time monitor. This may require

a more advanced real-time monitor capable of solving updated resource allocations

due to detected errors. This will be further explored in Task 5.5 during the rest of the

VEDLIoT project.

8.5 Achieved system reliability and safety

The full system safety case argumentation is important. An evaluation of this has

been carried out by Veoneer. It was presented at the Scandinavian Conference on

Systems and Software Safety Conference in Gothenburg in December 2022 [14]. The

automotive use case has been used as an example. The presentation is part of this de-

liverable as a separate document. A state diagramwith the likelihood of transferring

between states is a good tool to evaluate the safety level of any system. An example

of an automated driving process is shown in Figure 8.7. Without this, it will be hard to

determine the improvements created by additional functions (redundant or comple-

mentary). The critical pathsmay be identified, and the focus should be onminimizing

the likelihood of entering these paths.
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Figure 8.7. Description of an automated driving process, courtesy Thorbjörn Jermander, Veoneer

Figure 8.8 shows the probability of ending up in a certain state. In this example, the

second operation state probability is very low, which is inefficient since we are not

using this extra function very often. This could be managed by a better real-time

monitor as described in Section 8.4.

Figure 8.8. Probabilities of being in a certain state as a function of time.
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This tool and other similar do already exist and are being further developed by in-

dustry, academia, and regulators. We will follow this development as described in

Section 8.6, but we will not do additional work within WP5 of VEDLIoT.

8.6 The relation to existing standards, conclusions and outlooks

International groups are looking at improvements in safety argumentation and pro-

posals for new safety standards. This includes Safety Strategy, ADS/ADS Feature de-

scription, Safety Criteria Definitions, Vehicle-level Safety requirements, and Safety

Validation & Assessment. Veoneer is part of workgroups within this important area

and will report the progress in the final VEDLIoT WP5 deliverable.

Our work, as presented at the Scandinavian Conference on Systems and Software

Safety, has led us to several conclusions regarding safety for the VEDLIoT project,

and some insights for the future outlook in this area. First of all, a well-defined and

agreed-upon holistic system design approach is essential for ensuring the safety of

IoT solutions. What ismore, newmethods, tools and standards need to be adopted in

order to compile a well-operating, effective environment in terms of safety. New in-

ternational specifications, e.g. ISO TS 5083, are of great importance as generic refer-

ences, and theyneed to continuebeingdeveloped inorder todealwith the challenges

this area presents. Another means that has potential for achieving safety targets are

incremental safety assessments, proven to be extremely effective independent con-

firmation measures for maturity monitoring. These conclusions will help drive our

future work in the project, with emphasis on errors likely to be included in the dis-

tributed DL model inference.
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9 Overall Achievements and Future Work

During this period, our work on Tasks 5.1, 5.2, 5.3 and 5.5 of the VEDLIoT project con-

tinued. The Task 5.4 was started andwill continue in the next period. This deliverable

document is organized into 9 chapters, 6 of which describe technical progress.

In Chapter 2, we have described the structure and progress in work packages on a

per-task basis. The following paragraphs discuss the highlights of our most recent

work and the future plans aimed at supporting the VEDLIoT project goals.

In Chapter 3, two lines of work are still in progress concerning Task 5.2 (Security sup-

port for distributed execution and communication). The first line concerns commu-

nication, with the upcoming development of anMQTT-based trusted communication

bus for attestedWebAssembly processes. The second concerns the further evolution

of our WebAssembly trusted execution run-time for Intel processors, with increased

TRL in support of an industrial use case outside VEDLIoT.

In Chapter 4, we presented the collective work of partners regarding the time-of-

check to time-of-use challenges that remote attestation and certification face in the

context of IoT. Firstly, we have given an overview of the seriousness and specificity

of TOCTOU problems for IoT devices resulting from resource constraints of such de-

vices, their operational environment, supply chain, vulnerability management, and

others. Then, wehighlighted the importanceof developing a solution capable of soft-

ware validation appropriate for IoT devices and described AutoCert as a proposed

mechanism. Our future work in this area will involve developing a highly-optimized

remote attestation and certification mechanism for low-end IoT devices and dissem-

ination of the developments discussed in this project via multiple outlets. We also

aim at pushing this work as a potential solution for the implementation of the EU

Cybersecurity Act for IoT.

Implementation of SIRE is further discussed in Chapter 5, building on the informa-

tion provided in Deliverable 5.1 [86] and Deliverable 5.2 [62]. We delved into the full

scope of SIRE’s features, now operating in its fully functional state, its implementa-

tion architecture, the details of SIRE server and proxy implementations, as well as

the process we have used to evaluate the service. The future work planned in this

area will involve using SIRE in a real-life scenario, for coordinating autonomous ve-

hicles movement, with an added benefit of Remote Attestation. An application for

Byzantine fault-tolerant ML using SIRE as a parameter server is also planned.

In Chapter 6, we have presented the improvements to Antmicro’s open source sim-

ulation framework - Renode. We also provided an overview of testing performed

within the said framework and described a cloud-based testing platform developed

as a part of the project. The next step involves preparing a reproducible setup to

let other partners easily use the CI infrastructure created in T5.4. It will, in spirit,

follow the ”Renode issue reproduction template” [22] and will allow users to create

test cases for the accelerator SoC and run them in Renode without additional tech-

nical work. We also described further development in the space of co-simulation in

Renode, allowing users to create complex setups in which the majority of the system

is simulated in a functional fashion, with certain parts represented as cycle-accurate

verilated models. In the next period we will continue to improve the co-simulation
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support, as well as expand the support for WP4 accelerator SoC - by adding new and

improving already available LiteX peripherals.

In Chapter 7, we have described the methods of evaluating the robustness of Deep

Neural Networks and presented a new solution for that problem utilizing novel ap-

proach to the alpha − beta − CROWN algorithm, significantly improving the solu-

tion’s scalability and shortening the verification process. In safe AI, evaluating the

robustness of deep learning models is essential. Many of the methodologies used

by researchers and industry specialists to gauge the robustness of their models are

focused on identifying constraints that they believe, if satisfied, could indicate ro-

bustness or a lack thereof. In the project scope, we are investigating new ways of

robustness quantification. Future research trajectories that could produce remark-

able outcomes include:

• Adversarial vulnerabilities - Investigating the impact of adversarial attacks

on deep learning models: This approach can aid researchers in identifying the

weaknesses of a model and where it is most susceptible to failure.

• Feature replacement: Another potential avenue for research in this field could

be the concept of substituting under-performing segments within the network

after assessing their robustness levels. This could be done before quantifying

theoverall robustness level of themodel, which could aid in constructing robust

models for specific problems.

• Ensemble robustness quantification: By combining different techniques, we

may be able to give some formal verification to the behaviors of the models

before their deployment in critical real-world systems.

Chapter 8described the strategies formonitoringandmitigating run-timeerrorsbased

on the use case of Pedestrian Automatic Emergency Braking (Pedestrian AEB). This

chapter categorized the errors into groups and discussed the ways of mitigating er-

rors in every groupandmethodsof increasing themitigation level. Lastly, the chapter

compared the achieved system reliability and safety level in relation to the existing

standards.
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